US5947274A - Desiccating container for moisture-sensitive material - Google Patents

Desiccating container for moisture-sensitive material Download PDF

Info

Publication number
US5947274A
US5947274A US08/776,807 US77680797A US5947274A US 5947274 A US5947274 A US 5947274A US 77680797 A US77680797 A US 77680797A US 5947274 A US5947274 A US 5947274A
Authority
US
United States
Prior art keywords
closure
desiccating
container
polymer
container according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/776,807
Inventor
Charles Bernard Taskis
Simon Joseph Holland
Paul John Whatmore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Pharmaceutical Services Cornwall Ltd
Original Assignee
SmithKline Beecham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9415864A external-priority patent/GB9415864D0/en
Priority claimed from GBGB9512243.8A external-priority patent/GB9512243D0/en
Application filed by SmithKline Beecham Ltd filed Critical SmithKline Beecham Ltd
Application granted granted Critical
Publication of US5947274A publication Critical patent/US5947274A/en
Assigned to WEST PHARMACEUTICAL SERVICES CORNWALL LIMITED reassignment WEST PHARMACEUTICAL SERVICES CORNWALL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITHKLINE BEECHAM P.L.C.
Priority to US10/170,755 priority Critical patent/US20030010668A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/002Closures to be pierced by an extracting-device for the contents and fixed on the container by separate retaining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/28Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials
    • B65D51/30Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials for desiccators

Definitions

  • This invention relates to containers, particularly to containers for moisture sensitive materials, particularly pharmaceutical substances.
  • Such an elastomeric closure is often retained on the mouth opening of the vial by a thin metal circlip. Such puncturable seals enable this operation to be sterile. During storage the presence of atmospheric moisture within the container, or the ingress of atmospheric moisture, can cause decomposition of such materials
  • moisture sensitive pharmaceutical substances are provided in containers together with an internal desiccant in the container, for example a small sachet of molecular sieve or silica gel.
  • an internal desiccant in the container for example a small sachet of molecular sieve or silica gel.
  • clavulanic acid and its salts such as potassium clavulanate.
  • Potassium clavulanate is both hygroscopic and readily hydrolysed by water, so for handling and long term storage of potassium clavulanate it is necessary for the immediate environment to be kept extremely dry, e.g. 30% Relative Humidity ("RH") or less, preferably 10% RH or less, ideally as low as possible.
  • RH Relative Humidity
  • Potassium clavulanate is a beta-lactamase inhibitor, and is often provided in a formulation in combination with a partner beta-lactam antibiotic.
  • a partner which is often used in such formulations is amoxycillin.
  • amoxycillin is used in the form of sodium amoxycillin.
  • sodium amoxycillin is a powerful desiccant, and when contained together with potassium clavulanate in a sealed vial such forms of sodium amoxycillin can exert a dehydrating effect which helps to preserve the potassium clavulanate.
  • FIGS. 1, 2, and 3 show longitudinal sections through alternative multi-part construction vials and closures of the invention.
  • FIG. 4 shows a sectional view through the closure of FIG. 1 about the line A--A of FIG. 1 looking in the direction of the arrows.
  • FIGS. 5 to 7 demonstrate in graphical format moisture uptake for rubbers compounded with various listed desiccants.
  • FIG. 8 demonstrates a graph of normalised moisture uptake for dried hydrogels (a) to (f) as tested in Example 4.
  • moisture sensitive pharmaceutical substances particularly potassium clavulanate and formulations containing potassium clavulanate
  • the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material, and incorporating a solid element which is made at least in part of a desiccant polymer and which is in contact with the atmosphere inside the container.
  • deiccant polymer means a polymer which absorbs water from the surrounding atmosphere to the extent that it can exercise a desiccating effect upon the interior of a space within which it is contained or to the atmosphere within which it is exposed.
  • the desiccating polymer is suitably a polymer from which no or minimal material can be extracted by liquid water, at least during the time period the desiccant polymer is expected to be in contact with liquid water during the making up and subsequent storage of a solution in the container, e.g. during injection of water into a vial and make-up of a medicament for administration by injection.
  • the desiccant polymer is a biocompatible desiccant polymer.
  • the desiccant polymer may be an inherently desiccant polymeric material, such as a hydrophilic polymer.
  • Suitable biocompatible inherently desiccant polymers are the known water-absorbent hydrophilic polymers used for the manufacture of contact lenses, artificial cartilages and other bodily implants etc.
  • Suitable such materials include hydrogel polymers, such as polymers which comprise hydroxy alkyl methacrylates, for example 2-hydroxyethyl methacrylate.
  • desiccant polymer examples include the homologous esters of the glycol monomethacrylate series such as diethylene glycol monomethacrylate and tetraethylene glycol monomethacrylate; slightly cross-linked, for example with a dimethacrylate of a glycol, copolymers of the higher glycol monomethacrylates and 2-hydroxyethyl methacrylate, acrylamide hydrogels and 2-hydroxyethyl methacrylate-vinylpyrrolidinone copolymers.
  • Such polymers may be cross linked for example with ethylene dimethacrylate and/or 1,1,1-trimethylpropane trimethacrylate.
  • Suitable polymers include water-insoluble methacrylates copolymerised with 2-hydroxyethyl methacrylate.
  • Poly (2-hydroxyethyl methacrylate) polymers can for example absorb up to 40% w:w of water.
  • Copolymers of 2-hydroxyethyl methacrylate with a small amount of a dimethacrylate, some methyl or other alkyl methacrylate and some methacrylic acid, which can be converted to their alkali salts, can absorb at least 45% w:w of water.
  • Copolymers of 2-hydroxyethyl methacrylate may for example also be copolymerised with n-pentyl methacrylate, vinyl propionate, vinyl acetate, isobutyl and cyclohexyl methacrylate, to produce a suitable desiccant polymer.
  • Copolymers of 2-hyroxyethyl methacrylate with vinylpyrrolidinones, such as 1-vinyl-2-pyrrolidinone, and which may be cross linked with ethylene glycol dimethacrylate can produce hydrogels with a higher degree of hydration, suitable as desiccant polymers.
  • hydrogel polymers include hydroxyethyl methacrylate N,N-dimethylacrylamide copolymers, hydroxyethyl methacrylate-N-vinyl pyrrolidone copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, N-vinyl pyrrolidone-methyl methacrylate copolymers, methyl methacrylate-acryloyl morpholine copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, methoxyethyl methacrylate-ethoxyethyl methacrylate copolymers, and methoxy methacrylate-acryloyl morpholine copolymers.
  • the desiccant polymer may be a polymer material that includes a desiccant filler, for example as particles thereof dispersed in its bulk.
  • a desiccant polymer is an elastomeric material, such as a rubber, compounded with a desiccant material.
  • the compounding of the elastomeric material with a desiccant material causes the compounded material to exercise a desiccant effect upon the interior of the container.
  • the quantity of the said elastomeric material compounded with a desiccant material should be sufficient to ensure absorption of sufficient of the water vapour in the container, or water in the moisture sensitive material contents to prevent or reduce to an acceptable degree any degradation of the material by the said water or water vapour.
  • the elastomeric material may be a rubber.
  • a rubber may be a natural rubber, or a synthetic rubber such as a butadiene-based rubber, e.g. based on styrene-butadiene or cis-1,4-polybutadiene, butyl rubber, halobutyl rubber, ethylene-propylene rubber, neoprene, nitrile rubber, polyisoprene, silicone rubber, chlorosulphonated polyethylene or epichlorhydrin elastomer, or a mixture, blend or copolymer thereof.
  • Halobutyl, e.g. chlorobutyl, rubbers and silicone rubbers are pharmaceutically acceptable rubbers known for use as materials for stoppers etc. to be maintained in contact with pharmaceutical products.
  • Such elastomeric materials are sufficiently permeable to atmospheric water vapour that the desiccant material compounded with the rubber can exert its desiccant effect through a thin layer of the material.
  • Such rubbers may be compounded in the manner with which they are conventionally compounded for manufacture of a stopper as known in the art of manufacture of rubber stoppers.
  • they may be compounded with reinforcing fillers, colouring agents, preservatives, antioxidants, additives to modify their stiffness, chemical resistance etc. such as curing/vulcanising agents.
  • Conventional reinforcing fillers include inorganic reinforcing fillers such as zinc oxide and silicas such as china clay and other clays. Suitable compounding processes and compositions will be apparent to those skilled in the art of compounding of rubbers.
  • the reinforcing filler such as china clay, normally used in the rubber may be totally or preferably partly replaced with a powdered solid desiccating material. Total replacement may lead to a loss of mechanical strength as compared to a rubber using entirely china clay as its filler, although desiccants may be found which can be used as the entire filler without loss of strength.
  • a powdered desiccating material may have a particle size the same as or similar to that of the conventional inorganic fillers referred to above, so that the desiccant can serve as the filler as well.
  • the quantity of the powdered desiccating material used may be up to the quantity in which conventional inorganic fillers are used, that is, they may completely replace the usual inorganic filler.
  • the powdered desiccant may replace up to 50% of the weight of the normal weight of filler used in the rubber, e.g. 10-50%, such as 20-40%.
  • the quantities of filler normally used in a rubber for a particular application such as a vial closure will be known to those skilled in the art.
  • the compounded rubber may also additionally include a conventional filler as mentioned above, for example in a quantity which together with the powdered desiccant comprises up to the weight % of filler normally included in such a rubber.
  • the quantity of desiccant necessary for a particular product contained in the container will depend upon the application but can easily be determined by experiment.
  • the desiccating material should be one which is inert relative to the elastomeric material, and vice versa.
  • the desiccating material is suitably an inorganic desiccating material which is wholly or substantially insoluble in water so that none or only a pharmaceutically insignificant amount of the desiccant material or its hydration product, or undesirable ions, is likely to enter solution during the period when the desiccating polymer is in contact with water or aqueous medium.
  • Preferred desiccants are those which can chemically or pysicochemically absorb or fix absorbed water, e.g.
  • Suitable inorganic desiccants are the known materials sold in the UK under the names Grace A3TM, SiliporiteTM and Ferben 200TM. Particularly preferred desiccant materials are dried molecular sieves and calcium oxide, or mixtures thereof. Calcium oxide chemically fixes water by formation of calcium hydroxide, from which water can only be released at extreme temperatures, and absorbed water can generally only be released from molecular sieves at several hundred ° C., that is, well above the temperatures containers of pharmaceutical substances would be expected to experience under normal storage.
  • a preferred desiccating polymer is therefore a halobutyl, e.g. chlorobutyl, rubber compounded with an inorganic desiccant such as a molecular sieve or calcium oxide
  • the compounded elastomeric material may be made and formed into a solid element by processes analogous to those by which solid products are made from conventional compounded elastomeric materials which include the above-mentioned inorganic fillers are made.
  • the solid element comprises a closure for the container, made wholly or partly of the said desiccating polymer.
  • Parts of such a closure other than the parts made of desiccant polymer which are to come into contact with the atmosphere within the container may be made of generally conventional materials, preferably pharmaceutically acceptable materials, such as plastics materials, elastomeric materials etc., or composite materials such as metal and plastics or elastomeric materials.
  • such parts are made of plastics or elastomeric materials which are of low moisture content, of low moisture permeability and low moisture affinity.
  • parts of the closure which engage the mouth opening are at least partly, more preferably wholly made of an elastomeric material comprising a natural or synthetic rubber (which may be the above-described desiccating rubber), thereby allowing a tight compression fit with the mouth of the vessel.
  • the sealing engagement of the closure with the mouth opening may be by a generally conventional construction e.g. similar to a conventional stopper.
  • the closure may be engaged with the rim of the neck of a vial by a screw thread, a friction/compression fitting, and/or a circlip-type clamp around the neck of the vial.
  • the closure may seal the mouth in a generally conventional manner, e.g. by a compression fitting of the closure wall against the rim of the mouth, or by a sealing ring compressed between the closure face and the rim of the mouth etc.
  • the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer.
  • the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermneable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel.
  • Such a last-mentioned container may be a vial as mentioned above suitable for a moisture-sensitive pharmaceutical material, of generally conventional construction, the mouth opening being defined by the rim of the neck of the vial.
  • a vial may be made of conventional materials such as glass, rigid plastics materials etc., but particularly glass.
  • moisture-sensitive substances within the vessel may be protected by the desiccant material, and in this last-mentioned embodiment water may be introduced into the vessel by means of a hypodermic needle puncturing the closure face through the puncturable region, so as to dissolve the substance, and the so-formed solution of the substance may be withdrawn via the needle.
  • the puncturable region of the closure wall may suitably comprise a thinned region of the closure wall, and is preferably provided in a region of elastomeric material (which may comprise the desiccating polymer) which can resiliently seal around a hypodermic needle which is inserted therethrough, so as to facilitate sterile insertion and withdrawal.
  • elastomeric material which may comprise the desiccating polymer
  • all the polymeric parts of the closure e.g. of a vial closure and including the puncturable region, may be made of the desiccant polymer, particularly an elastomeric material compounded with a desiccant material.
  • a vial closure may correspond in shape and size to conventional vial closures made of elastomeric material, and may be retained on the mouth of the vial by a conventional metal circlip.
  • Elastomeric materials compounded with a desiccant material may be moulded into such shapes and sizes by a moulding process entirely analogous to that used to mould closures out of conventional elastomeric materials such as rubbers.
  • closure may be of multi-part construction having only parts, including those parts which are exposed to the interior of the container body, made of the said desiccant polymer.
  • the distribution of the desiccant polymer may be such that the desiccant polymer is located on only part of the closure wall, so that for example the puncturable region may be situated between areas of the closure wall on which is the desiccant polymer, or to one side of such an area, thereby facilitating the construction of the puncturable region as a thinned region of the closure face.
  • Such a multi-part construction includes the possibility that the closure may be integrally made of a co-moulded, or fused together, desiccating polymer and an elastomeric or plastics material making up parts of the structure of the closure.
  • the desiccating polymer may be provided as a separate part, retained by the closure on a suitable inward surface, e.g in an inwardly facing holder or cavity.
  • the desiccant polymer may be in the form of a ring shape on the closure wall of a closure, with the puncturable region within, e.g. near or at the centre of, the ring.
  • a ring shape may for example be circular, polygonal, or oval etc.
  • Such a ring-shape of desiccant polymer may be located in a corresponding ring-shaped or cylindrical holder in the closure wall.
  • a holder may suitably be in the form of two generally concentric walls extending inwardly from the closure wall, the space between the walls defining the ring-shaped cavity, and the central space within the inner wall defining a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted.
  • Such a holder may be formed integrally with the closure wall, or may be separate part of the closure.
  • both the walls may be integral with the closure wall, so that the closure wall forms the base of the cavity and of the central passage.
  • the base wall of the central passage includes the puncturable region.
  • such a ring-shape of desiccant polymer may be located in a ring-shaped or cylindrical cavity in the closure wall, suitably in its inward face, the cavity opening into the interior of the container when the closure is in place on the vessel, and the central opening in the ring shape of desiccating polymer may define a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted.
  • the ring shape of desiccant polymer may be located adjacent to the inner face of the closure wall.
  • the desiccant polymer may be simply physically attached to the closure, e.g by cooperating parts such as projections and sockets, or simply be held in place by the inherent resilience of other parts of the closure, particularly when this is made of an elastomeric or other resilient material such as a plastics material, alternatively the desiccant polymer may be bonded to the closure e.g by adhesives or fusion together etc.
  • a closure for the container may be in the form of a conventional screw cap (optionally provided with tamper evident or child resistant features) or other form of closure (e.g. cam action closure, snap-fit closure) which relies on a compression fit on the lip of the mouth of the container, and having an insert made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material, in the form of a disc or ring washer or inward facing coating layer which forms a compression seal between the lip of the mouth of the container and the closure as the container closure is tightened down, e.g. by a screw action.
  • a conventional screw cap optionally provided with tamper evident or child resistant features
  • other form of closure e.g. cam action closure, snap-fit closure
  • a closure for the container e.g. a bottle or jar of glass or plastics material, or a metal canister or keg
  • a closure for the container may be a screw/interference/friction/compression fit insertable bung or other insertable stopper of its surface exposed to the interior of the container made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material.
  • the container may comprise a syringe barrel, with a plunger having at least part of its surface exposed to the interior of the container made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material.
  • a plunger having at least part of its surface exposed to the interior of the container made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material.
  • the entire plunger may be made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material.
  • the said desiccant polymer e.g an elastomeric material compounded with a desiccant material may be included in other forms into the container of the invention, for example as a removable resilient element such as a pad, wad, leaf, helix, coil or spiral spring which may be included in the headspace above the contents of a container and which exerts a restraining action on the contents, such a tablets, pills, capsules etc. to prevent the contents rattling about in the container.
  • a removable resilient element such as a pad, wad, leaf, helix, coil or spiral spring which may be included in the headspace above the contents of a container and which exerts a restraining action on the contents, such a tablets, pills, capsules etc. to prevent the contents rattling about in the container.
  • Such an element may be made as part of the container closure.
  • the said desiccant polymer e.g an elastomeric material compounded with a desiccant material may be made in the form of a pad, e.g. a flat disc to be retained at the bottom of a container, e.g. beneath tablet, pill or capsule contents.
  • desiccant polymer used in the container of the invention will vary with the nature of the moisture sensitive contents, and can easily be determined by straightforward experimentation or calculation, e.g. from the moisture content of the contents of the vessel.
  • potassium clavulanate at the usual quantities in which it is supplied mixed with sodium amoxycillin in vials, typically of a capacity 10-20 ml, for reconstitution for an injectable formulation, e.g.
  • the desiccant polymer should scavenge 5-8milligrams of water with a residual RH of less than 10% throughout a two year storage period.
  • Preferred desiccating polymers for use with formulations containing potassium clavulanate, e.g. its coformulation with sodium amoxycillin, are able to take up atmospheric moisture at 30% RH or less, preferably at 10% RH or less.
  • Preferred desiccating polymers excercise such a desiccant function for a long period, ideally throughout the shelf life, typically two years, of such a formulation.
  • Preferred desiccant polymers should also be capable of being sterilised without loss of their desiccant ability at these low RH values.
  • desiccant polymer vial closures are ideally sterilised by washing prior to use, without loss of their desiccant ability.
  • desiccant rubbers such as halobutyl, e.g. chlorobutyl, rubber compounded with calcium oxide or molecular sieves are capable of being washed without deleterious effect on their desiccant ability.
  • the container of the invention is particularly suitable for the containment of moisture-sensitive pharnaceutical substances such as a formulation of potassium clavulanate and sodium amoxycillin, particularly crystalline sodium amoxycillin e.g. as disclosed in EP 0131147.
  • the invention therefore further provides a container as described above, containing a mixture which comprises potassium clavulanate and sodium amoxycillin.
  • lyophilised substances for example those often employed in diagnostic assy kits.
  • closure of the invention independent of the vessel, is also believed to be novel, and therefore the invention further provides a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall, the inwardly facing region of the closure wall comprising or having thereon a desiccant polymer.
  • such a closure may be a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel, and having on an inwardly facing region of the closure wall a desiccant polymer.
  • Suitable and preferred forms of the closure are as described above.
  • the present invention also provides a method of desiccating a moisture sensitive material, which comprises enclosing the said material in a container and maintaining a desiccant polymer in contact with the atmosphere inside the container.
  • This method may be a method of long-term storage and/or protection against hydrolysis during storage.
  • the moisture sensitive material may be potassium clavulanate or its coformulations with sodium amoxycillin.
  • This method is suitable for use with lyophilised, freeze dried, materials. Normally lyophilised materials are desiccated by an intense drying process before vials containing them are sealed, and this method of the invention provides the advantage that less intense drying processes may be used, and the desiccant polymer can thereafter complete the dehydration process whilst in the sealed vial.
  • FIGS. 1, 2 and 3 longitudinal sections through alternative multi-part construction vials and closures of the invention.
  • FIG. 4 a sectional view through the closure of FIG. 1 about the line A--A of FIG. 1 looking in the direction of the arrows.
  • FIGS. 5-7 graphs showing moisture uptake for rubbers compounded with various listed desiccants.
  • FIG. 8 a graph of normalised moisture uptake for dried hydrogels (a) to (f) tested in example 4.
  • a glass vial (1) has a mouth opening (2) defined by the rim of an inwardly extending neck (3).
  • a closure generally) integrally made of a synthetic rubber material, and which comprises a closure wall (5) which sealingly engages the rim of the mouth opening (2).
  • a thinned puncturable region (6) Centrally located in the closure wall (5) is a thinned puncturable region (6).
  • an integral holder (7) in the form of two concentric walls (7A, 7B) the outer of which (7A) forms a neck plug which sealingly engages the neck (3) with a compression fit.
  • the inner wall (7B) defines a central space (8) with the puncturable region (6) at its outer end.
  • a hypodermic needle (9) may be inserted through the puncturable region (6) and passed along the passage into the vial defined by the space (8).
  • a ring-shaped cavity (10) which contains a desiccant polymer (11) in the form of a ring with a central opening.
  • the ring (11) is retained in place in the cavity (10) by the inherent resilience of the closure material.
  • FIG. 2 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered.
  • the desiccant polymer is in the form of a ring (12) which is bonded to the inner face (13) of the closure wall (5) where this extends inwardly into the interior of the vial (1) in the form of a neck plug (14), with its central opening in communication with the central space (8) of the closure.
  • the neck plug (14) sealingly engages the neck (3) with a compression fit
  • FIG. 3 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered.
  • the desiccant polymer is in the form of a ring (15) with a central opening (16).
  • the ring (15) fits into a central cavity (17) in the closure wall (5) where this extends inwardly into the interior of the vial (1) to form a neck plug (18) and is held there in place by the resilience of the material of the closure (4).
  • the central opening (16) in the ring (15) defines a passage having the puncturable region (6) at its outer end.
  • the neck plug (18) sealingly engages the neck (3) with a compression fit.
  • the closure wall (5) may be fastened tightly against the rim of the neck (3) by means of a circlip (not shown).
  • a holder for the desiccant polymer (11) may be made as a separate part in the form of two walls analogous in shape to walls (7A, 7B) with a cavity (10) and desiccant polymer (11) between them, and with a base wall.
  • the desiccant polymer is a hydrogel polymer shrinkage may occur on drying which may affect the retention of the polymer on a rubber closure, and steps, e.g a suitable construction of holder, which will be apparent to those skilled in the art, might be necessaryy to overcome this.
  • hypodermic needle (9) is inserted through the puncturable region (6), and along the passage (8), into the vicinity of the contents (13) of the vial (1), a dry mixture of potassium clavulanate and anhydrous crystalline sodium amoxycillin.
  • Sterile water is injected down the needle (9) to dissolve the contents (13), and the vial may be shaken to encourage dissolution.
  • the solution may then be withdrawn through the needle (9) into a syringe (not shown) for subsequent use.
  • a closure for a glass vial of the type conventionally used for the containment made using a standard known compounded halobutyl rubber formulation, but in which 50% by weight of the conventional china clay filler was replaced with calcium oxide ground to a particle size distribution similar to that of the filler.
  • the shape and size of the closure corresponded to those of a conventional vial closure.
  • the volume of the vial was ca. 10 ml.
  • the molecular sieve was dried using a standard process for drying the molecular sieve.
  • a moisture sensitive pharmaceutical formulation being 500 mg crystalline sodium amoxycillin prepared as described in EP 0131147 coformulated with 100 mg of potassium clavulanate was filled into the vial under conditions of less than 30% RH and the vial was sealed with the stopper as conventional, with the stopper being retained on the vial using a conventional thin metal cover.
  • the vial containing the formulation was stored under ambient and accelerated storage conditions.
  • Colour measurements (a known sensitive method of assessing the degree of decomposition of potassium clavulanate) showed a degree of protection of the potassium clavulanate effectively equivalent to that shown using spray-dried sodium amoxycillin having desiccant properties, in a conventionally stoppered vial.
  • potassium clavulanate was enclosed within an airtight glass vessel, and a piece of halobutyl rubber compounded with calcium oxide as mentioned above in Example 1 was suspended inside the vial on a piece of wire.
  • a control experiment was set up consisting of an identical vessel enclosing the same weight of potassium clavulanate but without the compounded rubber. The decomposition of the potassium clavulanate under the action of traces of moisture in the atmosphere of the vial and in the potassium clavulanate itself, or adsorbed on the inner surface of the vial was monitored. Colour measurements showed that decomposition of the potassium clavulanate was significantly retarded in the vessel containing the rubber compounded with the desiccant.
  • FIG. 5 shows the moisture uptake (normalised data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated.
  • Grace A3TM, SiliporiteTM and Ferben 200TM are commercially available powdered desiccants, sold under these trade names, and were pre-dried according to the standard procedures for these desiccants.
  • Grace A3TM and SiliporiteTM are types of molecular sieve powder obtainable from W R Grace Ltd. Northdale House, North Circular Road, London NW10 7UH, GB.
  • the graph relates to the desiccant fillers:
  • FIG. 6 shows the moisture uptake (normalised data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant, after the rubber has been tote washed.
  • the graph relates to the desiccant fillers:
  • FIG. 7 shows the moisture uptake (normalised data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated, before and after the rubber has been tote washed.
  • the graph relates to the desiccant fillers:
  • Samples (a)-(f) of known hydrogels as tabulated below were obtained in a hydrated state and were activated by heating to ca. 120° C. under vacuum for a minimum of 3 hours.

Abstract

The present invention is to a container, particularly for moisture sensitive materials, having a container body of a substantially atmospheric moisture-impermeable material and incorporating a solid element which is made at least in part of a desiccating polymer and which is in contact with the atmosphere inside the container.

Description

This application is a §371 national stage entry of PCT/EP95/03130, filed Aug. 4, 1995.
FIELD OF THE INVENTION
This invention relates to containers, particularly to containers for moisture sensitive materials, particularly pharmaceutical substances.
BACKGROUND OF THE INVENTION
It is frequently necessary to store moisture sensitive materials for relatively long periods in containers. In a particular example, certain pharmaceutical substances are supplied and/or stored in small vials containing one or more unit doses of the dry substance. Such vials are normally sealed with an elastomeric closure including a closure wall across the mouth, and having a puncturable region such as a thin part of the closure wall through which a hypodermic needle may be inserted. By means of such a needle water or other suitable aqueous medium may be injected into the vial, the substance dissolved in situ, and the solution then withdrawn via the needle into a syringe for use in the short term before significant hydrolysis of the moisture sensitive material occurs. Such an elastomeric closure is often retained on the mouth opening of the vial by a thin metal circlip. Such puncturable seals enable this operation to be sterile. During storage the presence of atmospheric moisture within the container, or the ingress of atmospheric moisture, can cause decomposition of such materials
Often moisture sensitive pharmaceutical substances are provided in containers together with an internal desiccant in the container, for example a small sachet of molecular sieve or silica gel. Clearly this is not practical when the substance has to be made up in situ within the container as described above, as contamination by desiccant on dissolution of the substance is likely.
It is known to compound polymeric materials with desiccants for various applications, but mostly as moisture absorbing spacers for multiple glazing panels. For example U.S. Pat. No. 4,485,204 and U.S. Pat. No. 4,547,536 disclose blends of polyester or polyester plus a butadiene polymer, plus a desiccant such as calcium oxide. EP 0599690 discloses a blend of a polymer such as styrene butadiene rubber, plus molecular sieve, plus also a fibrous material. EP 0599690 suggests the general possibility of use of such a polymer for drying of moisture sensitive pharmaceuticals, giving results for moisture absorption at 80% RH.
An example of a moisture sensitive pharmaceutical substance is clavulanic acid and its salts, such as potassium clavulanate. Potassium clavulanate is both hygroscopic and readily hydrolysed by water, so for handling and long term storage of potassium clavulanate it is necessary for the immediate environment to be kept extremely dry, e.g. 30% Relative Humidity ("RH") or less, preferably 10% RH or less, ideally as low as possible. To obtain and maintain such conditions in a container such as a vial of the type mentioned above requires quite a powerful desiccant ability.
Potassium clavulanate is a beta-lactamase inhibitor, and is often provided in a formulation in combination with a partner beta-lactam antibiotic. A partner which is often used in such formulations is amoxycillin. For injectable formulations amoxycillin is used in the form of sodium amoxycillin. In some forms sodium amoxycillin is a powerful desiccant, and when contained together with potassium clavulanate in a sealed vial such forms of sodium amoxycillin can exert a dehydrating effect which helps to preserve the potassium clavulanate. Other forms of sodium amoxycillin, such as the anhydrous crystalline form disclosed in EP 0131147 are less desiccating, and although it would be desirable to use such forms in formulations together with potassium clavulanate, the problem arises that these forms can be insufficiently desiccating to protect the potassium clavulanate from hydrolysis resulting from traces of moisture in the vial.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1, 2, and 3 show longitudinal sections through alternative multi-part construction vials and closures of the invention.
FIG. 4 shows a sectional view through the closure of FIG. 1 about the line A--A of FIG. 1 looking in the direction of the arrows.
FIGS. 5 to 7 demonstrate in graphical format moisture uptake for rubbers compounded with various listed desiccants.
FIG. 8 demonstrates a graph of normalised moisture uptake for dried hydrogels (a) to (f) as tested in Example 4.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a container having an internal desiccant which inter alia is suitable for use with moisture sensitive pharmaceutical substances, particularly potassium clavulanate and formulations containing potassium clavulanate, and allows sterile dissolution without the problem of contamination by desiccant. Other objects and advantages of the invention will be apparent from the following description.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material, and incorporating a solid element which is made at least in part of a desiccant polymer and which is in contact with the atmosphere inside the container.
The term "inwardly" used herein refers to directions toward the interior of the vessel unless otherwise defined.
The term "desiccant polymer" means a polymer which absorbs water from the surrounding atmosphere to the extent that it can exercise a desiccating effect upon the interior of a space within which it is contained or to the atmosphere within which it is exposed.
The desiccating polymer is suitably a polymer from which no or minimal material can be extracted by liquid water, at least during the time period the desiccant polymer is expected to be in contact with liquid water during the making up and subsequent storage of a solution in the container, e.g. during injection of water into a vial and make-up of a medicament for administration by injection.
Suitably the desiccant polymer is a biocompatible desiccant polymer.
The desiccant polymer may be an inherently desiccant polymeric material, such as a hydrophilic polymer.
Suitable biocompatible inherently desiccant polymers are the known water-absorbent hydrophilic polymers used for the manufacture of contact lenses, artificial cartilages and other bodily implants etc. Suitable such materials include hydrogel polymers, such as polymers which comprise hydroxy alkyl methacrylates, for example 2-hydroxyethyl methacrylate. Other suitable desiccant polymer include the homologous esters of the glycol monomethacrylate series such as diethylene glycol monomethacrylate and tetraethylene glycol monomethacrylate; slightly cross-linked, for example with a dimethacrylate of a glycol, copolymers of the higher glycol monomethacrylates and 2-hydroxyethyl methacrylate, acrylamide hydrogels and 2-hydroxyethyl methacrylate-vinylpyrrolidinone copolymers. Such polymers may be cross linked for example with ethylene dimethacrylate and/or 1,1,1-trimethylpropane trimethacrylate. Other suitable polymers include water-insoluble methacrylates copolymerised with 2-hydroxyethyl methacrylate. Poly (2-hydroxyethyl methacrylate) polymers can for example absorb up to 40% w:w of water. Copolymers of 2-hydroxyethyl methacrylate with a small amount of a dimethacrylate, some methyl or other alkyl methacrylate and some methacrylic acid, which can be converted to their alkali salts, can absorb at least 45% w:w of water. Copolymers of 2-hydroxyethyl methacrylate may for example also be copolymerised with n-pentyl methacrylate, vinyl propionate, vinyl acetate, isobutyl and cyclohexyl methacrylate, to produce a suitable desiccant polymer. Copolymers of 2-hyroxyethyl methacrylate with vinylpyrrolidinones, such as 1-vinyl-2-pyrrolidinone, and which may be cross linked with ethylene glycol dimethacrylate, can produce hydrogels with a higher degree of hydration, suitable as desiccant polymers. Other suitable hydrogel polymers include hydroxyethyl methacrylate N,N-dimethylacrylamide copolymers, hydroxyethyl methacrylate-N-vinyl pyrrolidone copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, N-vinyl pyrrolidone-methyl methacrylate copolymers, methyl methacrylate-acryloyl morpholine copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, methoxyethyl methacrylate-ethoxyethyl methacrylate copolymers, and methoxy methacrylate-acryloyl morpholine copolymers.
Alternatively the desiccant polymer may be a polymer material that includes a desiccant filler, for example as particles thereof dispersed in its bulk.
An example of such a desiccant polymer is an elastomeric material, such as a rubber, compounded with a desiccant material.
The compounding of the elastomeric material with a desiccant material causes the compounded material to exercise a desiccant effect upon the interior of the container. The quantity of the said elastomeric material compounded with a desiccant material should be sufficient to ensure absorption of sufficient of the water vapour in the container, or water in the moisture sensitive material contents to prevent or reduce to an acceptable degree any degradation of the material by the said water or water vapour.
The elastomeric material may be a rubber. Such a rubber may be a natural rubber, or a synthetic rubber such as a butadiene-based rubber, e.g. based on styrene-butadiene or cis-1,4-polybutadiene, butyl rubber, halobutyl rubber, ethylene-propylene rubber, neoprene, nitrile rubber, polyisoprene, silicone rubber, chlorosulphonated polyethylene or epichlorhydrin elastomer, or a mixture, blend or copolymer thereof. Halobutyl, e.g. chlorobutyl, rubbers and silicone rubbers are pharmaceutically acceptable rubbers known for use as materials for stoppers etc. to be maintained in contact with pharmaceutical products. Such elastomeric materials are sufficiently permeable to atmospheric water vapour that the desiccant material compounded with the rubber can exert its desiccant effect through a thin layer of the material.
Such rubbers may be compounded in the manner with which they are conventionally compounded for manufacture of a stopper as known in the art of manufacture of rubber stoppers. For example they may be compounded with reinforcing fillers, colouring agents, preservatives, antioxidants, additives to modify their stiffness, chemical resistance etc. such as curing/vulcanising agents. Conventional reinforcing fillers include inorganic reinforcing fillers such as zinc oxide and silicas such as china clay and other clays. Suitable compounding processes and compositions will be apparent to those skilled in the art of compounding of rubbers.
The reinforcing filler, such as china clay, normally used in the rubber may be totally or preferably partly replaced with a powdered solid desiccating material. Total replacement may lead to a loss of mechanical strength as compared to a rubber using entirely china clay as its filler, although desiccants may be found which can be used as the entire filler without loss of strength. Such a powdered desiccating material may have a particle size the same as or similar to that of the conventional inorganic fillers referred to above, so that the desiccant can serve as the filler as well. The quantity of the powdered desiccating material used may be up to the quantity in which conventional inorganic fillers are used, that is, they may completely replace the usual inorganic filler. For example the powdered desiccant may replace up to 50% of the weight of the normal weight of filler used in the rubber, e.g. 10-50%, such as 20-40%. The quantities of filler normally used in a rubber for a particular application such as a vial closure will be known to those skilled in the art.
The compounded rubber may also additionally include a conventional filler as mentioned above, for example in a quantity which together with the powdered desiccant comprises up to the weight % of filler normally included in such a rubber.
The quantity of desiccant necessary for a particular product contained in the container will depend upon the application but can easily be determined by experiment.
The desiccating material should be one which is inert relative to the elastomeric material, and vice versa. In the case of containers such as vials in which a solution is made up in situ by introduction of water or aqueous medium the desiccating material is suitably an inorganic desiccating material which is wholly or substantially insoluble in water so that none or only a pharmaceutically insignificant amount of the desiccant material or its hydration product, or undesirable ions, is likely to enter solution during the period when the desiccating polymer is in contact with water or aqueous medium. Preferred desiccants are those which can chemically or pysicochemically absorb or fix absorbed water, e.g. by formation of a hydration product, so that there is a reduced possibility of subsequent reversable release of the absorbed water, which might for example occur if the temperature of the polymer should rise, e.g to around 40° C. subsequent after earlier desiccation at a lower temperature.
Suitable inorganic desiccants are the known materials sold in the UK under the names Grace A3™, Siliporite™ and Ferben 200™. Particularly preferred desiccant materials are dried molecular sieves and calcium oxide, or mixtures thereof. Calcium oxide chemically fixes water by formation of calcium hydroxide, from which water can only be released at extreme temperatures, and absorbed water can generally only be released from molecular sieves at several hundred ° C., that is, well above the temperatures containers of pharmaceutical substances would be expected to experience under normal storage.
A preferred desiccating polymer is therefore a halobutyl, e.g. chlorobutyl, rubber compounded with an inorganic desiccant such as a molecular sieve or calcium oxide
The compounded elastomeric material may be made and formed into a solid element by processes analogous to those by which solid products are made from conventional compounded elastomeric materials which include the above-mentioned inorganic fillers are made.
In one embodiment of this invention the solid element comprises a closure for the container, made wholly or partly of the said desiccating polymer. Parts of such a closure other than the parts made of desiccant polymer which are to come into contact with the atmosphere within the container may be made of generally conventional materials, preferably pharmaceutically acceptable materials, such as plastics materials, elastomeric materials etc., or composite materials such as metal and plastics or elastomeric materials. Preferably such parts are made of plastics or elastomeric materials which are of low moisture content, of low moisture permeability and low moisture affinity.
Preferably parts of the closure which engage the mouth opening are at least partly, more preferably wholly made of an elastomeric material comprising a natural or synthetic rubber (which may be the above-described desiccating rubber), thereby allowing a tight compression fit with the mouth of the vessel. The sealing engagement of the closure with the mouth opening may be by a generally conventional construction e.g. similar to a conventional stopper. For example the closure may be engaged with the rim of the neck of a vial by a screw thread, a friction/compression fitting, and/or a circlip-type clamp around the neck of the vial. Such constructions are known in the art. The closure may seal the mouth in a generally conventional manner, e.g. by a compression fitting of the closure wall against the rim of the mouth, or by a sealing ring compressed between the closure face and the rim of the mouth etc.
In one embodiment the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer.
In another embodiment the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermneable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel.
Such a last-mentioned container may be a vial as mentioned above suitable for a moisture-sensitive pharmaceutical material, of generally conventional construction, the mouth opening being defined by the rim of the neck of the vial. Such a vial may be made of conventional materials such as glass, rigid plastics materials etc., but particularly glass.
By means of the invention, moisture-sensitive substances within the vessel may be protected by the desiccant material, and in this last-mentioned embodiment water may be introduced into the vessel by means of a hypodermic needle puncturing the closure face through the puncturable region, so as to dissolve the substance, and the so-formed solution of the substance may be withdrawn via the needle.
The puncturable region of the closure wall may suitably comprise a thinned region of the closure wall, and is preferably provided in a region of elastomeric material (which may comprise the desiccating polymer) which can resiliently seal around a hypodermic needle which is inserted therethrough, so as to facilitate sterile insertion and withdrawal.
Conveniently all the polymeric parts of the closure, e.g. of a vial closure and including the puncturable region, may be made of the desiccant polymer, particularly an elastomeric material compounded with a desiccant material. Such a vial closure may correspond in shape and size to conventional vial closures made of elastomeric material, and may be retained on the mouth of the vial by a conventional metal circlip. Elastomeric materials compounded with a desiccant material may be moulded into such shapes and sizes by a moulding process entirely analogous to that used to mould closures out of conventional elastomeric materials such as rubbers.
Alternatively the closure may be of multi-part construction having only parts, including those parts which are exposed to the interior of the container body, made of the said desiccant polymer.
The distribution of the desiccant polymer may be such that the desiccant polymer is located on only part of the closure wall, so that for example the puncturable region may be situated between areas of the closure wall on which is the desiccant polymer, or to one side of such an area, thereby facilitating the construction of the puncturable region as a thinned region of the closure face.
Such a multi-part construction includes the possibility that the closure may be integrally made of a co-moulded, or fused together, desiccating polymer and an elastomeric or plastics material making up parts of the structure of the closure. Alternatively the desiccating polymer may be provided as a separate part, retained by the closure on a suitable inward surface, e.g in an inwardly facing holder or cavity.
In one embodiment a multi-part construction of closure of the invention, the desiccant polymer may be in the form of a ring shape on the closure wall of a closure, with the puncturable region within, e.g. near or at the centre of, the ring. Such a ring shape may for example be circular, polygonal, or oval etc.
Such a ring-shape of desiccant polymer may be located in a corresponding ring-shaped or cylindrical holder in the closure wall. Such a holder may suitably be in the form of two generally concentric walls extending inwardly from the closure wall, the space between the walls defining the ring-shaped cavity, and the central space within the inner wall defining a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted. Such a holder may be formed integrally with the closure wall, or may be separate part of the closure. Suitably both the walls may be integral with the closure wall, so that the closure wall forms the base of the cavity and of the central passage. Suitably in such a construction the base wall of the central passage includes the puncturable region.
Alternatively such a ring-shape of desiccant polymer may be located in a ring-shaped or cylindrical cavity in the closure wall, suitably in its inward face, the cavity opening into the interior of the container when the closure is in place on the vessel, and the central opening in the ring shape of desiccating polymer may define a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted.
Alternatively the ring shape of desiccant polymer may be located adjacent to the inner face of the closure wall.
The desiccant polymer may be simply physically attached to the closure, e.g by cooperating parts such as projections and sockets, or simply be held in place by the inherent resilience of other parts of the closure, particularly when this is made of an elastomeric or other resilient material such as a plastics material, alternatively the desiccant polymer may be bonded to the closure e.g by adhesives or fusion together etc.
Alternatively a closure for the container, e.g. a bottle or jar of glass or plastics material, or a metal canister or keg, may be in the form of a conventional screw cap (optionally provided with tamper evident or child resistant features) or other form of closure (e.g. cam action closure, snap-fit closure) which relies on a compression fit on the lip of the mouth of the container, and having an insert made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material, in the form of a disc or ring washer or inward facing coating layer which forms a compression seal between the lip of the mouth of the container and the closure as the container closure is tightened down, e.g. by a screw action.
Alternatively a closure for the container, e.g. a bottle or jar of glass or plastics material, or a metal canister or keg, may be a screw/interference/friction/compression fit insertable bung or other insertable stopper of its surface exposed to the interior of the container made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material.
Alternatively the container may comprise a syringe barrel, with a plunger having at least part of its surface exposed to the interior of the container made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material. Suitably the entire plunger may be made of the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material.
Alternatively the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material may be included in other forms into the container of the invention, for example as a removable resilient element such as a pad, wad, leaf, helix, coil or spiral spring which may be included in the headspace above the contents of a container and which exerts a restraining action on the contents, such a tablets, pills, capsules etc. to prevent the contents rattling about in the container. Such an element may be made as part of the container closure.
Alternatively the said desiccant polymer, e.g an elastomeric material compounded with a desiccant material may be made in the form of a pad, e.g. a flat disc to be retained at the bottom of a container, e.g. beneath tablet, pill or capsule contents.
The nature and quantity of desiccant polymer used in the container of the invention will vary with the nature of the moisture sensitive contents, and can easily be determined by straightforward experimentation or calculation, e.g. from the moisture content of the contents of the vessel. Suitably in the case of the moisture sensitive material potassium clavulanate, at the usual quantities in which it is supplied mixed with sodium amoxycillin in vials, typically of a capacity 10-20 ml, for reconstitution for an injectable formulation, e.g. 100-200 mg potassium clavulanate mixed respectively with 500-1000 mg sodium amoxycillin (expressed as the parent free acid equivalent weight) the desiccant polymer should scavenge 5-8milligrams of water with a residual RH of less than 10% throughout a two year storage period.
Preferred desiccating polymers for use with formulations containing potassium clavulanate, e.g. its coformulation with sodium amoxycillin, are able to take up atmospheric moisture at 30% RH or less, preferably at 10% RH or less. Preferred desiccating polymers excercise such a desiccant function for a long period, ideally throughout the shelf life, typically two years, of such a formulation.
Preferred desiccant polymers should also be capable of being sterilised without loss of their desiccant ability at these low RH values. For example desiccant polymer vial closures are ideally sterilised by washing prior to use, without loss of their desiccant ability. It is found that desiccant rubbers such as halobutyl, e.g. chlorobutyl, rubber compounded with calcium oxide or molecular sieves are capable of being washed without deleterious effect on their desiccant ability.
The container of the invention is particularly suitable for the containment of moisture-sensitive pharnaceutical substances such as a formulation of potassium clavulanate and sodium amoxycillin, particularly crystalline sodium amoxycillin e.g. as disclosed in EP 0131147. The invention therefore further provides a container as described above, containing a mixture which comprises potassium clavulanate and sodium amoxycillin.
Other pharmaceutical substances which may usefully be contained in the container of the invention include lyophilised substances, for example those often employed in diagnostic assy kits.
The closure of the invention, independent of the vessel, is also believed to be novel, and therefore the invention further provides a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall, the inwardly facing region of the closure wall comprising or having thereon a desiccant polymer.
For example such a closure may be a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel, and having on an inwardly facing region of the closure wall a desiccant polymer.
Suitable and preferred forms of the closure are as described above.
The present invention also provides a method of desiccating a moisture sensitive material, which comprises enclosing the said material in a container and maintaining a desiccant polymer in contact with the atmosphere inside the container. This method may be a method of long-term storage and/or protection against hydrolysis during storage. The moisture sensitive material may be potassium clavulanate or its coformulations with sodium amoxycillin. This method is suitable for use with lyophilised, freeze dried, materials. Normally lyophilised materials are desiccated by an intense drying process before vials containing them are sealed, and this method of the invention provides the advantage that less intense drying processes may be used, and the desiccant polymer can thereafter complete the dehydration process whilst in the sealed vial.
Suitable and preferred forms of the process are as described above.
The invention will now be described by way of example only with reference to the accompanying drawings, which show:
FIGS. 1, 2 and 3: longitudinal sections through alternative multi-part construction vials and closures of the invention.
FIG. 4: a sectional view through the closure of FIG. 1 about the line A--A of FIG. 1 looking in the direction of the arrows.
FIGS. 5-7: graphs showing moisture uptake for rubbers compounded with various listed desiccants.
FIG. 8: a graph of normalised moisture uptake for dried hydrogels (a) to (f) tested in example 4.
Referring to FIGS. 1 to 4, a glass vial (1) has a mouth opening (2) defined by the rim of an inwardly extending neck (3). In the neck (3) of the vial (1) is a closure (4 generally) integrally made of a synthetic rubber material, and which comprises a closure wall (5) which sealingly engages the rim of the mouth opening (2). Centrally located in the closure wall (5) is a thinned puncturable region (6).
Referring specifically to FIG. 1, extending inwardly into the vial (1) from the closure wall (5) is an integral holder (7) in the form of two concentric walls (7A, 7B) the outer of which (7A) forms a neck plug which sealingly engages the neck (3) with a compression fit. The inner wall (7B) defines a central space (8) with the puncturable region (6) at its outer end. A hypodermic needle (9) may be inserted through the puncturable region (6) and passed along the passage into the vial defined by the space (8).
Between the inner and outer walls (7A, 7B) is a ring-shaped cavity (10) which contains a desiccant polymer (11) in the form of a ring with a central opening. The ring (11) is retained in place in the cavity (10) by the inherent resilience of the closure material.
Referring specifically to FIG. 2 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered. In the vial of FIG. 2 the desiccant polymer is in the form of a ring (12) which is bonded to the inner face (13) of the closure wall (5) where this extends inwardly into the interior of the vial (1) in the form of a neck plug (14), with its central opening in communication with the central space (8) of the closure. The neck plug (14) sealingly engages the neck (3) with a compression fit
Referring to FIG. 3 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered. In the vial of FIG. 2 the desiccant polymer is in the form of a ring (15) with a central opening (16). The ring (15) fits into a central cavity (17) in the closure wall (5) where this extends inwardly into the interior of the vial (1) to form a neck plug (18) and is held there in place by the resilience of the material of the closure (4). The central opening (16) in the ring (15) defines a passage having the puncturable region (6) at its outer end. The neck plug (18) sealingly engages the neck (3) with a compression fit.
The closure wall (5) may be fastened tightly against the rim of the neck (3) by means of a circlip (not shown). In another embodiment (not shown) a holder for the desiccant polymer (11) may be made as a separate part in the form of two walls analogous in shape to walls (7A, 7B) with a cavity (10) and desiccant polymer (11) between them, and with a base wall.
It should be noted that if the desiccant polymer is a hydrogel polymer shrinkage may occur on drying which may affect the retention of the polymer on a rubber closure, and steps, e.g a suitable construction of holder, which will be apparent to those skilled in the art, might be necesary to overcome this.
In use, the hypodermic needle (9) is inserted through the puncturable region (6), and along the passage (8), into the vicinity of the contents (13) of the vial (1), a dry mixture of potassium clavulanate and anhydrous crystalline sodium amoxycillin. Sterile water is injected down the needle (9) to dissolve the contents (13), and the vial may be shaken to encourage dissolution. The solution may then be withdrawn through the needle (9) into a syringe (not shown) for subsequent use.
EXAMPLE 1 Rubbers Compounded with Desiccants
A closure for a glass vial of the type conventionally used for the containment made, using a standard known compounded halobutyl rubber formulation, but in which 50% by weight of the conventional china clay filler was replaced with calcium oxide ground to a particle size distribution similar to that of the filler. The shape and size of the closure corresponded to those of a conventional vial closure. The volume of the vial was ca. 10 ml. The molecular sieve was dried using a standard process for drying the molecular sieve.
A moisture sensitive pharmaceutical formulation, being 500 mg crystalline sodium amoxycillin prepared as described in EP 0131147 coformulated with 100 mg of potassium clavulanate was filled into the vial under conditions of less than 30% RH and the vial was sealed with the stopper as conventional, with the stopper being retained on the vial using a conventional thin metal cover.
The vial containing the formulation was stored under ambient and accelerated storage conditions. Colour measurements (a known sensitive method of assessing the degree of decomposition of potassium clavulanate) showed a degree of protection of the potassium clavulanate effectively equivalent to that shown using spray-dried sodium amoxycillin having desiccant properties, in a conventionally stoppered vial.
A similar result was achieved when calcium oxide instead of molecular sieve was compounded with the rubber, and when all of the filler was replaced by these desiccants.
EXAMPLE 2 Rubbers Compounded with Desiccants
In a further experiment potassium clavulanate was enclosed within an airtight glass vessel, and a piece of halobutyl rubber compounded with calcium oxide as mentioned above in Example 1 was suspended inside the vial on a piece of wire. A control experiment was set up consisting of an identical vessel enclosing the same weight of potassium clavulanate but without the compounded rubber. The decomposition of the potassium clavulanate under the action of traces of moisture in the atmosphere of the vial and in the potassium clavulanate itself, or adsorbed on the inner surface of the vial was monitored. Colour measurements showed that decomposition of the potassium clavulanate was significantly retarded in the vessel containing the rubber compounded with the desiccant.
EXAMPLE 3 Rubbers Compounded with Desiccants.
FIG. 5 shows the moisture uptake (normalised data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated. Grace A3™, Siliporite™ and Ferben 200™ are commercially available powdered desiccants, sold under these trade names, and were pre-dried according to the standard procedures for these desiccants. Grace A3™ and Siliporite™ are types of molecular sieve powder obtainable from W R Grace Ltd. Northdale House, North Circular Road, London NW10 7UH, GB. The graph relates to the desiccant fillers:
(a) Siliporite.sup.™
(b) molecular sieve
(c) Grace A3™
(d) Ferben 200™
FIG. 6 shows the moisture uptake (normalised data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant, after the rubber has been tote washed. The graph relates to the desiccant fillers:
(a) calcium oxide
(b) molecular sieve
(c) Grace A3™
(d) Siliporite™
FIG. 7 shows the moisture uptake (normalised data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated, before and after the rubber has been tote washed. The graph relates to the desiccant fillers:
(a) molecular sieve--washed
(b) molecular sieve--unwashed
(c) Grace A3™--washed
(d) Grace A3™--unwashed
The data presented in these graphs show that rubber compounded with these desiccants has a desiccant ability even at RH as low as 10% RH, and this desiccant ability is relatively unaffected by washing.
EXAMPLE 4 Hydrophilic Hydrogels
Samples (a)-(f) of known hydrogels as tabulated below were obtained in a hydrated state and were activated by heating to ca. 120° C. under vacuum for a minimum of 3 hours.
(a) 90:10 hydroxyethyl methacrylate:N,N-dimethylacrylamide copolymer
(b) 90:10 hydroxyethyl methacrylate:N-vinyl pyrrolidone copolymer
(c) 90:10 hydroxyethyl methacrylate:acryloyl morpholine copolymer
(d) 70:30 N-vinyl pyrrolidone:methyl methacrylate copolymer
(e) 30:70 methyl methacrylate:acryloyl morpholine copolymer
(f) 50:50 hydroxy methacrylate:acryloyl morpholine copolymer
The moisture uptake of all six samples was evaluated in a standardised 24 hour cycle on the Dynamic Vapour Sorption apparatus. The samples were prepared and placed at a nominal 0% RH (actual 2%) for 4 hours to complete activation. The RH was then raised to a nominal 10% (actual 12%) for 1000 minutes and then returned to 0% for a further 200 minutes completing the 24 hour cycle. Data was normalised to allow for any weight loss during the 4 hour activation stage, and is illustrated in FIG. 8.
In order to evaluate whether the samples had reached a stable equilibrium at the end of the holding time at 10% RH two samples (c) and (d) with different profiles in the screening test above were selected and held for 24 hours at 0% RH followed by ca. 45 hours at 10% RH. This confirmed that maximum moisture uptake was achieved within 1000 minutes.
It was clear from these results that all hydrogels tested had highly significant water uptake at low RH, i.e. 10%. The majority of the water uptake occurred extremely rapidly and final equilibrium was attained within 17 hours or less. The maximum uptake using hydrogel polymers was for sample (d) which was able to absorb approximately 1.7% of its own weight of water at 10% RH when fully dried.
The hydrogel samples showed the physical changes listed below during the test:
(a) very brittle when dried
(b) least brittle when dried
(c) very brittle when dried
(d) considerable shrinkage on drying
(e) opaque when dried.

Claims (43)

We claim:
1. A container having within it contents comprising a moisture sensitive material and an atmosphere, the container comprising a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, the closure having an inner face exposed to said contents, at least a part of said closure being made of a desiccating polymer and forming at least a part of said inner face, the desiccatitng polymer being an elastomeric material compounded with a filler, the elastoneric material further including a sufficient quantity of a desiccating material to absorb enough moisture from said contents of the container to reduce degradation of the moisture sensitive material by water and water vapour, the closure also comprising a closure wall having a puncturable region therein in direct communication with the interior of the container.
2. A container according to claim 1 which is a vial.
3. A container according to claim 2 which vial is glass.
4. A container according to claim 3 which vial contains potassium clavulanate and sodium amoxycillin.
5. A container according to claim 4 wherein the desiccating polymer is able to take up atmospheric moisture at 30% RH or less.
6. A container according to claim 4 wherein the sodium amoxycillin is crystalline sodium amoxycillin.
7. A container according to claim 1 in which the elastomeric material is selected from the group consisting of a halobutyl and silicone rubber.
8. A container according to claim 7 wherein the elastomeric material further contains a reinforcing filler, and wherein the desiccating material replaces from about 10 to about 50% of the weight of the filler.
9. A container according to claim 8 wherein the desiccating material replaces from about 20 to about about 40% of the filler.
10. A container according to claim 8 wherein the desiccating material replaces from about 40 to about 50% of the filler.
11. A container according to claim 1 in which the desiccating material is an inorganic desiccating material.
12. A container according to claim 11 in which the desiccating material chemically absorbs water.
13. A container according to claim 11 in which the desiccating material chemically fixes water.
14. A container according to claim 11 in which the desiccating material physiochemically absorbs water.
15. A container according to claim 11 in which the desiccating material is selected from the group consisting of a dried molecular sieve, calcium oxide, and mixtures thereof.
16. A container according to claim 11 or 15 in which the elastomeric material is chlorobutyl rubber.
17. A container according to claim 1 in which the desiccating polymer is able to take up atmospheric moisture at 30% RH or less.
18. A container according to claim 1 in which part of the closure which engages the opening is at least partly made of an elastomeric material thereby allowing a tight compression fit with the mouth of the container.
19. A container according to claim 1 in which the closure is of multi-part construction.
20. A container according to claim 1 wherein the closure is made only of the desiccating polymer.
21. A container according to claim 1 in which the quantity of desiccating material in the desiccating polymer is sufficient to prevent degradation of the moisture senstitive material by water and water vapor.
22. A container according to claim 1 in which said desiccating polymer forms a part of the closure and is exposed only to the interior of the closure.
23. A container according to claim 1 in which said desiccating polymer forms a part of the closure and is separated from the external atmosphere by a part of the closure which does not include desiccating polymer.
24. A container according to claim 1 in which said desiccating polymer constitutes from about 10% to about 50% of the weight of the filler.
25. A container for a moisture sensitive material in the form of a vial, having a container body of glass and having an opening sealed by a closure which closure is wholly made of halobutyl rubber compounded with a filler and a desiccating material selected from the group consisting of molecular sieve, calcium oxide, and mixtures thereof, and wherein the desiccating material replaces from about 10 to 50% of the weight of the filler, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the container.
26. A container according to claim 25 wherein the desiccating material replaces from about 40 to about 50% of the filler.
27. A method of desiccating potassium clavulanate in combination with crystalline sodium amoxycillin which comprises enclosing potassium clavulanate in combination with crystalline sodium amoxycillin in a container with a closure, the closure comprising a dessicatintg polymer and maintaining the desiccating polymer in contact with the atmosphere inside said container, the desiccating polymner being an elastomeric material compounded with a desiccating material which material provides the dessicating activity in said container.
28. A method of desiccating lyophilised, freeze dried material which comprises, as a final dehydrating step, placing the material in a container as defined in claim 1, in the form of a vial, and having a closure made of a desiccating polymer formed from an elastomeric material compounded with a desiccating material, sealing said vial, so that the dehydration process is completed in the sealed vial.
29. A closure for a vial, containing a mouth opening, which closure is formed from an elastomeric material compounded with a filler and a desiccating material, and wherein the desiccating material replaces from about 10 to 50% of the weight of the filler, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vial.
30. A closure according to claim 29 in which the elastomeric material is selected from the group consisting of halobutyl and silicone rubber.
31. A closure according to claim 29 in which the desiccating material is an inorganic desiccating material.
32. A closure according to claim 31 in which the desiccating material chemically absorbs water.
33. A closure according to claim 31 in which the desiccating material chemically fixes water.
34. A closure according to claim 31 in which the desiccating material physiochemically absorbs water.
35. A closure according to claim 31 in which the desiccating material is selected from the group consisting of a dried molecular sieve, calcium oxide, and mixtures thereof.
36. A closure according to claim 30 or 35 in which the elastomeric material is chlorobutyl rubber.
37. A closure according to claim 29 in which part of the closure which engages the mouth opening is at least partly made of an elastomeric material thereby allowing a tight compression fit with the mouth opening of the container.
38. A closure according to claim 29 which is of multi-part construction.
39. A closure according to claim 37 or 38 in which the closure is made wholly of the desiccating polymer.
40. A closure according to claim 29 wherein the desiccating material replaces from about 40 to about 50% of the filler.
41. A closure according to claim 29 in which the elastomeric material is a halobutyl rubber.
42. A closure according to claim 29 in which the desiccating material is selected from the group consisting of molecular sieve, calcium oxide, and mixtures thereof.
43. A closure according to claim 29 in which the filler comprises a china clay.
US08/776,807 1994-08-05 1995-08-04 Desiccating container for moisture-sensitive material Expired - Lifetime US5947274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/170,755 US20030010668A1 (en) 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB9415864A GB9415864D0 (en) 1994-08-05 1994-08-05 Container
GB9415864 1994-08-05
GBGB9512243.8A GB9512243D0 (en) 1995-06-16 1995-06-16 Container and closure
GB9512243 1995-06-16
PCT/EP1995/003130 WO1996004189A1 (en) 1994-08-05 1995-08-04 Container for moisture-sensitive material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US24568499A Continuation 1994-08-05 1999-02-08

Publications (1)

Publication Number Publication Date
US5947274A true US5947274A (en) 1999-09-07

Family

ID=26305410

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/776,807 Expired - Lifetime US5947274A (en) 1994-08-05 1995-08-04 Desiccating container for moisture-sensitive material
US10/170,755 Abandoned US20030010668A1 (en) 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/170,755 Abandoned US20030010668A1 (en) 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material

Country Status (16)

Country Link
US (2) US5947274A (en)
EP (3) EP0879772B1 (en)
JP (3) JPH10503739A (en)
KR (1) KR100487466B1 (en)
CN (2) CN1075022C (en)
AT (2) ATE219015T1 (en)
CA (1) CA2196673C (en)
CZ (2) CZ9700328A3 (en)
DE (2) DE69527096T2 (en)
ES (2) ES2178077T3 (en)
HU (1) HU222053B1 (en)
MX (1) MX9700952A (en)
NO (2) NO314624B1 (en)
NZ (1) NZ291443A (en)
PL (1) PL179210B1 (en)
WO (1) WO1996004189A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247604B1 (en) * 1994-03-17 2001-06-19 Smithkline Beecham P.L.C. Desiccant-containing stopper
US20020197300A1 (en) * 1999-02-22 2002-12-26 Schultz Clyde L. Drug delivery system for anti-glaucomatous medication
US20030010668A1 (en) * 1994-08-05 2003-01-16 West Pharmaceutical Services, Inc. Desiccating container for moisture-sensitive material
US20030136405A1 (en) * 2002-01-24 2003-07-24 Joachim Goede Pharmaceutical powder cartridge, and inhaler equipped with same
WO2003086900A1 (en) * 2002-04-11 2003-10-23 Csp Technologies Inc. Desiccant vial assembly for effervescent tablets
US20030235664A1 (en) * 2002-06-20 2003-12-25 Rick Merical Films having a desiccant material incorporated therein and methods of use and manufacture
US6688081B2 (en) 2001-12-18 2004-02-10 Schmalbach-Lubeca Ag Method for reducing headspace gas
US20040131805A1 (en) * 2002-06-20 2004-07-08 Merical Rick L. Films having a desiccant material incorporated therein and methods of use and manufacture
US20050059162A1 (en) * 2003-09-16 2005-03-17 Wohleb Robert H. Direct vial surface sorbent micro extraction device and method
WO2006040019A1 (en) * 2004-10-08 2006-04-20 Friedrich Sanner Gmbh & Co. Kg Device for dispensing containers
US20060110295A1 (en) * 2003-09-16 2006-05-25 Vici Gig Harbor Group, Inc. Closed well plate surface sorption extraction
US20060115383A1 (en) * 2003-09-16 2006-06-01 Vici Gig Harbor Group, Inc. Flow through well plate surface sorption extarction
US20060115384A1 (en) * 2003-09-16 2006-06-01 Vici Gig Harbor Group, Inc. Pipette tip surface sorption extraction
US20070084735A1 (en) * 2003-07-29 2007-04-19 Dider Lancesseur Tight dessicative container for packaging products which are sensitive to a moist environment
US20070151884A1 (en) * 2005-12-23 2007-07-05 Bruno Thoes Outer packaging system for medical consumables
US20070215152A1 (en) * 1999-12-18 2007-09-20 Meda Pharma Gmbh & Co. Kg Storage system for powdered pharmaceuticals and inhaler equipped with this sytem
US20070246468A1 (en) * 2006-04-17 2007-10-25 West Pharmaceutical Services, Inc. Cryogenic, elastomeric closure for cryogen containers
US20070272646A1 (en) * 2003-12-19 2007-11-29 Didier Lancesseur Device For The Leak-Tight Sealing Of Packaging Containers For Sensitive Products
US20080300569A1 (en) * 2006-02-17 2008-12-04 Gruenenthal Gmbh Storage-Stable Oral Dosage Form of Amoxicillin and Clavulanic Acid
US7475773B2 (en) 2005-02-01 2009-01-13 Airsec S.A.S. Container for moisture-sensitive goods
US20090176755A1 (en) * 2005-12-07 2009-07-09 Herwig Jennewein Pharmaceutical compositions comprising an antibiotic
US20100065444A1 (en) * 2007-01-20 2010-03-18 Stefan Henke Pack containing soft capsules
US20100102020A1 (en) * 2008-10-24 2010-04-29 Airsec Screw cap, container body and container
US20110000930A1 (en) * 2007-11-16 2011-01-06 Airsec S.A.S. Container
US20110127269A1 (en) * 2008-05-15 2011-06-02 Michael Bucholtz Vial with non-round seal
US20110150704A1 (en) * 2009-12-21 2011-06-23 Abbott Laboratories Container having gas scrubber insert for automated clinical analyzer
US8221705B2 (en) 2007-06-21 2012-07-17 Gen-Probe, Incorporated Receptacles for storing substances in different physical states
US8714353B2 (en) 2010-12-22 2014-05-06 Colgate-Palmolive Company Package of oral care implements and method of using the same
US20150166219A1 (en) * 2010-01-29 2015-06-18 Integrity Products, Inc. Perforable container cap
US9155606B2 (en) * 2012-03-20 2015-10-13 C. R. Bard, Inc. Method and apparatus for rehydration of lyophilized biologic materials
US9469745B2 (en) 2012-10-25 2016-10-18 Kohler Co Engineered composite material and products produced therefrom
US10456786B2 (en) 2013-03-12 2019-10-29 Abbott Laboratories Septums and related methods
US11135168B2 (en) * 2017-07-14 2021-10-05 4D Pharma León S.L.U. Process for lyophilising a product
CN114288180A (en) * 2021-12-22 2022-04-08 湖北华强科技股份有限公司 Piston for pen type injector of explosion-proof plug
US11319122B2 (en) * 2019-01-04 2022-05-03 Instrumentation Laboratory Company Container stopper for high pierce count applications

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU755082B2 (en) * 1995-03-17 2002-12-05 Inverness Medical Switzerland Gmbh Assay devices
GB9505425D0 (en) * 1995-03-17 1995-05-03 Unilever Plc Assay devices
GB2306169B (en) * 1995-10-13 2000-01-12 Eastman Kodak Co Zeolite molecular sieves for packaging structures
US5789044A (en) * 1996-01-24 1998-08-04 Eastman Kodak Company Zeolite molecular sieves for packaging structures
US5962333A (en) * 1996-01-25 1999-10-05 Multisorb Technologies, Inc. Medical diagnostic test strip with desiccant
GB9607236D0 (en) * 1996-04-04 1996-06-12 Smith David S Packaging A dispenser
US5677120A (en) * 1996-05-23 1997-10-14 Eastman Kodak Company Tellurium complexes as chemical sensitizers for silver halides
US6112888A (en) * 1996-06-28 2000-09-05 W. R. Grace & Co.-Conn. Non-reclosable packages containing desiccant matrix
US6180708B1 (en) 1996-06-28 2001-01-30 W. R. Grace & Co.-Conn. Thermoplastic adsorbent compositions containing wax and insulating glass units containing such compositions
DE19633495A1 (en) * 1996-08-20 1998-02-26 Sanner Friedr Gmbh Co Kg Desiccant seal for container filled with moisture sensitive goods
GB9621822D0 (en) * 1996-10-19 1996-12-11 Smithkline Beecham Plc Novel process
JPH10142227A (en) * 1996-11-15 1998-05-29 Dainabotsuto Kk Well plate for immunity analysis
GB9818927D0 (en) * 1998-08-28 1998-10-21 Smithkline Beecham Plc Pharmaceutical formulation
DE19950311A1 (en) * 1999-10-13 2001-04-19 Schering Ag Stable storage of parenteral ultrasonic contrast agent formulation, using vial closed with dry stopper to prevent reduction of in vivo effectiveness
EP1296672B2 (en) 2000-06-09 2018-10-24 LEK Pharmaceuticals d.d. Stable pharmaceutical product and formulation
IT1319655B1 (en) 2000-11-15 2003-10-23 Eurand Int PANCREATIC ENZYME MICROSPHERES WITH HIGH STABILITY AND RELATIVE PREPARATION METHOD.
US8003179B2 (en) 2002-06-20 2011-08-23 Alcan Packaging Flexible France Films having a desiccant material incorporated therein and methods of use and manufacture
US8110260B2 (en) 2007-02-02 2012-02-07 Rick Merical Containers intended for moisture-sensitive products
US7871558B2 (en) 2002-06-20 2011-01-18 Alcan Global Pharmaceutical Packaging, Inc. Containers intended for moisture-sensitive products
US7628292B2 (en) * 2003-03-03 2009-12-08 Airsec S.A. Device for dispensing oblong objects, comprising one main opening and at least one other elongated opening
FR2868403B1 (en) * 2004-03-30 2006-06-09 Airsec Sa DEVICE FOR THE DISTRIBUTION, UNIT PER UNIT, OF CONFORMING OBJECTS SUCH AS PHARMACEUTICAL TABLETS
DE602005007736D1 (en) * 2004-04-30 2008-08-07 Certest Biotec S L QUICK DIAGNOSTIC STRIPS WITH MOISTURE ABSORBING MATERIAL AND BLISTER PACK FOR THIS
US20060108319A1 (en) * 2004-11-24 2006-05-25 Meittunen Eric J Vial attachment to prevent needle sticks
US20090302048A1 (en) * 2004-12-21 2009-12-10 Airsec Device for storing and dispensing in single units objects in the form of sheets or thin strips
JP5050334B2 (en) * 2005-10-04 2012-10-17 凸版印刷株式会社 Desiccant-containing resin molded body and production method thereof, container using desiccant-containing resin molded body
JP4894345B2 (en) * 2006-04-26 2012-03-14 凸版印刷株式会社 Desiccant-containing resin molded article having flashiness and durability and container using the same
FR2901248B1 (en) * 2006-05-19 2010-09-17 Airsec DEVICE FOR DISTRIBUTOR / LIMITER OF UNITARY PRODUCTS FLOW RATE, INTEGRATED WITH A CONTAINER AND IN-SITU TREATMENT OF ITS INTERNAL ATMOSPHERE
FR2901253B1 (en) * 2006-05-19 2008-08-15 Airsec Soc Par Actions Simplif OPERATED STORAGE AND DISPENSING ASSEMBLY WITH FLOW LIMITER OF SOLID PHARMACEUTICAL PRODUCTS
ES2674681T3 (en) 2007-02-20 2018-07-03 Allergan Pharmaceuticals International Limited Stable digestive enzyme compositions
DE602008006344D1 (en) 2008-01-04 2011-06-01 Airsec Sas Container with improved oxygen carrier function
EP2093162B1 (en) 2008-02-20 2019-08-14 Clariant Production (France) S.A.S. Moisture absorbing polymeric formulations with enhanced absorption properties
JP2009196666A (en) * 2008-02-21 2009-09-03 Toyo Seikan Kaisha Ltd Sealing stopper, sealed container, and freeze drying method
WO2009109856A2 (en) 2008-03-07 2009-09-11 Axcan Pharma Inc. Method for detecting infectious parvovirus in pharmaceutical preparations
JP5282326B2 (en) * 2009-01-21 2013-09-04 東洋製罐株式会社 Seal plug using hygroscopic laminate
ITMI20100080U1 (en) * 2010-03-22 2011-09-23 Getters Spa COMPOSITION FOR THE PROTECTION OF DEVICES SENSITIVE TO THE PRESENCE OF H2O.
EP2394926B1 (en) 2010-06-08 2015-01-07 Clariant Production (France) S.A.S. Child safe stopper
PT2621476E (en) 2010-10-01 2014-10-16 Aptalis Pharma Ltd Enteric coated, low-strength pancrelipase formulations
FR2967655B1 (en) * 2010-11-24 2014-03-14 Biocorp Rech Et Dev DEVICE FOR CLOSING A CONTAINER, CONTAINER EQUIPPED WITH SUCH A DEVICE AND METHOD FOR CLOSING A BATCH OF SUCH CONTAINERS
ES2734221T3 (en) 2011-08-08 2019-12-04 Allergan Pharmaceuticals Int Ltd Method for dissolution test of solid compositions containing digestive enzymes
EP2951577A1 (en) 2013-02-04 2015-12-09 Clariant Production (France) S.A.S. Dispensing device for holding and dispensing strip-like objects
MX2016001593A (en) 2013-08-09 2016-09-29 Allergan Pharmaceuticals Int Ltd Digestive enzyme composition suitable for enteral administration.
CA2947998A1 (en) 2014-06-19 2015-12-23 Aptalis Pharma Ltd. Methods for removing viral contaminants from pancreatic extracts
KR101679574B1 (en) * 2015-02-09 2016-11-25 엘지전자 주식회사 Air conditioner
JP6918778B2 (en) 2015-08-17 2021-08-11 シーエスピー テクノロジーズ,インコーポレイティド Container orifice reducer with tamper-proof seal
ES1165808Y (en) * 2016-08-11 2016-12-19 Partner Local Grup S L GLASS BOTTLE TUBULAR NECK
EP3787717A1 (en) * 2018-05-01 2021-03-10 CSP Technologies, Inc. Medicament delivery device and method of using and making same

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1509916A (en) * 1924-09-30 of springville
US2160607A (en) * 1935-07-01 1939-05-30 Shell Dev Extraction process
US2173046A (en) * 1938-10-15 1939-09-12 Harry T Smith Saltcellar
US2783908A (en) * 1953-02-13 1957-03-05 Glaxo Lab Ltd Closures for bottles, vials and the like
US2848130A (en) * 1953-10-07 1958-08-19 Duo Vent Vacuum Closure Compan Pressure resistant closures
US3081137A (en) * 1960-06-20 1963-03-12 George B Kolokythas Absorbent storage insert for container cap
US3254784A (en) * 1963-05-10 1966-06-07 Lancesseur Francois Dehydrating stopper
GB1408981A (en) * 1973-04-16 1975-10-08 Monsanto Ltd Polymer composition
US3918578A (en) * 1974-04-01 1975-11-11 Multiform Desiccant Products I Desiccant end cap
US4146277A (en) * 1978-06-29 1979-03-27 Santoro Dario S Desiccant cap
US4350508A (en) * 1981-12-21 1982-09-21 Santoro Dario S Desiccant cap
GB2106084A (en) * 1981-08-24 1983-04-07 Daikyo Gomu Seiko Kk Pierceable closure member for container
DE3236570A1 (en) * 1982-10-02 1984-04-05 Hans-Erich 7595 Sasbachwalden Gubela Foam plastic mouldings containing open cells, in particular made from phenolic resin
US4485204A (en) * 1981-08-26 1984-11-27 Phillips Petroleum Company Polyester blends comprising a desiccant and a rubbery block copolymer
EP0131147A1 (en) * 1983-06-10 1985-01-16 Beecham Group Plc Crystalline amoxycillin salt
US4547536A (en) * 1981-08-26 1985-10-15 Phillips Petroleum Company Polyester blends containing a metal oxide desiccant
GB2181440A (en) * 1985-09-04 1987-04-23 Ceskoslovenska Akademie Ved Hydrophilic copolymer suitable for contact lenses
JPS63105064A (en) * 1986-10-22 1988-05-10 Nippon Synthetic Chem Ind Co Ltd:The Resin composition having high water absorption property
JPS6433158A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
EP0311324A2 (en) * 1987-10-06 1989-04-12 Beecham Group Plc Device
US4834234A (en) * 1987-05-13 1989-05-30 Boehringer Mannheim Gmbh Container for test strips
US4840280A (en) * 1988-01-28 1989-06-20 American Air Liquide Sealing cap for liquid food or beverage containers
DE3814764A1 (en) * 1988-04-30 1989-11-09 Felten & Guilleaume Energie Desiccant for removing the last residues of water from a sealed manufactured product, in particular an electrical appliance
JPH02237617A (en) * 1989-03-08 1990-09-20 Dai Ichi Kogyo Seiyaku Co Ltd Production of granule of drying agent
DE3929712A1 (en) * 1988-04-30 1991-03-14 Felten & Guilleaume Energie Removing traces of moisture from cable - by applying electrochemical mixt. of metal powders in or on material which swells up in water, seals cable, and decomposes water
US5018621A (en) * 1990-04-16 1991-05-28 Connell Jr John J O Cylindrical container and dispenser for spherical objects
EP0454967A2 (en) * 1990-04-28 1991-11-06 GAPLAST GmbH Plastic container and container closure, especially for medicine and luxury foods
WO1992000889A1 (en) * 1990-07-13 1992-01-23 J.G. Finneran Associates Sealed snap top cap
EP0577276A2 (en) * 1992-06-30 1994-01-05 Dow Corning Corporation High strength elastomeric desiccant
US5288560A (en) * 1991-01-30 1994-02-22 Daikyo Gomu Seiko, Ltd. Laminated sanitary rubber article
EP0599690A1 (en) * 1992-11-20 1994-06-01 Airsec Industries, S.A. Polymers based dehydrating materials
JPH0768125A (en) * 1993-09-02 1995-03-14 Mitsui Petrochem Ind Ltd Solid drying agent
US5433330A (en) * 1992-08-07 1995-07-18 The West Company, Incorporated Needleless access stopper

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812231A (en) * 1955-09-26 1957-11-05 Jacob L Zar Container assembly and method
JO984B1 (en) * 1977-10-11 1979-12-01 بيتشام غروب ليمتد K-clavulanate/tri hydrate formulations
NZ198241A (en) * 1980-09-27 1983-12-16 Beecham Group Ltd Tablet containing amoxycillin and potassium clavulanate
JP2636036B2 (en) * 1989-03-06 1997-07-30 花王株式会社 Method and apparatus for continuous granulation of high-density detergent particles
US5114003A (en) * 1991-03-28 1992-05-19 E. I. Du Pont De Nemours And Company Tablet vial with desiccant in bottom
GB9405249D0 (en) * 1994-03-17 1994-04-27 Smithkline Beecham Plc Container
KR100487466B1 (en) * 1994-08-05 2005-05-06 웨스트 파마슈티칼 서비시즈 콘월 리미티드 Container for Moisture-Sensitive Material

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1509916A (en) * 1924-09-30 of springville
US2160607A (en) * 1935-07-01 1939-05-30 Shell Dev Extraction process
US2173046A (en) * 1938-10-15 1939-09-12 Harry T Smith Saltcellar
US2783908A (en) * 1953-02-13 1957-03-05 Glaxo Lab Ltd Closures for bottles, vials and the like
US2848130A (en) * 1953-10-07 1958-08-19 Duo Vent Vacuum Closure Compan Pressure resistant closures
US3081137A (en) * 1960-06-20 1963-03-12 George B Kolokythas Absorbent storage insert for container cap
US3254784A (en) * 1963-05-10 1966-06-07 Lancesseur Francois Dehydrating stopper
GB1408981A (en) * 1973-04-16 1975-10-08 Monsanto Ltd Polymer composition
US3918578A (en) * 1974-04-01 1975-11-11 Multiform Desiccant Products I Desiccant end cap
US4146277A (en) * 1978-06-29 1979-03-27 Santoro Dario S Desiccant cap
GB2106084A (en) * 1981-08-24 1983-04-07 Daikyo Gomu Seiko Kk Pierceable closure member for container
US4485204A (en) * 1981-08-26 1984-11-27 Phillips Petroleum Company Polyester blends comprising a desiccant and a rubbery block copolymer
US4547536A (en) * 1981-08-26 1985-10-15 Phillips Petroleum Company Polyester blends containing a metal oxide desiccant
US4350508A (en) * 1981-12-21 1982-09-21 Santoro Dario S Desiccant cap
DE3236570A1 (en) * 1982-10-02 1984-04-05 Hans-Erich 7595 Sasbachwalden Gubela Foam plastic mouldings containing open cells, in particular made from phenolic resin
EP0131147A1 (en) * 1983-06-10 1985-01-16 Beecham Group Plc Crystalline amoxycillin salt
GB2181440A (en) * 1985-09-04 1987-04-23 Ceskoslovenska Akademie Ved Hydrophilic copolymer suitable for contact lenses
JPS63105064A (en) * 1986-10-22 1988-05-10 Nippon Synthetic Chem Ind Co Ltd:The Resin composition having high water absorption property
US4834234A (en) * 1987-05-13 1989-05-30 Boehringer Mannheim Gmbh Container for test strips
JPS6433158A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
US4898580A (en) * 1987-10-06 1990-02-06 Beecham Group P.L.C. Syringe for a liquid pharmaceutical composition
EP0311324A2 (en) * 1987-10-06 1989-04-12 Beecham Group Plc Device
US4840280A (en) * 1988-01-28 1989-06-20 American Air Liquide Sealing cap for liquid food or beverage containers
DE3929712A1 (en) * 1988-04-30 1991-03-14 Felten & Guilleaume Energie Removing traces of moisture from cable - by applying electrochemical mixt. of metal powders in or on material which swells up in water, seals cable, and decomposes water
DE3814764A1 (en) * 1988-04-30 1989-11-09 Felten & Guilleaume Energie Desiccant for removing the last residues of water from a sealed manufactured product, in particular an electrical appliance
JPH02237617A (en) * 1989-03-08 1990-09-20 Dai Ichi Kogyo Seiyaku Co Ltd Production of granule of drying agent
US5018621A (en) * 1990-04-16 1991-05-28 Connell Jr John J O Cylindrical container and dispenser for spherical objects
EP0454967A2 (en) * 1990-04-28 1991-11-06 GAPLAST GmbH Plastic container and container closure, especially for medicine and luxury foods
WO1992000889A1 (en) * 1990-07-13 1992-01-23 J.G. Finneran Associates Sealed snap top cap
US5288560A (en) * 1991-01-30 1994-02-22 Daikyo Gomu Seiko, Ltd. Laminated sanitary rubber article
EP0577276A2 (en) * 1992-06-30 1994-01-05 Dow Corning Corporation High strength elastomeric desiccant
US5433330A (en) * 1992-08-07 1995-07-18 The West Company, Incorporated Needleless access stopper
EP0599690A1 (en) * 1992-11-20 1994-06-01 Airsec Industries, S.A. Polymers based dehydrating materials
JPH0768125A (en) * 1993-09-02 1995-03-14 Mitsui Petrochem Ind Ltd Solid drying agent

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Data base WPI, Week 9044, Derwnt Publications Ltd., London, GB; AN 90 331338 & JP,A,02 237 617 (Daiichi Kogyo Seiyaku), Sep. 20, 1990 (Abstract). *
Data base WPI, Week 9044, Derwnt Publications Ltd., London, GB; AN 90-331338 & JP,A,02 237 617 (Daiichi Kogyo Seiyaku), Sep. 20, 1990 (Abstract).
DeGf Azio et al., Lyophilization Closures for Protein Based Drugs, Journal of Parenteral Science and Technology, pp. 54 61, Mar./Apr. 1992. *
DeGf Azio et al., Lyophilization Closures for Protein Based Drugs, Journal of Parenteral Science and Technology, pp. 54-61, Mar./Apr. 1992.

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247604B1 (en) * 1994-03-17 2001-06-19 Smithkline Beecham P.L.C. Desiccant-containing stopper
US20030010668A1 (en) * 1994-08-05 2003-01-16 West Pharmaceutical Services, Inc. Desiccating container for moisture-sensitive material
US20020197300A1 (en) * 1999-02-22 2002-12-26 Schultz Clyde L. Drug delivery system for anti-glaucomatous medication
US20070215152A1 (en) * 1999-12-18 2007-09-20 Meda Pharma Gmbh & Co. Kg Storage system for powdered pharmaceuticals and inhaler equipped with this sytem
US8375940B2 (en) 1999-12-18 2013-02-19 Almirall, S.A. Storage system for powdered pharmaceuticals and inhaler equipped with this system
US8820321B2 (en) 1999-12-18 2014-09-02 Almirall, S.A. Storage system for powdered pharmaceuticals, and inhaler equipped with this system
US6688081B2 (en) 2001-12-18 2004-02-10 Schmalbach-Lubeca Ag Method for reducing headspace gas
US7748525B2 (en) 2001-12-18 2010-07-06 Amcor Limited Closure and container combination for reducing headspace gas
US7954492B2 (en) 2002-01-24 2011-06-07 Almirall, S.A. Pharmaceutical powder cartridge, and inhaler equipped with same
US20060081246A1 (en) * 2002-01-24 2006-04-20 Joachim Goede Pharmaceutical powder cartridge, and inhaler equipped with same
US20030136405A1 (en) * 2002-01-24 2003-07-24 Joachim Goede Pharmaceutical powder cartridge, and inhaler equipped with same
US7258118B2 (en) * 2002-01-24 2007-08-21 Sofotec Gmbh & Co, Kg Pharmaceutical powder cartridge, and inhaler equipped with same
WO2003086900A1 (en) * 2002-04-11 2003-10-23 Csp Technologies Inc. Desiccant vial assembly for effervescent tablets
US7413083B2 (en) * 2002-04-11 2008-08-19 Csp Technologies, Inc. Desiccant vial assembly for effervescent tablets
US20040131805A1 (en) * 2002-06-20 2004-07-08 Merical Rick L. Films having a desiccant material incorporated therein and methods of use and manufacture
US20030235664A1 (en) * 2002-06-20 2003-12-25 Rick Merical Films having a desiccant material incorporated therein and methods of use and manufacture
US20070084735A1 (en) * 2003-07-29 2007-04-19 Dider Lancesseur Tight dessicative container for packaging products which are sensitive to a moist environment
US20060115383A1 (en) * 2003-09-16 2006-06-01 Vici Gig Harbor Group, Inc. Flow through well plate surface sorption extarction
US20070003441A1 (en) * 2003-09-16 2007-01-04 Wohleb Robert H Coated closure for performing direct vial surface sorbent microextraction
EP1671099A2 (en) * 2003-09-16 2006-06-21 Vici Gig Harbor Group, Inc. Coated closure for performing direct vial surface sorbent microextraction
US20060115384A1 (en) * 2003-09-16 2006-06-01 Vici Gig Harbor Group, Inc. Pipette tip surface sorption extraction
US7087437B2 (en) * 2003-09-16 2006-08-08 Vici Gig Harbor Group, Inc. Direct vial surface sorbent micro extraction device and method
EP1671099A4 (en) * 2003-09-16 2008-04-23 Vici Gig Harbour Group Inc Coated closure for performing direct vial surface sorbent microextraction
US20060110295A1 (en) * 2003-09-16 2006-05-25 Vici Gig Harbor Group, Inc. Closed well plate surface sorption extraction
US8192692B2 (en) 2003-09-16 2012-06-05 Vici Gig Harbor Group, Inc. Coated chromatograph injection port liner for performing surface sorbent
US20050059162A1 (en) * 2003-09-16 2005-03-17 Wohleb Robert H. Direct vial surface sorbent micro extraction device and method
US20060286677A1 (en) * 2003-09-16 2006-12-21 Wohleb Robert H Coated chromatograph injection port liner for performing surface sorbent
US8365932B2 (en) 2003-12-19 2013-02-05 Airsec S.A. Device for the leak-tight sealing of packaging containers for sensitive products
US20070272646A1 (en) * 2003-12-19 2007-11-29 Didier Lancesseur Device For The Leak-Tight Sealing Of Packaging Containers For Sensitive Products
WO2006040019A1 (en) * 2004-10-08 2006-04-20 Friedrich Sanner Gmbh & Co. Kg Device for dispensing containers
US7475773B2 (en) 2005-02-01 2009-01-13 Airsec S.A.S. Container for moisture-sensitive goods
US20090176755A1 (en) * 2005-12-07 2009-07-09 Herwig Jennewein Pharmaceutical compositions comprising an antibiotic
US20070151884A1 (en) * 2005-12-23 2007-07-05 Bruno Thoes Outer packaging system for medical consumables
US7975842B2 (en) * 2005-12-23 2011-07-12 Roche Diagnostics Operations, Inc. Outer packaging system for medical consumables
US20080300569A1 (en) * 2006-02-17 2008-12-04 Gruenenthal Gmbh Storage-Stable Oral Dosage Form of Amoxicillin and Clavulanic Acid
US20070246468A1 (en) * 2006-04-17 2007-10-25 West Pharmaceutical Services, Inc. Cryogenic, elastomeric closure for cryogen containers
US8092878B2 (en) * 2006-04-17 2012-01-10 West Pharmaceutical Services, Inc. Cryogenic, elastomeric closure for cryogen containers
US20100065444A1 (en) * 2007-01-20 2010-03-18 Stefan Henke Pack containing soft capsules
US11235294B2 (en) 2007-06-21 2022-02-01 Gen-Probe Incorporated System and method of using multi-chambered receptacles
US8221705B2 (en) 2007-06-21 2012-07-17 Gen-Probe, Incorporated Receptacles for storing substances in different physical states
US10688458B2 (en) 2007-06-21 2020-06-23 Gen-Probe Incorporated System and method of using multi-chambered receptacles
US11235295B2 (en) 2007-06-21 2022-02-01 Gen-Probe Incorporated System and method of using multi-chambered receptacles
US10744469B2 (en) 2007-06-21 2020-08-18 Gen-Probe Incorporated Multi-chambered receptacles
US20110000930A1 (en) * 2007-11-16 2011-01-06 Airsec S.A.S. Container
US8783485B2 (en) 2007-11-16 2014-07-22 Clariant Production (France) S.A.S. Container
US20110127269A1 (en) * 2008-05-15 2011-06-02 Michael Bucholtz Vial with non-round seal
US10232986B2 (en) 2008-05-15 2019-03-19 Csp Technologies, Inc. Vial with non-round seal
US8360257B2 (en) 2008-10-24 2013-01-29 Airsec S.A.S. Screw cap, container body and container
US20100102020A1 (en) * 2008-10-24 2010-04-29 Airsec Screw cap, container body and container
US20110150704A1 (en) * 2009-12-21 2011-06-23 Abbott Laboratories Container having gas scrubber insert for automated clinical analyzer
US9375714B2 (en) 2009-12-21 2016-06-28 Abbott Laboratories Container having gas scrubber insert for automated clinical analyzer
US20150166219A1 (en) * 2010-01-29 2015-06-18 Integrity Products, Inc. Perforable container cap
US8714353B2 (en) 2010-12-22 2014-05-06 Colgate-Palmolive Company Package of oral care implements and method of using the same
US10111739B2 (en) 2012-03-20 2018-10-30 C.R. Bard, Inc. Method for rehydration of lyophilized biologic materials
US9155606B2 (en) * 2012-03-20 2015-10-13 C. R. Bard, Inc. Method and apparatus for rehydration of lyophilized biologic materials
US9650490B2 (en) 2012-10-25 2017-05-16 Kohler Co. Method of making an engineered composite material and products produced therefrom
US9469745B2 (en) 2012-10-25 2016-10-18 Kohler Co Engineered composite material and products produced therefrom
US10456786B2 (en) 2013-03-12 2019-10-29 Abbott Laboratories Septums and related methods
US11731134B2 (en) 2013-03-12 2023-08-22 Abbott Laboratories Septums and related methods
US11135168B2 (en) * 2017-07-14 2021-10-05 4D Pharma León S.L.U. Process for lyophilising a product
US11648204B2 (en) 2017-07-14 2023-05-16 4D Pharma León S.L.U. Process for lyophilising a product
US11319122B2 (en) * 2019-01-04 2022-05-03 Instrumentation Laboratory Company Container stopper for high pierce count applications
CN114288180A (en) * 2021-12-22 2022-04-08 湖北华强科技股份有限公司 Piston for pen type injector of explosion-proof plug

Also Published As

Publication number Publication date
CA2196673C (en) 2005-07-05
AU3257795A (en) 1996-03-04
KR100487466B1 (en) 2005-05-06
DE69527096D1 (en) 2002-07-18
ATE208333T1 (en) 2001-11-15
DE69523757T2 (en) 2002-08-01
JPH10503739A (en) 1998-04-07
CN1159792A (en) 1997-09-17
NO314624B1 (en) 2003-04-22
ATE219015T1 (en) 2002-06-15
MX9700952A (en) 1997-05-31
NZ291443A (en) 1998-07-28
JP3359305B2 (en) 2002-12-24
EP0937648A2 (en) 1999-08-25
JP2000070333A (en) 2000-03-07
DE69527096T2 (en) 2003-02-06
EP0768980A1 (en) 1997-04-23
ES2178077T3 (en) 2002-12-16
EP0768980B1 (en) 2001-11-07
CZ9700328A3 (en) 2002-10-16
CZ307799A3 (en) 2000-02-16
HU222053B1 (en) 2003-04-28
EP0879772A2 (en) 1998-11-25
CN1075022C (en) 2001-11-21
US20030010668A1 (en) 2003-01-16
NO994184D0 (en) 1999-08-27
AU694548B2 (en) 1998-07-23
KR20040004409A (en) 2004-01-13
ES2171192T3 (en) 2002-09-01
WO1996004189A1 (en) 1996-02-15
NO970502L (en) 1997-04-04
CN1252274A (en) 2000-05-10
PL318455A1 (en) 1997-06-09
HUT76669A (en) 1997-10-28
EP0879772A3 (en) 1999-04-14
JP2005218862A (en) 2005-08-18
DE69523757D1 (en) 2001-12-13
NO970502D0 (en) 1997-02-04
CA2196673A1 (en) 1996-02-15
EP0879772B1 (en) 2002-06-12
EP0937648A3 (en) 2001-01-17
PL179210B1 (en) 2000-08-31
NO994184L (en) 1997-04-04

Similar Documents

Publication Publication Date Title
US5947274A (en) Desiccating container for moisture-sensitive material
US5894949A (en) Container for pharmaceutical substances
EP0764121B1 (en) Package
US5114003A (en) Tablet vial with desiccant in bottom
TWI797108B (en) Container for medical and/or pharmaceutical products, method of manufacturing the same and use of the same
AU694548C (en) Container for moisture-sensitive material
CA2279608C (en) Container for moisture-sensitive material
AU711609B2 (en) Container for moisture-sensitive material
AU705208B2 (en) Composition
WO2000012088A1 (en) Pharmaceutical formulation of sodium amoxycillin and potassium clavulanate
JPS6213627Y2 (en)
CN201782949U (en) Penicillin bottle package with combined cover
CN201823060U (en) Antibiotic bottle package with composite cover

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: WEST PHARMACEUTICAL SERVICES CORNWALL LIMITED, ENG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMITHKLINE BEECHAM P.L.C.;REEL/FRAME:010685/0741

Effective date: 19991104

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12