US6091039A - Gas-insulated line with an incorporated power capacitor and circuit breaker - Google Patents

Gas-insulated line with an incorporated power capacitor and circuit breaker Download PDF

Info

Publication number
US6091039A
US6091039A US09/186,418 US18641898A US6091039A US 6091039 A US6091039 A US 6091039A US 18641898 A US18641898 A US 18641898A US 6091039 A US6091039 A US 6091039A
Authority
US
United States
Prior art keywords
gas
insulated line
line according
compartment
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/186,418
Other languages
English (en)
Inventor
Van Doan Pham
Marcel Guillen
Michel Collet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grid Solutions SAS
Saft Finance SARL
Original Assignee
GEC Alsthom T&D SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEC Alsthom T&D SA filed Critical GEC Alsthom T&D SA
Assigned to GEC ALSTHOM T & D SA reassignment GEC ALSTHOM T & D SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLLET, MICHEL, GUILLEN, MARCEL, PHAM, VAN DOAN
Assigned to GEC ALSTHOM T & D SA reassignment GEC ALSTHOM T & D SA CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE, FILED ON 02-24-99 RECORDED ON REEL 9792, FRAME 0074 ASSIGNOR HEREBY CONFIRMS THE ASSGINMENT OF THE ENTIRE INTEREST. Assignors: COLLET, MICHEL, GUILLEN, MARCEL, PHAM, VAN DOAN
Application granted granted Critical
Publication of US6091039A publication Critical patent/US6091039A/en
Assigned to SAFT FINANCE S.AR.L. reassignment SAFT FINANCE S.AR.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL (FORMERLY KNOWN AS ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE
Assigned to ALSTOM T&D SA reassignment ALSTOM T&D SA RECORD TO CORRECT ASSIGNORS NAME, ASSIGNEE'S NAME AND ADDRESS AND TO CORRECT NATURE OF CONVEYANCE FROM ASSIGNMENT TO (CHANGE OF NAME) ON A DOCUMENT PREVIOUSLY RECORDED ON REEL 015972 AND FRAME 0006 Assignors: GEC ALSTHOM T&D SA
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0356Mounting of monitoring devices, e.g. current transformers

Definitions

  • the invention relates to a gas-insulated line in a grid for transporting electrical power, the line comprising a conductor placed inside a case filled with a dielectric gas under pressure.
  • gas-insulated lines have the advantage of directly providing capacitive reactive power to the power transport grid. Their capacitive behavior is about four times greater than that of an overhead line.
  • a 2000 MW overhead line transporting electricity at 400,000 V presents linear capacitance of about 13,000 picofarads per kilometer (pF/km), whereas for a gas-insulated line, under the same electrical voltage and power conditions, the linear capacitance is 50,000 pF/km.
  • the reactive power supplied by the gas-insulated line is not sufficient on its own to compensate for the inductive reactive power load on the transport grid, as is frequently the case, it is still necessary to connect a power capacitor to the line.
  • Overhead lines use power capacitors which are generally in the form of batteries made up of unit capacitors coupled together in series and in parallel, and which are connected to the transport grid via a circuit breaker.
  • a frame supports the batteries at a distance from the ground so that any risk of short circuit through atmospheric air between a battery and ground is avoided, particularly when the transport grid operates at a voltage of about 400,000 V.
  • the impossibility of placing such batteries on the ground, and a fortiori of burying them, constitutes a problem for connecting a power capacitor to a gas-insulated line.
  • the object of the invention is to provide a gas-insulated line which is connected to a power capacitor in such a manner that its size and its use remain unaffected when it is used at ground level or buried underground.
  • the invention provides a gas-insulated line of an electrical power transport grid, the line comprising a conductor disposed inside a case filled with a dielectric gas under pressure, the line being characterized in that a power capacitor is electrically connected to the conductor, being disposed inside a compartment secured to the case and filled with dielectric gas under pressure.
  • the dielectric gas present in the compartment provides it with electrical insulation relative to the power capacitor. In this manner, the electrical insulation of the gas-insulated line between the conductor and the case is maintained in the compartment where the power capacitor and the conductor are electrically connected together. As a result, a gas-insulated line of the invention remains small in size and can be used on the ground or buried in the ground.
  • FIG. 1 is a diagram of a gas-insulated line of the invention in which the conductor is connected in series with the power capacitor.
  • FIG. 2 is a diagram showing a gas-insulated line of the invention in which the conductor is connected in parallel with the power capacitor.
  • FIG. 3 is a partially-cutaway diagrammatic perspective view of a three-phase gas-insulated line of the invention.
  • FIG. 4 is a diagrammatic section view of a power capacitor of the invention.
  • the invention relates to a gas-insulated line of an electricity transport grid, the line comprising a conductor disposed inside a case filled with dielectric gas under pressure.
  • a line is made, for example, by means of an aluminum or steel tube forming a case having disposed therein an aluminum bar acting as a conductor.
  • the line is a three-phase line, three bars of this type are placed inside the tube.
  • the diameter of the tube is 700 millimeters (mm) and its wall thickness is 8 mm.
  • the dielectric gas present inside the tube can be constituted, for example, by a mixture of N 2 containing 2% to 5% SF 6 and at a pressure of 12 bars.
  • the power transport grid to which the gas-insulated line belongs may, for example, be a high voltage grid, i.e. a transport grid operating at a voltage typically lying in the range 200,000 V to 400,000 V.
  • a power capacitor is placed inside a compartment filled with dielectric gas under pressure, and secured to the cases of two portions of gas-insulated line, being electrically connected to the conductors thereof in a series type circuit.
  • FIG. 1 which shows this type of embodiment, there can be seen on the left a first portion of gas-insulated line of the type described above, and comprising a conductor 1A disposed inside a case 3A.
  • a second portion of gas-insulated line comprising a conductor 1B disposed inside a case 3B.
  • the first and second conductors 1A and 1B are extended respectively by a conductive rod 1AC and by a metal tube 1BC which are contained in an intermediate compartment 3C which is cylindrical in shape and which is secured to the first and second cases 3A and 3B via two branching spheres 3AS and 3BS.
  • the metal tube 1BC is supported inside the intermediate compartment 3C by three identical insulating supports 71 so that it is coaxial with the conductive rod 1AC extending the first conductor 1A.
  • the intermediate compartment 3C and the branching spheres 3AS and 3BS are filled with the same dielectric gas as that described above. They are mechanically interconnected in conventional manner, each being capable of being removed independently of the others, and they constitute a series-connected branch B1. Provision is made for respective circuit breakers to be disposed between the first case 3A and the branching sphere 3AS, and between the sphere 3BS and the second case 3B, which circuit breakers are conventional and not shown and serve to provide electrical disconnection when necessary.
  • the power capacitor 5 is constituted by a battery of identical unit capacitors 5A of annular section enabling them to be mounted by sliding simultaneously around the conductive rod 1AC which extends the first conductor 1A and inside the metal tube 1BC which extends the second conductor 1B.
  • Each unit capacitor 5A is provided with an inner circular electrode 51 which provides sliding electrical contact with the conductive rod 1AC, and with an outer circular electrode 52 which provides sliding electrical contact with the metal tube 1BC.
  • the inner and outer electrodes of each unit capacitor 5A are fixed to two insulating cheek plates 53 and 54 which close the inside volume of each unit capacitor in gastight manner.
  • the identical unit capacitors 5A are stacked by sliding between the conductor rod 1AC and the metal tube 1BC to form a battery of such capacitors which are associated in parallel.
  • the total electrical capacitance of the battery of capacitors is proportional to the number of unit capacitors 5A that are associated therein, and it is advantageous to select that number as a function of the quantity of capacitive reactive power that is to be compensated in the transport grid to which the gas-insulated line belongs.
  • Conventional means (not shown) are provided to hold the stacked unit capacitors in place between the conductive rod and the metal tube.
  • the power capacitor 5 provides electrical conduction between the conductive rod 1AC and the metal tube 1BC.
  • the electrical connection between the conductor and the capacitor is of the series type.
  • FIG. 1 provision is made to connect the first and second conductors 1A and 1B respectively to first and second conductor segments 2A and 2B to form a branch B2 which is in parallel with the branch B1.
  • the first segment 2A branching from the first conductor 1A passes inside the branching sphere 3AS, a link compartment 3AD, a branching sphere 3DS, and a second intermediate compartment 3F in which it is extended in the form of a conductive rod 2DF.
  • the second segment 2B branching from the second conductor 1B passes inside the branching sphere 3BS, a link compartment 3BE, a branching sphere 3ES, and the second intermediate compartment 3F in which it is extended by a metal tube 2EF.
  • the metal tube 2EF is supported inside the intermediate compartment 3F by three identical insulating supports 72 so that it is coaxial with the conductive rod 2DF extending the first segment 2A.
  • the link compartments, the branching spheres, and the intermediate compartment of the second branch B2 are filled with the same dielectric gas as the elements forming the first branch B1 in order to provide electrical insulation.
  • first and second branch segments 2A and 2B Electrical conduction between the first and second branch segments 2A and 2B is provided by a second power capacitor 5 disposed in the intermediate compartment 3F between the conductive rod 2DF and the metal tube 2EF.
  • the electrical connection between the conductor and said capacitor is of the series type.
  • the power capacitor 5 of the second branch B2 is made up of unit capacitors 5A which are identical to those making up the power capacitor of the first branch B1.
  • the identical unit capacitors 5A are stacked by sliding between the conductive rod 2DF and the metal tube 2EF to form a battery of such capacitors associated in parallel.
  • the power capacitor 5 of the second branch B2 is connected in parallel relative to the power capacitor 5 of the first branch B1 in order to increase the total ability of the two batteries to supply capacitive reactive power to the transport grid in which the gas-insulated line is inserted.
  • Using the second branch B2 in parallel with the first branch B1 makes it possible to reduce the length of each of the two branches. By way of example, a typical length for a branch B1 or B2 is 100 m. Provision is also made to provide a third branch, of the same type as those described above, and mounted in parallel therewith, to further increase the total ability of the gas-insulated line to provide capacitive reactive power.
  • the electrical current transported by the gas-insulated line splits into two currents I1 and I2 which travel through the conductive segments and the power capacitors in each of the two branches B1 and B2 respectively.
  • the potential difference is identical across the terminals of the two power capacitors 5 and determines the "nominal" voltage of each capacitor.
  • the nature and the pressure of the dielectric gas contained in the intermediate compartments, in the link compartments, and in the various branching spheres is selected to withstand the nominal voltage.
  • FIG. 1 identical varistors 9 of cylindrical shape are housed in insulating tubes which are mounted around the conductive rod 1AC in a radial direction.
  • An inner conductive base 91 connects each varistor electrically to the conductive rod 1AC, and an outer conductive base 92 connects each to the metal tube 1BC, so that they are connected in parallel with the unit capacitors 5A of the power capacitor 5.
  • a switch is placed between the conductive rod 1AC and the conductive rod 1B in the intermediate compartment 3C and is connected in parallel with the power capacitor to short circuit it, thereby enabling the gas-insulated line to operate without the capacitor.
  • a switch 11 comprises a ring of contact fingers 11B carried by an insulating tube 11A secured to the conductive rod 1AC via a metal base 11D.
  • a copper conductor is coiled around the insulating tube 11A to form an inductor 11E connected in series with the switch 11 and electrically connecting the metal base 11D with the contact fingers 11B.
  • a metal tube 11C is disposed inside the insulating tube 11A. It is held at one end to the metal base 1D, and at its opposite end it carries a ring of contact fingers 11F.
  • a tubular contact 11G and a cylindrical contact 11H are disposed coaxially and on the same axis as the insulating tube 11A and the metal tube 11C by means of an insulating support 11I, and they are mounted to move in translation so as to slide respectively against the contact fingers 11B and against the contact fingers 11F.
  • the contact fingers 11F are set back relative to the contact fingers 11B so that when the circuit breaker is closed, the power capacitor 5 is initially shorted by the series-connected inductor, thereby reducing the discharge current from the unit capacitors 5A. Thereafter connection between the contact fingers 11F and the cylindrical contact 11H short circuits the inductor.
  • the series connection of the power capacitor with the gas-insulated line as shown in FIG. 1 relates to a single phase line. Nevertheless the invention extends to a gas-insulated line having a plurality of phases.
  • a power capacitor is placed inside a compartment filled with dielectric gas under pressure and secured to the case of the gas-insulated line, being electrically connected to the conductor in a parallel type circuit.
  • This embodiment is shown in FIG. 2 in which there can be seen on the left a single-phase gas-insulated line of the same type as that described above, comprising a conductor 1A disposed inside a case 3A.
  • a power capacitor 5 is placed inside a cylindrical metal compartment 3B which is secured to the case 3A via, from right to left in the figure: an intermediate compartment 1R; and a vessel 3T.
  • the conductor 1A is connected via conductive segments 1T and 1R connected in series and disposed in respective intermediate elements 3T and 3R to a conductive rod 2AC disposed in the metal compartment 3P which contains the power capacitor 5.
  • the case 3A, the metal compartment 3P, and the intermediate elements 3T and 3R are carried to a constant zero potential and are filled with a dielectric gas such as the gas described above, serving to insulate them electrically from the various conductive segments they contain.
  • the mechanical links between these elements are provided in conventional manner, each being capable of being removed independently of the others.
  • the power capacitor 5 is formed by a battery of identical unit capacitors 5A of annular section so as to be mounted by sliding both on the conductive rod 2AC which extends the conductor 1A and inside the metal compartment 3P.
  • the unit capacitors 5A are identical to those described for the embodiment shown in FIG. 1.
  • each unit capacitor 5A is provided with an inner circular electrode 51 providing sliding electrical contact relative to the rod 2AC, and with an outer circular electrode 52 which provides sliding electrical contact relative to the metal compartment 3P.
  • the inner and outer electrodes of each unit capacitor 5A are fixed to two insulating cheek plates 53 and 54 which close the inside volume of each capacitor in leakproof manner.
  • the identical unit capacitors 5A are stacked by sliding between the conductive rod 2AC and the metal compartment 3P so as to form a battery of such capacitors associated in parallel.
  • the total electrical capacitance of the battery is proportional to the number of associated unit capacitors 5A, and it is advantageous to select this number as a function of the quantity of capacitive reactive power that needs to be compensated in the transport grid to which the gas-insulated line belongs.
  • the unit capacitors are stacked by sliding by removing the metal compartment 3P to gain easy access to the rod 2AC. Provision is also made to stack the unit capacitors 5A without removing the metal compartment 3P. A gastight end wall 30 is thus removably mounted to give access to the rod 2AC.
  • Three identical bars 40 are provided with wheels 41 and are mounted to run against the inside wall of the metal compartment 3P at 120 degree intervals on three conventional slideways (not shown) to facilitate installing the unit capacitors 5A.
  • Conventional means (not shown) are provided to hold the stacked unit capacitors in place inside the metal compartment 3P.
  • the conductive rod 2AC is terminated by a removable sphere 20 for reducing electrical edge effects relative to the end wall 30 of the metal compartment 3P.
  • the power capacitor 5 provides electrical conduction between the rod 2AC which is at the same potential as the conductor 1A of the gas-insulated line and the metal compartment 3P which is at the same potential as the case 3A. Given that the capacitor is subjected to the entire high voltage as transported by the line, the FIG. 2 circuit is of the parallel type.
  • the intermediate compartment 3R between the metal compartment 3P and the vessel 3T is closed by two identical insulating cones 60 fixed in one case to the intermediate compartment 3R and in the other case to the conductive segment 1R to provide sealing relative to the dielectric gas present therein.
  • a conventional circuit breaker 12 represented in FIG. 2 merely by an electrical symbol is disposed inside the intermediate compartment 3R and is connected in series with the conductive segment 1T disposed inside the vessel 3T, and with the power capacitor 5 via the conductive segment 1R so that opening the circuit breaker disconnects the power capacitor 5 from the line voltage, thus enabling the gas-insulated line to operate without the capacitor. Provision is also made for a grounding connection 70 to be available inside the intermediate compartment 3R in parallel with the power capacitor.
  • the unit capacitors 5A discharge to the zero potential of the compartment 3R via the grounding connection 70.
  • the intermediate compartment 3R is preferably filled with pure SF 6 at a pressure of about 5 bars.
  • the vessel 3T is closed firstly relative to the intermediate compartment 3R and secondly relative to the case 3A by insulating cones 60 identical to those of the intermediate compartment 3R.
  • an insulating bushing 3U made of porcelain is mounted on one side of the vessel 3T to insulate a conductive segment 1U which is connected in series with the switch 11 via the conductive segment 1T contained in the vessel 3T, and with an overhead line 80 via one end of the insulating bushing 1U.
  • a top base 2U and a bottom annular base 4U close the insulating bushing 1U in a manner that is gastight relative to the dielectric gas present therein.
  • the vessel 3T and the insulating bushing 1U are preferably filled with the same dielectric gas as the intermediate compartment 3R, and at the same pressure.
  • the conductive segment 1U disposed inside the bushing 3U forms a grid node between the overhead line and the gas-insulated line, and is connected in series with the power capacitor.
  • the vessel 3T is mounted on a support on the ground as are the intermediate compartment 3R and the metal compartment 3P.
  • the portion of gas-insulated line which is connected to the grid node is also placed on the ground.
  • the gas-insulated line is extended either by remaining on the ground, or else by being buried. It should be observed that provision is made for the power capacitor 5 to be physically mounted parallel with the gas-insulated line, or perpendicular relative thereto, or indeed in an intermediate direction in order to accommodate particular configurations on the ground.
  • connection of the power capacitor in parallel with the gas-insulated line as shown in FIG. 2 relates to a single-phase line.
  • three identical conductors 1A are placed inside the case 3A of the gas-insulated line (see FIG. 3). They are connected to three identical conductor segments 1S disposed in the branching sphere 3S which provides a branch connection for each of the three segments to a respective power capacitor contained in its own metal compartment 3P secured to its own intermediate compartment 3R and its own vessel 3T, in a configuration that is the same as that described with reference to FIG. 2 for a singe-phase gas-insulated line.
  • FIG. 3 The example of FIG.
  • each vessel 3T supports a bushing 3U in which there is to be found a conductive segment 1U connected to a respective one of the three segments 1S present inside the branching sphere 3S via a respective link compartment 3V.
  • the branching sphere 3S is closed relative to the case 3A by a gastight wall 61, and relative to the three link compartments 3V via three insulating cones 60 of the type described with reference to FIG. 2 such that the branching sphere and these compartments are tight relative to the pressurized dielectric gas they contain, which may be constituted by SF 6 at a pressure of about 5 bars, for example.
  • FIG. 4 is a radial section through a unit capacitor 5A of annular shape suitable for stacking onto a conductive rod 55 of the same type as the rods 1AC, 2DF, or 2AC as described with reference to FIGS. 1 and 2.
  • a capacitor element 100 comprises two identical metal strips 101 that are separated by an insulating film 102. The insulating film 102 is preferably wider than the metal strips 101, thereby providing greater creepage line insulation. It should be observed that a capacitor element 100 is typically several hundreds of meters long.
  • a first capacitor element 100 is wound around the inner circular electrode 51 to provide electrical contact 56.
  • An identical second capacitor element 100 is wound around the electrode 51 over the first element 100 and so on until a last capacitor element 100 is in electrical contact 57 with the outer circular electrode 52.
  • the wound capacitor elements are interconnected successively by pieces of metal foil 103 to provide a series connection of capacitors capable of withstanding a voltage as high as that which is used for transport purposes on a gas-insulated line.
  • the inside volume of a capacitor 5A that is closed in leakproof manner by its two insulating cheek plates 53 and 54 is filled with a dielectric gas under pressure such as SF 6 in order to increase the dielectric strength of the capacitor. Provision is also made to fill the inside volume of the capacitor 5A with oil, such as castor oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)
  • Transformer Cooling (AREA)
  • Gas-Insulated Switchgears (AREA)
US09/186,418 1997-11-06 1998-11-05 Gas-insulated line with an incorporated power capacitor and circuit breaker Expired - Fee Related US6091039A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9713983 1997-11-06
FR9713983A FR2770696B1 (fr) 1997-11-06 1997-11-06 Ligne electrique a isolation gazeuse et a condensateur de puissance incorpore

Publications (1)

Publication Number Publication Date
US6091039A true US6091039A (en) 2000-07-18

Family

ID=9513125

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/186,418 Expired - Fee Related US6091039A (en) 1997-11-06 1998-11-05 Gas-insulated line with an incorporated power capacitor and circuit breaker

Country Status (8)

Country Link
US (1) US6091039A (es)
EP (1) EP0915546B1 (es)
JP (1) JPH11215680A (es)
AT (1) ATE228724T1 (es)
CA (1) CA2250997A1 (es)
DE (1) DE69809688T2 (es)
ES (1) ES2184209T3 (es)
FR (1) FR2770696B1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886244B1 (en) * 2002-02-25 2005-05-03 Seagate Technology Llc Segmented pallet for disk-shaped substrate electrical biassing and apparatus comprising same
US20160225557A1 (en) * 2013-08-26 2016-08-04 Kabushiki Kaisha Toshiba Switch
US20170256924A1 (en) * 2014-09-10 2017-09-07 Siemens Aktiengesellschaft Rc voltage dividers used in common gis gas compartment
US20220108853A1 (en) * 2018-12-31 2022-04-07 Abb Power Grids Switzerland Ag Circuit breaker having internal transient recovery voltage capacitor assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1302224B1 (it) * 1998-09-17 2000-09-05 Abb Ricerca Spa Dispositivo di interruzione e selezionamento per applicazioni di altae media tensione.
DE102008056478A1 (de) * 2008-11-05 2010-05-06 Siemens Aktiengesellschaft Schaltgeräteanordnung mit einem Kapselungsgehäuse

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829707A (en) * 1973-02-09 1974-08-13 Allis Chalmers Gas insulated high voltage electrical transmission line with means for damping transients
US4078184A (en) * 1975-10-08 1978-03-07 Interpace Corporation Electric conduit assembly for transmitting electric power at UHV and EHV levels
US4439651A (en) * 1981-08-26 1984-03-27 Alsthom-Atlantique Pressurized gas circuit-breaker having opening and closing resistors
EP0417813A2 (en) * 1989-09-14 1991-03-20 Hitachi, Ltd. Switchgear having a breaking point operable in an insulating gas
US5170023A (en) * 1990-02-27 1992-12-08 Gec Alsthom Sa Circuit breaker with varistor-assisted interruption
FR2685562A1 (fr) * 1991-12-24 1993-06-25 Merlin Gerin Traversee pour un poste blinde a haute tension equipe d'un dispositif de telecommande a circuit bouchon.
US5235147A (en) * 1991-04-05 1993-08-10 Gec Alsthom Sa Sf6 circuit-breaker incorporating both a varistor and a capacitor
GB2273615A (en) * 1992-12-21 1994-06-22 Siemens Ag Reactive power compensation system
EP0750380A1 (fr) * 1995-06-22 1996-12-27 Gec Alsthom T Et D Sa Matériel électrique blindé protégé contre les surtensions
US5728989A (en) * 1994-09-19 1998-03-17 Hitachi, Ltd. Insulation gas filled circuit breaker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936410B2 (ja) * 1979-03-16 1984-09-04 三菱電機株式会社 ガス絶縁電気装置
DE9016540U1 (de) * 1990-12-05 1992-04-09 Siemens AG, 8000 München In einem bewegbaren Gehäuse untergebrachte Blindleistungs-Kompensationseinrichtung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829707A (en) * 1973-02-09 1974-08-13 Allis Chalmers Gas insulated high voltage electrical transmission line with means for damping transients
US4078184A (en) * 1975-10-08 1978-03-07 Interpace Corporation Electric conduit assembly for transmitting electric power at UHV and EHV levels
US4439651A (en) * 1981-08-26 1984-03-27 Alsthom-Atlantique Pressurized gas circuit-breaker having opening and closing resistors
EP0417813A2 (en) * 1989-09-14 1991-03-20 Hitachi, Ltd. Switchgear having a breaking point operable in an insulating gas
US5170023A (en) * 1990-02-27 1992-12-08 Gec Alsthom Sa Circuit breaker with varistor-assisted interruption
US5235147A (en) * 1991-04-05 1993-08-10 Gec Alsthom Sa Sf6 circuit-breaker incorporating both a varistor and a capacitor
FR2685562A1 (fr) * 1991-12-24 1993-06-25 Merlin Gerin Traversee pour un poste blinde a haute tension equipe d'un dispositif de telecommande a circuit bouchon.
GB2273615A (en) * 1992-12-21 1994-06-22 Siemens Ag Reactive power compensation system
US5728989A (en) * 1994-09-19 1998-03-17 Hitachi, Ltd. Insulation gas filled circuit breaker
EP0750380A1 (fr) * 1995-06-22 1996-12-27 Gec Alsthom T Et D Sa Matériel électrique blindé protégé contre les surtensions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886244B1 (en) * 2002-02-25 2005-05-03 Seagate Technology Llc Segmented pallet for disk-shaped substrate electrical biassing and apparatus comprising same
US20160225557A1 (en) * 2013-08-26 2016-08-04 Kabushiki Kaisha Toshiba Switch
US9659727B2 (en) * 2013-08-26 2017-05-23 Kabushiki Kaisha Toshiba Switch
US20170256924A1 (en) * 2014-09-10 2017-09-07 Siemens Aktiengesellschaft Rc voltage dividers used in common gis gas compartment
US10103523B2 (en) * 2014-09-10 2018-10-16 Siemens Aktiengesellschaft RC voltage dividers used in common GIS gas compartment
US20220108853A1 (en) * 2018-12-31 2022-04-07 Abb Power Grids Switzerland Ag Circuit breaker having internal transient recovery voltage capacitor assembly
US12033818B2 (en) * 2018-12-31 2024-07-09 Hitachi Energy Ltd Circuit breaker having internal transient recovery voltage capacitor assembly

Also Published As

Publication number Publication date
ES2184209T3 (es) 2003-04-01
DE69809688D1 (de) 2003-01-09
DE69809688T2 (de) 2003-10-02
EP0915546B1 (fr) 2002-11-27
CA2250997A1 (fr) 1999-05-06
JPH11215680A (ja) 1999-08-06
FR2770696B1 (fr) 1999-12-31
EP0915546A1 (fr) 1999-05-12
ATE228724T1 (de) 2002-12-15
FR2770696A1 (fr) 1999-05-07

Similar Documents

Publication Publication Date Title
US20050052801A1 (en) Method for tapping a high voltage transmission line and substation using the same
JPS6223524B2 (es)
CN1028932C (zh) 气体断路器
US20020070200A1 (en) Gas insulation switchgear
US6091039A (en) Gas-insulated line with an incorporated power capacitor and circuit breaker
CN101878572A (zh) 具有浸没的相位线圈的高压故障限流器
AU2005201095B2 (en) High-voltage outdoor substation
US20020060204A1 (en) Gas-insulated switching apparatus
US6771489B2 (en) High voltage hybrid station with opposite busbars and shielded cutoff and switching modules for same
US9312669B2 (en) Resistor, method of assembling the same, and switchgear
US3767976A (en) Circuit breaker connection to gas insulated bus
JPH0426308A (ja) 小容量配電用変電塔
JP3866291B2 (ja) ガス絶縁高電圧半導体バルブ装置
JP3315181B2 (ja) 直列補償装置
CN1213464A (zh) 开关装置
US4342067A (en) Electric power substation for use at very high voltages
Puharic et al. Overvoltage analysis on submarine cables of atmospheric origin and due to switching operations
JPH0715813A (ja) ガス絶縁開閉装置
JPS6387111A (ja) ガス絶縁電気機器用避雷装置
Raja et al. Best Practices in Operation and Maintenance of Distribution Substation Equipment and Auxiliaries
SU1070638A1 (ru) Комплектна трансформаторна подстанци высокого напр жени
Ghufran et al. The design and testing of gas-insulated metalclad switchgear and its application to EHV substations
KR820000681B1 (ko) 가스절연 고전압 개폐장치
Alexander et al. Trends in EHV transmission equipment
SU262207A1 (ru) ПАТЕНТНО- ^ rr ТЕХНИЧЕСКАЯBHiJIHtTEUA-изыска-

Legal Events

Date Code Title Description
AS Assignment

Owner name: GEC ALSTHOM T & D SA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHAM, VAN DOAN;GUILLEN, MARCEL;COLLET, MICHEL;REEL/FRAME:009792/0074

Effective date: 19981212

AS Assignment

Owner name: GEC ALSTHOM T & D SA, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE, FILED ON 02-24-99 RECORDED ON REEL 9792, FRAME 0074;ASSIGNORS:PHAM, VAN DOAN;GUILLEN, MARCEL;COLLET, MICHEL;REEL/FRAME:010191/0011

Effective date: 19981210

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SAFT FINANCE S.AR.L., LUXEMBOURG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCATEL (FORMERLY KNOWN AS ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE;REEL/FRAME:015972/0006

Effective date: 20040114

AS Assignment

Owner name: ALSTOM T&D SA, FRANCE

Free format text: RECORD TO CORRECT ASSIGNORS NAME, ASSIGNEE'S NAME AND ADDRESS AND TO CORRECT NATURE OF CONVEYANCE FROM ASSIGNMENT TO (CHANGE OF NAME) ON A DOCUMENT PREVIOUSLY RECORDED ON REEL 015972 AND FRAME 0006;ASSIGNOR:GEC ALSTHOM T&D SA;REEL/FRAME:016116/0172

Effective date: 19980703

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20080718