US20030010668A1 - Desiccating container for moisture-sensitive material - Google Patents

Desiccating container for moisture-sensitive material Download PDF

Info

Publication number
US20030010668A1
US20030010668A1 US10/170,755 US17075502A US2003010668A1 US 20030010668 A1 US20030010668 A1 US 20030010668A1 US 17075502 A US17075502 A US 17075502A US 2003010668 A1 US2003010668 A1 US 2003010668A1
Authority
US
United States
Prior art keywords
container
closure
desiccant
polymer
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/170,755
Inventor
Charles Taskis
Simon Holland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Pharmaceutical Services Inc
Original Assignee
West Pharmaceutical Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9415864A external-priority patent/GB9415864D0/en
Priority claimed from GBGB9512243.8A external-priority patent/GB9512243D0/en
Application filed by West Pharmaceutical Services Inc filed Critical West Pharmaceutical Services Inc
Priority to US10/170,755 priority Critical patent/US20030010668A1/en
Publication of US20030010668A1 publication Critical patent/US20030010668A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/002Closures to be pierced by an extracting-device for the contents and fixed on the container by separate retaining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/28Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials
    • B65D51/30Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials for desiccators

Definitions

  • Such an elastomeric closure is often retained on the mouth opening of the vial by a thin metal circlip. Such puncturable seals enable this operation to be sterile. During storage the presence of atmospheric moisture within the container, or the ingress of atmospheric moisture, can cause decomposition of such materials.
  • An example of a moisture sensitive pharmaceutical substance is clavulanic acid and its salts, such as potassium clavulanate.
  • Potassium clavulanate is both hygroscopic and readily hydrolyzed by water, so for handling and long term storage of potassium clavulanate it is necessary for the immediate environment to be kept extremely dry, e.g., 30% RH or less, preferably 10% RH or less, ideally as low as possible.
  • To obtain and maintain such conditions in a container such as a vial of the type mentioned above requires quite a powerful desiccant ability.
  • Potassium clavulanate is a beta-lactamase inhibitor, and is often provided in a formulation in combination with a partner beta-lactam antibiotic.
  • a partner which is often used in such formulations is amoxycillin.
  • amoxycillin is used in the form of sodium amoxycillin.
  • sodium amoxycillin is a powerful desiccant, and when contained together with potassium clavulanate in a sealed vial such forms of sodium amoxycillin can exert a dehydrating effect which helps to preserve the potassium clavulanate.
  • moisture sensitive pharmaceutical substances particularly potassium clavulanate and formulations containing potassium clavulanate
  • FIGS. 1, 2, and 3 show longitudinal sections through alternative multi-part construction vials and closures of the invention.
  • FIG. 4 shows a sectional view through the closure of FIG. 1 about the line A-A of FIG. 1 looking in the direction of the arrows.
  • FIGS. 5 to 7 demonstrate in graphical format moisture uptake for rubbers compounded with various listed desiccants.
  • FIG. 8 demonstrates a graph of normalized moisture uptake for dried hydrogels (a) to (f) as tested in Example 4.
  • the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material, and incorporating a solid element which is made at least in part of a desiccant polymer and which is in contact with the atmosphere inside the container.
  • the term “desiccant polymer” means a polymer which absorbs water from the surrounding atmosphere to the extent that it can exercise a desiccating effect upon the interior of a space within which it is contained or to the atmosphere within which it is exposed.
  • the desiccating polymer is suitably a polymer from which no or minimal material can be extracted by liquid water, at least during the time period the desiccant polymer is expected to be in contact with liquid water during the making up and subsequent storage of a solution in the container, e.g., during injection of water into a vial and make-up of a medicament for administration by injection.
  • the desiccant polymer is a biocompatible desiccant polymer.
  • the desiccant polymer may be an inherently desiccant polymeric material, such as a hydrophilic polymer.
  • Suitable biocompatible inherently desiccant polymers are the known water-absorbent hydrophilic polymers used for the manufacture of contact lenses, artificial cartilages and other bodily implants etc.
  • Suitable such materials include hydrogel polymers, such as polymers which comprise hydroxy alkyl methacrylates, for example 2-hydroxyethyl methacrylate.
  • desiccant polymer examples include the homologous esters of the glycol monomethacrylate series, such as diethylene glycol monomethacrylate, and tetraethylene glycol monomethacrylate; slightly cross-linked, for example with a dimethacrylate of a glycol; copolymers of the higher glycol monomethacrylates and 2-hydroxyethyl methacrylate; acrylamide hydrogels and 2-hydroxyethyl methacrylate-vinylpyrrolidinone copolymers.
  • Such polymers may be cross-linked for example with ethylene dimethacrylate and/or 1,1,1-trimethylpropane trimethacrylate.
  • Suitable polymers include water-insoluble methacrylates copolymerised with 2-hydroxyethyl methacrylate.
  • Poly (2-hydroxyethyl methacrylate) polymers can for example absorb up to 40% w:w of water.
  • Copolymers of 2-hydroxyethyl methacrylate with a small amount of a dimethacrylate, some methyl or other alkyl methacrylate and some methacrylic acid, which can be converted to their alkali salts, can absorb at least 45% w:w of water.
  • Copolymers of 2-hydroxyethyl methacrylate may for example also be copolymerised with n-pentyl methacrylate, vinyl propionate, vinyl acetate, isobutyl and cyclohexyl methacrylate, to produce a suitable desiccant polymer.
  • Copolymers of 2-hyroxyethyl methacrylate with vinylpyrrolidinones, such as 1-vinyl-2-pyrrolidinone, and which may be cross linked with ethylene glycol dimethacrylate can produce hydrogels with a higher degree of hydration, suitable as desiccant polymers.
  • hydrogel polymers include hydroxyethyl methacrylate N,N-dimethylacrylamide copolymers, hydroxyethyl methacrylate-N-vinyl pyrrolidone copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, N-vinyl pyrrolidone-methyl methacrylate copolymers, methyl methacrylate-acryloyl morpholine copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, methoxyethyl methacrylate-ethoxyethyl methacrylate copolymers, and methoxy methacrylate-acryloyl morpholine copolymers.
  • the desiccant polymer may be a polymer material that includes a desiccant filler, for example as particles thereof dispersed in its bulk.
  • a desiccant polymer is an elastomeric material, such as a rubber, compounded with a desiccant material.
  • the compounding of the elastomeric material with a desiccant material causes the compounded material to exercise a desiccant effect upon the interior of the container.
  • the quantity of the elastomeric material compounded with a desiccant material should be sufficient to ensure absorption of sufficient of the water vapor in the container, or water in the moisture sensitive material contents to prevent or reduce to an acceptable degree any degradation of the material by the water or water vapor.
  • the elastomeric material may be a rubber.
  • a rubber may be a natural rubber, or a synthetic rubber such as a butadiene-based rubber, e.g., based on styrene-butadiene or cis-1,4-polybutadiene, butyl rubber, halobutyl rubber, ethylene-propylene rubber, neoprene, nitrile rubber, polyisoprene, silicone rubber, chlorosulphonated polyethylene or epichlorhydrin elastomer, or a mixture, blend or copolymer thereof.
  • Halobutyl e.g., chlorobutyl, rubbers and silicone rubbers are pharmaceutically acceptable rubbers known for use as materials for stoppers etc. to be maintained in contact with pharmaceutical products.
  • Such elastomeric materials are sufficiently permeable to atmospheric water vapor that the desiccant material compounded with the rubber can exert its desiccant effect through a thin layer of the material.
  • Such rubbers may be compounded in the manner with which they are conventionally compounded for manufacture of a stopper as known in the art of manufacture of rubber stoppers.
  • they may be compounded with reinforcing fillers, coloring agents, preservatives, antioxidants, additives to modify their stiffness, chemical resistance, etc., such as curing/vulcanizing agents.
  • Conventional reinforcing fillers include inorganic reinforcing fillers, such as zinc oxide, and silicas, such as china clay and other clays. Suitable compounding processes and compositions will be apparent to those skilled in the art of compounding of rubbers.
  • the reinforcing filler such as china clay, normally used in the rubber may be totally or preferably partly replaced with a powdered solid desiccating material. Total replacement may lead to a loss of mechanical strength as compared to a rubber using entirely china clay as its filler, although desiccants may be found which can be used as the entire filler without loss of strength.
  • a powdered desiccating material may have a particle size the same as or similar to that of the conventional inorganic fillers referred to above, so that the desiccant can serve as the filler as well.
  • the quantity of the powdered desiccating material used may be up to the quantity in which conventional inorganic fillers are used, that is, they may completely replace the usual inorganic filler.
  • the powdered desiccant may replace up to 50% of the weight of the normal weight of filler used in the rubber, e.g., 10-50%, such as 20-40%.
  • the quantities of filler normally used in a rubber for a particular application such as a vial closure will be known to those skilled in the art.
  • the compounded rubber may also additionally include a conventional filler as mentioned above, for example in a quantity which together with the powdered desiccant comprises up to the weight % of filler normally included in such a rubber.
  • the desiccating material should be one which is inert relative to the elastomeric material, and vice versa.
  • the desiccating material is suitably an inorganic desiccating material which is wholly or substantially insoluble in water so that none or only a pharmaceutically insignificant amount of the desiccant material or its hydration product, or undesirable ions, is likely to enter solution during the period when the desiccating polymer is in contact with water or aqueous medium.
  • Preferred desiccants are those which can chemically or pysicochemically absorb or fix absorbed water, e.g., by formation of a hydration product, so that there is a reduced possibility of subsequent reversible release of the absorbed water, which might for example occur if the temperature of the polymer should rise, e.g., to around 40° C. after earlier desiccation at a lower temperature.
  • Suitable inorganic desiccants are the known materials sold in the UK under the names Grace A3TM, SiliporiteTM, and Ferben 200TM. Particularly preferred desiccant materials are dried molecular sieves and calcium oxide, or mixtures thereof. Calcium oxide chemically fixes water by formation of calcium hydroxide, from which water can only be released at extreme temperatures, and absorbed water can generally only be released from molecular sieves at several hundred °C.; that is, well above the temperatures containers of pharmaceutical substances would be expected to experience under normal storage.
  • a preferred desiccating polymer is therefore a halobutyl, e.g., chlorobutyl, rubber compounded with an inorganic desiccant such as a molecular sieve or calcium oxide.
  • an inorganic desiccant such as a molecular sieve or calcium oxide.
  • the compounded elastomeric material may be made and formed into a solid element by processes analogous to those by which solid products are made from conventional compounded elastomeric materials which include the above-mentioned inorganic fillers are made.
  • the solid element comprises a closure for the container, made wholly or partly of the said desiccating polymer.
  • Parts of such a closure other than the parts made of desiccant polymer which are to come into contact with the atmosphere within the container may be made of generally conventional materials, preferably pharmaceutically acceptable materials, such as plastics materials, elastomeric materials etc., or composite materials such as metal and plastics or elastomeric materials.
  • such parts are made of plastics or elastomeric materials which are of low moisture content, of low moisture permeability and low moisture affinity.
  • parts of the closure which engage the mouth opening are at least partly, more preferably wholly made of an elastomeric material comprising a natural or synthetic rubber (which may be the above-described desiccating rubber), thereby allowing a tight compression fit with the mouth of the vessel.
  • the sealing engagement of the closure with the mouth opening may be by a generally conventional construction, e.g., similar to a conventional stopper.
  • the closure may be engaged with the rim of the neck of a vial by a screw thread, a friction/compression fitting, and/or a circlip-type clamp around the neck of the vial.
  • the closure may seal the mouth in a generally conventional manner, e.g., by a compression fitting of the closure wall against the rim of the mouth, or by a sealing ring compressed between the closure face and the rim of the mouth, etc.
  • the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer.
  • the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel.
  • Such a last-mentioned container may be a vial as mentioned above suitable for a moisture-sensitive pharmaceutical material, of generally conventional construction, the mouth opening being defined by the rim of the neck of the vial.
  • a vial may be made of conventional materials such as glass, rigid plastics materials, etc., but particularly glass.
  • moisture-sensitive substances within the vessel may be protected by the desiccant material, and, in this last-mentioned embodiment, water may be introduced into the vessel by means of a hypodermic needle puncturing the closure face through the puncturable region, so as to dissolve the substance, and the so-formed solution of the substance may be withdrawn via the needle.
  • the puncturable region of the closure wall may suitably comprise a thinned region of the closure wall, and is preferably provided in a region of elastomeric material (which may comprise the desiccating polymer) which can resiliently seal around a hypodermic needle which is inserted therethrough, so as to facilitate sterile insertion and withdrawal.
  • elastomeric material which may comprise the desiccating polymer
  • all the polymeric parts of the closure e.g., of a vial closure and including the puncturable region, may be made of the desiccant polymer, particularly an elastomeric material compounded with a desiccant material.
  • a vial closure may correspond in shape and size to conventional vial closures made of elastomeric material, and may be retained on the mouth of the vial by a conventional metal circlip.
  • Elastomeric materials compounded with a desiccant material may be molded into such shapes and sizes by a molding process entirely analogous to that used to mould closures out of conventional elastomeric materials such as rubbers.
  • closure may be of multi-part construction having only parts, including those parts which are exposed to the interior of the container body, made of the desiccant polymer.
  • the distribution of the desiccant polymer may be such that the desiccant polymer is located on only part of the closure wall, so that for example the puncturable region may be situated between areas of the closure wall on which is the desiccant polymer, or to one side of such an area, thereby facilitating the construction of the puncturable region as a thinned region of the closure face.
  • Such a multi-part construction includes the possibility that the closure may be integrally made of a co-molded, or fused together, desiccating polymer and an elastomeric or plastics material making up parts of the structure of the closure.
  • the desiccating polymer may be provided as a separate part, retained by the closure on a suitable inward surface, e.g., in an inwardly facing holder or cavity.
  • the desiccant polymer may be in the form of a ring shape on the closure wall of a closure, with the puncturable region within, e.g., near or at the center of, the ring.
  • a ring shape may for example be circular, polygonal, or oval etc.
  • Such a ring-shape of desiccant polymer may be located in a corresponding ring-shaped or cylindrical holder in the closure wall.
  • a holder may suitably be in the form of two generally concentric walls extending inwardly from the closure wall, the space between the walls defining the ring-shaped cavity, and the central space within the inner wall defining a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted.
  • Such a holder may be formed integrally with the closure wall, or may be separate part of the closure.
  • both the walls may be integral with the closure wall, so that the closure wall forms the base of the cavity and of the central passage.
  • the base wall of the central passage includes the puncturable region.
  • such a ring-shape of desiccant polymer may be located in a ring-shaped or cylindrical cavity in the closure wall, suitably in its inward face, the cavity opening into the interior of the container when the closure is in place on the vessel, and the central opening in the ring shape of desiccating polymer may define a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted.
  • the ring shape of desiccant polymer may be located adjacent to the inner face of the closure wall.
  • the desiccant polymer may be simply physically attached to the closure, e.g., by cooperating parts such as projections and sockets, or simply be held in place by the inherent resilience of other parts of the closure, particularly when this is made of an elastomeric or other resilient material such as a plastics material, alternatively the desiccant polymer may be bonded to the closure e.g., by adhesives or fusion together etc.
  • a closure for the container may be in the form of a conventional screw cap (optionally provided with tamper evident or child resistant features) or other form of closure (e.g., cam action closure, snap-fit closure) which relies on a compression fit on the lip of the mouth of the container, and having an insert made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material, in the form of a disc or ring washer or inward facing coating layer which forms a compression seal between the lip of the mouth of the container and the closure as the container closure is tightened down, e.g., by a screw action.
  • a conventional screw cap optionally provided with tamper evident or child resistant features
  • other form of closure e.g., cam action closure, snap-fit closure
  • a closure for the container e.g., a bottle or jar of glass or plastics material, or a metal canister or keg
  • a closure for the container may be a screw/interference/friction/compression fit insertable bung or other insertable stopper of its surface exposed to the interior of the container made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material.
  • the container may comprise a syringe barrel, with a plunger having at least part of its surface exposed to the interior of the container made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material.
  • a plunger having at least part of its surface exposed to the interior of the container made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material.
  • the entire plunger may be made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material.
  • the said desiccant polymer e.g., an elastomeric material compounded with a desiccant material may be included in other forms into the container of the invention, for example as a removable resilient element such as a pad, wad, leaf, helix, coil or spiral spring which may be included in the headspace above the contents of a container and which exerts a restraining action on the contents, such a tablets, pills, capsules, etc. to prevent the contents rattling about in the container.
  • a removable resilient element such as a pad, wad, leaf, helix, coil or spiral spring which may be included in the headspace above the contents of a container and which exerts a restraining action on the contents, such a tablets, pills, capsules, etc. to prevent the contents rattling about in the container.
  • Such an element may be made as part of the container closure.
  • the said desiccant polymer e.g., an elastomeric material compounded with a desiccant material may be made in the form of a pad, e.g., a flat disc to be retained at the bottom of a container, e.g., beneath tablet, pill or capsule contents.
  • the nature and quantity of desiccant polymer used in the container of the invention will vary with the nature of the moisture sensitive contents, and can easily be determined by straightforward experimentation or calculation, e.g., from the moisture content of the contents of the vessel.
  • potassium clavulanate at the usual quantities in which it is supplied mixed with sodium amoxycillin in vials, typically of a capacity 10-20 ml, for reconstitution for an injectable formulation, e.g., 100-200 mg potassium clavulanate mixed respectively with 500-1000 mg sodium amoxycillin (expressed as the parent free acid equivalent weight) the desiccant polymer should scavenge 5-8 milligrams of water with a residual RH of less than 10% throughout a two year storage period.
  • Preferred desiccating polymers for use with formulations containing potassium clavulanate are able to take up atmospheric moisture at 30% RH or less, preferably at 10% RH or less.
  • Preferred desiccating polymers exercise such a desiccant function for a long period, ideally throughout the shelf life, typically two years, of such a formulation.
  • Preferred desiccant polymers should also be capable of being sterilized without loss of their desiccant ability at these low RH values.
  • desiccant polymer vial closures are ideally sterilized by washing prior to use, without loss of their desiccant ability.
  • desiccant rubbers such as halobutyl, e.g., chlorobutyl, rubber compounded with calcium oxide or molecular sieves are capable of being washed without deleterious effect on their desiccant ability.
  • the container of the invention is particularly suitable for the containment of moisture-sensitive pharmaceutical substances such as a formulation of potassium clavulanate and sodium amoxycillin, particularly crystalline sodium amoxycillin e.g., as disclosed in EP 0131147.
  • the invention therefore further provides a container as described above, containing a mixture which comprises potassium clavulanate and sodium amoxycillin.
  • compositions which may usefully be contained in the container of the invention include lyophilized substances, for example those often employed in diagnostic assay kits.
  • closure of the invention independent of the vessel, is also believed to be novel, and therefore the invention further provides a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall, the inwardly facing region of the closure wall comprising or having thereon a desiccant polymer.
  • such a closure may be a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel, and having on an inwardly facing region of the closure wall a desiccant polymer.
  • Suitable and preferred forms of the closure are as described above.
  • the present invention also provides a method of desiccating a moisture sensitive material, which comprises enclosing the said material in a container and maintaining a desiccant polymer in contact with the atmosphere inside the container.
  • This method may be a method of long-term storage and/or protection against hydrolysis during storage.
  • the moisture sensitive material may be potassium clavulanate or its coformulations with sodium amoxycillin.
  • This method is suitable for use with lyophilized, freeze dried, materials. Normally lyophilized materials are desiccated by an intense drying process before vials containing them are sealed, and this method of the invention provides the advantage that less intense drying processes may be used, and the desiccant polymer can thereafter complete the dehydration process whilst in the sealed vial.
  • FIGS. 1, 2 and 3 longitudinal sections through alternative multi-part construction vials and closures of the invention.
  • FIG. 4 a sectional view through the closure of FIG. 1 about the line A-A of FIG. 1 looking in the direction of the arrows.
  • FIGS. 5 - 7 graphs showing moisture uptake for rubbers compounded with various listed desiccants.
  • FIG. 8 a graph of normalized moisture uptake for dried hydrogels (a) to (f) tested in example 4.
  • a glass vial ( 1 ) has a mouth opening ( 2 ) defined by the rim of an inwardly extending neck ( 3 ).
  • a closure ( 4 generally) integrally made of a synthetic rubber material, and which comprises a closure wall ( 5 ) which sealingly engages the rim of the mouth opening ( 2 ).
  • a thinned puncturable region ( 6 ) Centrally located in the closure wall ( 5 ) is a thinned puncturable region ( 6 ).
  • an integral holder ( 7 ) in the form of two concentric walls ( 7 A, 7 B) the outer of which ( 7 A) forms a neck plug which sealingly engages the neck ( 3 ) with a compression fit.
  • the inner wall ( 7 B) defines a central space ( 8 ) with the puncturable region ( 6 ) at its outer end.
  • a hypodermic needle ( 9 ) may be inserted through the puncturable region ( 6 ) and passed along the passage into the vial defined by the space ( 8 ).
  • a ring-shaped cavity ( 10 ) which contains a desiccant polymer ( 11 ) in the form of a ring with a central opening.
  • the ring ( 11 ) is retained in place in the cavity ( 10 ) by the inherent resilience of the closure material.
  • FIG. 2 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered.
  • the desiccant polymer is in the form of a ring ( 12 ) which is bonded to the inner face ( 13 ) of the closure wall ( 5 ) where this extends inwardly into the interior of the vial ( 1 ) in the form of a neck plug ( 14 ), with its central opening in communication with the central space ( 8 ) of the closure.
  • the neck plug ( 14 ) sealingly engages the neck ( 3 ) with a compression fit
  • FIG. 3 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered.
  • the desiccant polymer is in the form of a ring ( 15 ) with a central opening ( 16 ).
  • the ring ( 15 ) fits into a central cavity ( 17 ) in the closure wall ( 5 ) where this extends inwardly into the interior of the vial ( 1 ) to form a neck plug ( 18 ) and is held there in place by the resilience of the material of the closure ( 4 ).
  • the central opening ( 16 ) in the ring ( 15 ) defines a passage having the puncturable region ( 6 ) at its outer end.
  • the neck plug ( 18 ) sealingly engages the neck ( 3 ) with a compression fit.
  • the closure wall ( 5 ) may be fastened tightly against the rim of the neck ( 3 ) by means of a circlip (not shown).
  • a holder for the desiccant polymer ( 11 ) may be made as a separate part in the form of two walls analogous in shape to walls ( 7 A, 7 B) with a cavity ( 10 ) and desiccant polymer ( 11 ) between them, and with a base wall.
  • the desiccant polymer is a hydrogel polymer shrinkage may occur on drying which may affect the retention of the polymer on a rubber closure, and steps, e.g., a suitable construction of holder, which will be apparent to those skilled in the art, might be necessary to overcome this.
  • the hypodermic needle ( 9 ) is inserted through the puncturable region ( 6 ), and along the passage ( 8 ), into the vicinity of the contents ( 13 ) of the vial ( 1 ), a dry mixture of potassium clavulanate and anhydrous crystalline sodium amoxycillin. Sterile water is injected down the needle ( 9 ) to dissolve the contents ( 13 ), and the vial may be shaken to encourage dissolution. The solution may then be withdrawn through the needle ( 9 ) into a syringe (not shown) for subsequent use.
  • the molecular sieve was dried using a standard process for drying the molecular sieve.
  • a moisture sensitive pharmaceutical formulation being 500 mg crystalline sodium amoxycillin prepared as described in EP 0131147 coformulated with 100 mg of potassium clavulanate was filled into the vial under conditions of less than 30% RH and the vial was sealed with the stopper as conventional, with the stopper being retained on the vial using a conventional thin metal cover.
  • FIG. 5 shows the moisture uptake (normalized data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated.
  • Grace A3TM, SiliporiteTM, and Ferben 200TM are commercially available powdered desiccants, sold under these trade names, and were pre-dried according to the standard procedures for these desiccants.
  • Grace A3TM and SiliporiteTM are types of molecular sieve powder obtainable from W R Grace Ltd. Northdale House, North Circular Road, London NW10 7UH, GB.
  • the graph relates to the desiccant fillers:
  • FIG. 6 shows the moisture uptake (normalized data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant, after the rubber has been tote washed.
  • the graph relates to the desiccant fillers:
  • FIG. 7 shows the moisture uptake (normalized data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated, before and after the rubber has been tote washed.
  • the graph relates to the desiccant fillers:
  • Samples (a)-(f) of known hydrogels as tabulated below were obtained in a hydrated state and were activated by heating to ca. 120° C. under vacuum for a minimum of 3 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Packages (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Drying Of Solid Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Drying Of Gases (AREA)

Abstract

The present invention is to a container, particularly for moisture sensitive materials, having a container body of a substantially atmospheric moisture-impermeable material and incorporating a solid element which is made at least in part of a desiccating polymer and which is in contact with the atmosphere inside the container.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/245,684, filed Feb. 8, 1999, which is in turn a continuation of U.S. patent application Ser. No. 08/776,807, filed Feb. 20, 1997, now U.S. Pat. No. 5,947,274, issued Sep. 7, 1999, the contents of each of which are incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • It is frequently necessary to store moisture sensitive materials for relatively long periods in containers. In a particular example, certain pharmaceutical substances are supplied and/or stored in small vials containing one or more unit doses of the dry substance. Such vials are normally sealed with an elastomeric closure including a closure wall across the mouth, and having a puncturable region such as a thin part of the closure wall through which a hypodermic needle may be inserted. By means of such a needle water or other suitable aqueous medium may be injected into the vial, the substance dissolved in situ, and the solution then withdrawn via the needle into a syringe for use in the short term before significant hydrolysis of the moisture sensitive material occurs. Such an elastomeric closure is often retained on the mouth opening of the vial by a thin metal circlip. Such puncturable seals enable this operation to be sterile. During storage the presence of atmospheric moisture within the container, or the ingress of atmospheric moisture, can cause decomposition of such materials. [0002]
  • Often moisture sensitive pharmaceutical substances are provided in containers together with an internal desiccant in the container, for example a small sachet of molecular sieve or silica gel. Clearly this is not practical when the substance has to be made up in situ within the container as described above, as contamination by desiccant on dissolution of the substance is likely. [0003]
  • It is known to compound polymeric materials with desiccants for various applications, but mostly as moisture absorbing spacers for multiple glazing panels. For example U.S. Pat. No. 4,485,204 and U.S. Pat. No. 4,547,536 disclose blends of polyester or polyester plus a butadiene polymer, plus a desiccant such as calcium oxide. European Patent 0599690 discloses a blend of a polymer such as styrene butadiene rubber, plus molecular sieve, plus also a fibrous material. European Patent 0599690 suggests the general possibility of use of such a polymer for drying of moisture sensitive pharmaceuticals, giving results for moisture absorption at 80% relative humidity (“RH”). [0004]
  • An example of a moisture sensitive pharmaceutical substance is clavulanic acid and its salts, such as potassium clavulanate. Potassium clavulanate is both hygroscopic and readily hydrolyzed by water, so for handling and long term storage of potassium clavulanate it is necessary for the immediate environment to be kept extremely dry, e.g., 30% RH or less, preferably 10% RH or less, ideally as low as possible. To obtain and maintain such conditions in a container such as a vial of the type mentioned above requires quite a powerful desiccant ability. [0005]
  • Potassium clavulanate is a beta-lactamase inhibitor, and is often provided in a formulation in combination with a partner beta-lactam antibiotic. A partner which is often used in such formulations is amoxycillin. For injectable formulations, amoxycillin is used in the form of sodium amoxycillin. In some forms sodium amoxycillin is a powerful desiccant, and when contained together with potassium clavulanate in a sealed vial such forms of sodium amoxycillin can exert a dehydrating effect which helps to preserve the potassium clavulanate. Other forms of sodium amoxycillin, such as the anhydrous crystalline form disclosed in EP 0131147 are less desiccating, and, although it would be desirable to use such forms in formulations together with potassium clavulanate, the problem arises that these forms can be insufficiently desiccating to protect the potassium clavulanate from hydrolysis, resulting from traces of moisture in the vial. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • It is an object of this invention to provide a container having an internal desiccant which inter alia is suitable for use with moisture sensitive pharmaceutical substances, particularly potassium clavulanate and formulations containing potassium clavulanate, and allows sterile dissolution without the problem of contamination by desiccant. Other objects and advantages of the invention will be apparent from the following description. [0007]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. [0008]
  • In the drawings: [0009]
  • FIGS. 1, 2, and [0010] 3 show longitudinal sections through alternative multi-part construction vials and closures of the invention.
  • FIG. 4 shows a sectional view through the closure of FIG. 1 about the line A-A of FIG. 1 looking in the direction of the arrows. [0011]
  • FIGS. [0012] 5 to 7 demonstrate in graphical format moisture uptake for rubbers compounded with various listed desiccants.
  • FIG. 8 demonstrates a graph of normalized moisture uptake for dried hydrogels (a) to (f) as tested in Example 4.[0013]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material, and incorporating a solid element which is made at least in part of a desiccant polymer and which is in contact with the atmosphere inside the container. [0014]
  • The term “inwardly” used herein refers to directions toward the interior of the vessel unless otherwise defined. [0015]
  • The term “desiccant polymer” means a polymer which absorbs water from the surrounding atmosphere to the extent that it can exercise a desiccating effect upon the interior of a space within which it is contained or to the atmosphere within which it is exposed. [0016]
  • The desiccating polymer is suitably a polymer from which no or minimal material can be extracted by liquid water, at least during the time period the desiccant polymer is expected to be in contact with liquid water during the making up and subsequent storage of a solution in the container, e.g., during injection of water into a vial and make-up of a medicament for administration by injection. [0017]
  • Suitably the desiccant polymer is a biocompatible desiccant polymer. [0018]
  • The desiccant polymer may be an inherently desiccant polymeric material, such as a hydrophilic polymer. [0019]
  • Suitable biocompatible inherently desiccant polymers are the known water-absorbent hydrophilic polymers used for the manufacture of contact lenses, artificial cartilages and other bodily implants etc. Suitable such materials include hydrogel polymers, such as polymers which comprise hydroxy alkyl methacrylates, for example 2-hydroxyethyl methacrylate. Other suitable desiccant polymer include the homologous esters of the glycol monomethacrylate series, such as diethylene glycol monomethacrylate, and tetraethylene glycol monomethacrylate; slightly cross-linked, for example with a dimethacrylate of a glycol; copolymers of the higher glycol monomethacrylates and 2-hydroxyethyl methacrylate; acrylamide hydrogels and 2-hydroxyethyl methacrylate-vinylpyrrolidinone copolymers. Such polymers may be cross-linked for example with ethylene dimethacrylate and/or 1,1,1-trimethylpropane trimethacrylate. Other suitable polymers include water-insoluble methacrylates copolymerised with 2-hydroxyethyl methacrylate. Poly (2-hydroxyethyl methacrylate) polymers can for example absorb up to 40% w:w of water. Copolymers of 2-hydroxyethyl methacrylate with a small amount of a dimethacrylate, some methyl or other alkyl methacrylate and some methacrylic acid, which can be converted to their alkali salts, can absorb at least 45% w:w of water. Copolymers of 2-hydroxyethyl methacrylate may for example also be copolymerised with n-pentyl methacrylate, vinyl propionate, vinyl acetate, isobutyl and cyclohexyl methacrylate, to produce a suitable desiccant polymer. Copolymers of 2-hyroxyethyl methacrylate with vinylpyrrolidinones, such as 1-vinyl-2-pyrrolidinone, and which may be cross linked with ethylene glycol dimethacrylate, can produce hydrogels with a higher degree of hydration, suitable as desiccant polymers. Other suitable hydrogel polymers include hydroxyethyl methacrylate N,N-dimethylacrylamide copolymers, hydroxyethyl methacrylate-N-vinyl pyrrolidone copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, N-vinyl pyrrolidone-methyl methacrylate copolymers, methyl methacrylate-acryloyl morpholine copolymers, hydroxyethyl methacrylate-acryloyl morpholine copolymers, methoxyethyl methacrylate-ethoxyethyl methacrylate copolymers, and methoxy methacrylate-acryloyl morpholine copolymers. [0020]
  • Alternatively the desiccant polymer may be a polymer material that includes a desiccant filler, for example as particles thereof dispersed in its bulk. An example of such a desiccant polymer is an elastomeric material, such as a rubber, compounded with a desiccant material. [0021]
  • The compounding of the elastomeric material with a desiccant material causes the compounded material to exercise a desiccant effect upon the interior of the container. The quantity of the elastomeric material compounded with a desiccant material should be sufficient to ensure absorption of sufficient of the water vapor in the container, or water in the moisture sensitive material contents to prevent or reduce to an acceptable degree any degradation of the material by the water or water vapor. [0022]
  • The elastomeric material may be a rubber. Such a rubber may be a natural rubber, or a synthetic rubber such as a butadiene-based rubber, e.g., based on styrene-butadiene or cis-1,4-polybutadiene, butyl rubber, halobutyl rubber, ethylene-propylene rubber, neoprene, nitrile rubber, polyisoprene, silicone rubber, chlorosulphonated polyethylene or epichlorhydrin elastomer, or a mixture, blend or copolymer thereof. Halobutyl, e.g., chlorobutyl, rubbers and silicone rubbers are pharmaceutically acceptable rubbers known for use as materials for stoppers etc. to be maintained in contact with pharmaceutical products. Such elastomeric materials are sufficiently permeable to atmospheric water vapor that the desiccant material compounded with the rubber can exert its desiccant effect through a thin layer of the material. [0023]
  • Such rubbers may be compounded in the manner with which they are conventionally compounded for manufacture of a stopper as known in the art of manufacture of rubber stoppers. For example they may be compounded with reinforcing fillers, coloring agents, preservatives, antioxidants, additives to modify their stiffness, chemical resistance, etc., such as curing/vulcanizing agents. Conventional reinforcing fillers include inorganic reinforcing fillers, such as zinc oxide, and silicas, such as china clay and other clays. Suitable compounding processes and compositions will be apparent to those skilled in the art of compounding of rubbers. [0024]
  • The reinforcing filler, such as china clay, normally used in the rubber may be totally or preferably partly replaced with a powdered solid desiccating material. Total replacement may lead to a loss of mechanical strength as compared to a rubber using entirely china clay as its filler, although desiccants may be found which can be used as the entire filler without loss of strength. Such a powdered desiccating material may have a particle size the same as or similar to that of the conventional inorganic fillers referred to above, so that the desiccant can serve as the filler as well. The quantity of the powdered desiccating material used may be up to the quantity in which conventional inorganic fillers are used, that is, they may completely replace the usual inorganic filler. For example the powdered desiccant may replace up to 50% of the weight of the normal weight of filler used in the rubber, e.g., 10-50%, such as 20-40%. The quantities of filler normally used in a rubber for a particular application such as a vial closure will be known to those skilled in the art. [0025]
  • The compounded rubber may also additionally include a conventional filler as mentioned above, for example in a quantity which together with the powdered desiccant comprises up to the weight % of filler normally included in such a rubber. [0026]
  • The quantity of desiccant necessary for a particular product contained in the container will depend upon the application but can easily be determined by experiment. [0027]
  • The desiccating material should be one which is inert relative to the elastomeric material, and vice versa. In the case of containers such as vials in which a solution is made up in situ by introduction of water or aqueous medium, the desiccating material is suitably an inorganic desiccating material which is wholly or substantially insoluble in water so that none or only a pharmaceutically insignificant amount of the desiccant material or its hydration product, or undesirable ions, is likely to enter solution during the period when the desiccating polymer is in contact with water or aqueous medium. Preferred desiccants are those which can chemically or pysicochemically absorb or fix absorbed water, e.g., by formation of a hydration product, so that there is a reduced possibility of subsequent reversible release of the absorbed water, which might for example occur if the temperature of the polymer should rise, e.g., to around 40° C. after earlier desiccation at a lower temperature. [0028]
  • Suitable inorganic desiccants are the known materials sold in the UK under the names Grace A3™, Siliporite™, and Ferben 200™. Particularly preferred desiccant materials are dried molecular sieves and calcium oxide, or mixtures thereof. Calcium oxide chemically fixes water by formation of calcium hydroxide, from which water can only be released at extreme temperatures, and absorbed water can generally only be released from molecular sieves at several hundred °C.; that is, well above the temperatures containers of pharmaceutical substances would be expected to experience under normal storage. [0029]
  • A preferred desiccating polymer is therefore a halobutyl, e.g., chlorobutyl, rubber compounded with an inorganic desiccant such as a molecular sieve or calcium oxide. [0030]
  • The compounded elastomeric material may be made and formed into a solid element by processes analogous to those by which solid products are made from conventional compounded elastomeric materials which include the above-mentioned inorganic fillers are made. [0031]
  • In one embodiment of this invention, the solid element comprises a closure for the container, made wholly or partly of the said desiccating polymer. Parts of such a closure other than the parts made of desiccant polymer which are to come into contact with the atmosphere within the container may be made of generally conventional materials, preferably pharmaceutically acceptable materials, such as plastics materials, elastomeric materials etc., or composite materials such as metal and plastics or elastomeric materials. Preferably such parts are made of plastics or elastomeric materials which are of low moisture content, of low moisture permeability and low moisture affinity. [0032]
  • Preferably parts of the closure which engage the mouth opening are at least partly, more preferably wholly made of an elastomeric material comprising a natural or synthetic rubber (which may be the above-described desiccating rubber), thereby allowing a tight compression fit with the mouth of the vessel. The sealing engagement of the closure with the mouth opening may be by a generally conventional construction, e.g., similar to a conventional stopper. For example the closure may be engaged with the rim of the neck of a vial by a screw thread, a friction/compression fitting, and/or a circlip-type clamp around the neck of the vial. Such constructions are known in the art. The closure may seal the mouth in a generally conventional manner, e.g., by a compression fitting of the closure wall against the rim of the mouth, or by a sealing ring compressed between the closure face and the rim of the mouth, etc. [0033]
  • In one embodiment the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer. [0034]
  • In another embodiment the present invention provides a container for a moisture sensitive material, having a container body of a substantially atmospheric moisture-impermeable material and having an opening sealed by a closure, characterized in that at least part of the closure which is exposed to the interior of the container body is made of a desiccant polymer, which is suitably an elastomeric material compounded with a desiccant material or a hydrophilic polymer, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel. [0035]
  • Such a last-mentioned container may be a vial as mentioned above suitable for a moisture-sensitive pharmaceutical material, of generally conventional construction, the mouth opening being defined by the rim of the neck of the vial. Such a vial may be made of conventional materials such as glass, rigid plastics materials, etc., but particularly glass. By means of the invention, moisture-sensitive substances within the vessel may be protected by the desiccant material, and, in this last-mentioned embodiment, water may be introduced into the vessel by means of a hypodermic needle puncturing the closure face through the puncturable region, so as to dissolve the substance, and the so-formed solution of the substance may be withdrawn via the needle. [0036]
  • The puncturable region of the closure wall may suitably comprise a thinned region of the closure wall, and is preferably provided in a region of elastomeric material (which may comprise the desiccating polymer) which can resiliently seal around a hypodermic needle which is inserted therethrough, so as to facilitate sterile insertion and withdrawal. [0037]
  • Conveniently all the polymeric parts of the closure, e.g., of a vial closure and including the puncturable region, may be made of the desiccant polymer, particularly an elastomeric material compounded with a desiccant material. Such a vial closure may correspond in shape and size to conventional vial closures made of elastomeric material, and may be retained on the mouth of the vial by a conventional metal circlip. Elastomeric materials compounded with a desiccant material may be molded into such shapes and sizes by a molding process entirely analogous to that used to mould closures out of conventional elastomeric materials such as rubbers. [0038]
  • Alternatively the closure may be of multi-part construction having only parts, including those parts which are exposed to the interior of the container body, made of the desiccant polymer. [0039]
  • The distribution of the desiccant polymer may be such that the desiccant polymer is located on only part of the closure wall, so that for example the puncturable region may be situated between areas of the closure wall on which is the desiccant polymer, or to one side of such an area, thereby facilitating the construction of the puncturable region as a thinned region of the closure face. [0040]
  • Such a multi-part construction includes the possibility that the closure may be integrally made of a co-molded, or fused together, desiccating polymer and an elastomeric or plastics material making up parts of the structure of the closure. Alternatively the desiccating polymer may be provided as a separate part, retained by the closure on a suitable inward surface, e.g., in an inwardly facing holder or cavity. [0041]
  • In one embodiment a multi-part construction of closure of the invention, the desiccant polymer may be in the form of a ring shape on the closure wall of a closure, with the puncturable region within, e.g., near or at the center of, the ring. Such a ring shape may for example be circular, polygonal, or oval etc. [0042]
  • Such a ring-shape of desiccant polymer may be located in a corresponding ring-shaped or cylindrical holder in the closure wall. Such a holder may suitably be in the form of two generally concentric walls extending inwardly from the closure wall, the space between the walls defining the ring-shaped cavity, and the central space within the inner wall defining a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted. Such a holder may be formed integrally with the closure wall, or may be separate part of the closure. Suitably both the walls may be integral with the closure wall, so that the closure wall forms the base of the cavity and of the central passage. Suitably, in such a construction, the base wall of the central passage includes the puncturable region. [0043]
  • Alternatively such a ring-shape of desiccant polymer may be located in a ring-shaped or cylindrical cavity in the closure wall, suitably in its inward face, the cavity opening into the interior of the container when the closure is in place on the vessel, and the central opening in the ring shape of desiccating polymer may define a central passage in direct communication with the puncturable region, down which a hypodermic needle may be inserted. [0044]
  • Alternatively the ring shape of desiccant polymer may be located adjacent to the inner face of the closure wall. [0045]
  • The desiccant polymer may be simply physically attached to the closure, e.g., by cooperating parts such as projections and sockets, or simply be held in place by the inherent resilience of other parts of the closure, particularly when this is made of an elastomeric or other resilient material such as a plastics material, alternatively the desiccant polymer may be bonded to the closure e.g., by adhesives or fusion together etc. [0046]
  • Alternatively a closure for the container, e.g., a bottle or jar of glass or plastics material, or a metal canister or keg, may be in the form of a conventional screw cap (optionally provided with tamper evident or child resistant features) or other form of closure (e.g., cam action closure, snap-fit closure) which relies on a compression fit on the lip of the mouth of the container, and having an insert made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material, in the form of a disc or ring washer or inward facing coating layer which forms a compression seal between the lip of the mouth of the container and the closure as the container closure is tightened down, e.g., by a screw action. [0047]
  • Alternatively a closure for the container, e.g., a bottle or jar of glass or plastics material, or a metal canister or keg, may be a screw/interference/friction/compression fit insertable bung or other insertable stopper of its surface exposed to the interior of the container made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material. [0048]
  • Alternatively the container may comprise a syringe barrel, with a plunger having at least part of its surface exposed to the interior of the container made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material. Suitably the entire plunger may be made of the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material. [0049]
  • Alternatively the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material may be included in other forms into the container of the invention, for example as a removable resilient element such as a pad, wad, leaf, helix, coil or spiral spring which may be included in the headspace above the contents of a container and which exerts a restraining action on the contents, such a tablets, pills, capsules, etc. to prevent the contents rattling about in the container. Such an element may be made as part of the container closure. [0050]
  • Alternatively the said desiccant polymer, e.g., an elastomeric material compounded with a desiccant material may be made in the form of a pad, e.g., a flat disc to be retained at the bottom of a container, e.g., beneath tablet, pill or capsule contents. [0051]
  • The nature and quantity of desiccant polymer used in the container of the invention will vary with the nature of the moisture sensitive contents, and can easily be determined by straightforward experimentation or calculation, e.g., from the moisture content of the contents of the vessel. Suitably in the case of the moisture sensitive material potassium clavulanate, at the usual quantities in which it is supplied mixed with sodium amoxycillin in vials, typically of a capacity 10-20 ml, for reconstitution for an injectable formulation, e.g., 100-200 mg potassium clavulanate mixed respectively with 500-1000 mg sodium amoxycillin (expressed as the parent free acid equivalent weight) the desiccant polymer should scavenge 5-8 milligrams of water with a residual RH of less than 10% throughout a two year storage period. [0052]
  • Preferred desiccating polymers for use with formulations containing potassium clavulanate, e.g., its coformulation with sodium amoxycillin, are able to take up atmospheric moisture at 30% RH or less, preferably at 10% RH or less. Preferred desiccating polymers exercise such a desiccant function for a long period, ideally throughout the shelf life, typically two years, of such a formulation. [0053]
  • Preferred desiccant polymers should also be capable of being sterilized without loss of their desiccant ability at these low RH values. For example desiccant polymer vial closures are ideally sterilized by washing prior to use, without loss of their desiccant ability. It is found that desiccant rubbers such as halobutyl, e.g., chlorobutyl, rubber compounded with calcium oxide or molecular sieves are capable of being washed without deleterious effect on their desiccant ability. [0054]
  • The container of the invention is particularly suitable for the containment of moisture-sensitive pharmaceutical substances such as a formulation of potassium clavulanate and sodium amoxycillin, particularly crystalline sodium amoxycillin e.g., as disclosed in EP 0131147. The invention therefore further provides a container as described above, containing a mixture which comprises potassium clavulanate and sodium amoxycillin. [0055]
  • Other pharmaceutical substances which may usefully be contained in the container of the invention include lyophilized substances, for example those often employed in diagnostic assay kits. [0056]
  • The closure of the invention, independent of the vessel, is also believed to be novel, and therefore the invention further provides a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall, the inwardly facing region of the closure wall comprising or having thereon a desiccant polymer. [0057]
  • For example such a closure may be a closure capable of sealing engagement with the mouth opening of a container, the closure comprising a closure wall having a puncturable region therein in direct communication with the interior of the vessel, and having on an inwardly facing region of the closure wall a desiccant polymer. [0058]
  • Suitable and preferred forms of the closure are as described above. [0059]
  • The present invention also provides a method of desiccating a moisture sensitive material, which comprises enclosing the said material in a container and maintaining a desiccant polymer in contact with the atmosphere inside the container. This method may be a method of long-term storage and/or protection against hydrolysis during storage. The moisture sensitive material may be potassium clavulanate or its coformulations with sodium amoxycillin. This method is suitable for use with lyophilized, freeze dried, materials. Normally lyophilized materials are desiccated by an intense drying process before vials containing them are sealed, and this method of the invention provides the advantage that less intense drying processes may be used, and the desiccant polymer can thereafter complete the dehydration process whilst in the sealed vial. [0060]
  • Suitable and preferred forms of the process are as described above. [0061]
  • The invention will now be described by way of example only with reference to the accompanying drawings, which show: [0062]
  • FIGS. 1, 2 and [0063] 3: longitudinal sections through alternative multi-part construction vials and closures of the invention.
  • FIG. 4: a sectional view through the closure of FIG. 1 about the line A-A of FIG. 1 looking in the direction of the arrows. [0064]
  • FIGS. [0065] 5-7: graphs showing moisture uptake for rubbers compounded with various listed desiccants.
  • FIG. 8: a graph of normalized moisture uptake for dried hydrogels (a) to (f) tested in example 4. [0066]
  • Referring to FIGS. [0067] 1 to 4, a glass vial (1) has a mouth opening (2) defined by the rim of an inwardly extending neck (3). In the neck (3) of the vial (1) is a closure (4 generally) integrally made of a synthetic rubber material, and which comprises a closure wall (5) which sealingly engages the rim of the mouth opening (2). Centrally located in the closure wall (5) is a thinned puncturable region (6).
  • Referring specifically to FIG. 1, extending inwardly into the vial ([0068] 1) from the closure wall (5) is an integral holder (7) in the form of two concentric walls (7A, 7B) the outer of which (7A) forms a neck plug which sealingly engages the neck (3) with a compression fit. The inner wall (7B) defines a central space (8) with the puncturable region (6) at its outer end. A hypodermic needle (9) may be inserted through the puncturable region (6) and passed along the passage into the vial defined by the space (8).
  • Between the inner and outer walls ([0069] 7A, 7B) is a ring-shaped cavity (10) which contains a desiccant polymer (11) in the form of a ring with a central opening. The ring (11) is retained in place in the cavity (10) by the inherent resilience of the closure material.
  • Referring specifically to FIG. 2 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered. In the vial of FIG. 2 the desiccant polymer is in the form of a ring ([0070] 12) which is bonded to the inner face (13) of the closure wall (5) where this extends inwardly into the interior of the vial (1) in the form of a neck plug (14), with its central opening in communication with the central space (8) of the closure. The neck plug (14) sealingly engages the neck (3) with a compression fit
  • Referring to FIG. 3 an alternative construction of vial is shown. Parts having a common identity with FIG. 1 are correspondingly numbered. In the vial of FIG. 2 the desiccant polymer is in the form of a ring ([0071] 15) with a central opening (16). The ring (15) fits into a central cavity (17) in the closure wall (5) where this extends inwardly into the interior of the vial (1) to form a neck plug (18) and is held there in place by the resilience of the material of the closure (4). The central opening (16) in the ring (15) defines a passage having the puncturable region (6) at its outer end. The neck plug (18) sealingly engages the neck (3) with a compression fit.
  • The closure wall ([0072] 5) may be fastened tightly against the rim of the neck (3) by means of a circlip (not shown). In another embodiment (not shown) a holder for the desiccant polymer (11) may be made as a separate part in the form of two walls analogous in shape to walls (7A, 7B) with a cavity (10) and desiccant polymer (11) between them, and with a base wall.
  • It should be noted that if the desiccant polymer is a hydrogel polymer shrinkage may occur on drying which may affect the retention of the polymer on a rubber closure, and steps, e.g., a suitable construction of holder, which will be apparent to those skilled in the art, might be necessary to overcome this. [0073]
  • In use, the hypodermic needle ([0074] 9) is inserted through the puncturable region (6), and along the passage (8), into the vicinity of the contents (13) of the vial (1), a dry mixture of potassium clavulanate and anhydrous crystalline sodium amoxycillin. Sterile water is injected down the needle (9) to dissolve the contents (13), and the vial may be shaken to encourage dissolution. The solution may then be withdrawn through the needle (9) into a syringe (not shown) for subsequent use.
  • EXAMPLE 1 Rubbers Compounded with Desiccants
  • A closure for a glass vial of the type conventionally used for the containment made, using a standard known compounded halobutyl rubber formulation, but in which 50% by weight of the conventional china clay filler was replaced with calcium oxide ground to a particle size distribution similar to that of the filler. The shape and size of the closure corresponded to those of a conventional vial closure. The volume of the vial was ca. 10 ml. The molecular sieve was dried using a standard process for drying the molecular sieve. [0075]
  • A moisture sensitive pharmaceutical formulation, being 500 mg crystalline sodium amoxycillin prepared as described in EP 0131147 coformulated with 100 mg of potassium clavulanate was filled into the vial under conditions of less than 30% RH and the vial was sealed with the stopper as conventional, with the stopper being retained on the vial using a conventional thin metal cover. [0076]
  • The vial containing the formulation was stored under ambient and accelerated storage conditions. Color measurements (a known sensitive method of assessing the degree of decomposition of potassium clavulanate) showed a degree of protection of the potassium clavulanate effectively equivalent to that shown using spray-dried sodium amoxycillin having desiccant properties, in a conventionally stoppered vial. [0077]
  • A similar result was achieved when calcium oxide instead of molecular sieve was compounded with the rubber, and when all of the filler was replaced by these desiccants. [0078]
  • EXAMPLE 2 Rubbers Compounded with Desiccants
  • In a further experiment potassium clavulanate was enclosed within an airtight glass vessel, and a piece of halobutyl rubber compounded with calcium oxide as mentioned above in Example 1 was suspended inside the vial on a piece of wire. A control experiment was set up consisting of an identical vessel enclosing the same weight of potassium clavulanate but without the compounded rubber. The decomposition of the potassium clavulanate under the action of traces of moisture in the atmosphere of the vial and in the potassium clavulanate itself, or adsorbed on the inner surface of the vial was monitored. Color measurements showed that decomposition of the potassium clavulanate was significantly retarded in the vessel containing the rubber compounded with the desiccant. [0079]
  • EXAMPLE 3 Rubbers Compounded with Desiccants
  • FIG. 5 shows the moisture uptake (normalized data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated. Grace A3™, Siliporite™, and Ferben 200™ are commercially available powdered desiccants, sold under these trade names, and were pre-dried according to the standard procedures for these desiccants. Grace A3™ and Siliporite™ are types of molecular sieve powder obtainable from W R Grace Ltd. Northdale House, North Circular Road, London NW10 7UH, GB. The graph relates to the desiccant fillers: [0080]
  • (a) Siliporite™[0081]
  • (b) molecular sieve [0082]
  • (c) Grace A3™[0083]
  • (d) Ferben 200™[0084]
  • FIG. 6 shows the moisture uptake (normalized data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation except that 20-40% of the china clay filler normally used has been replaced by the desiccant, after the rubber has been tote washed. The graph relates to the desiccant fillers: [0085]
  • (a) calcium oxide [0086]
  • (b) molecular sieve [0087]
  • (c) Grace A3™[0088]
  • (d) Siliporite™[0089]
  • FIG. 7 shows the moisture uptake (normalized data) in terms of weight % at ca. 10% RH by desiccant polymers which are halobutyl rubbers of standard formulation that 20-40% of the china clay filler normally used has been replaced by the desiccant indicated, before and after the rubber has been tote washed. The graph relates to the desiccant fillers: [0090]
  • (a) molecular sieve—washed [0091]
  • (b) molecular sieve—unwashed [0092]
  • (c) Grace A3™—washed [0093]
  • (d) Grace A3™—unwashed [0094]
  • The data presented in these graphs show that rubber compounded with these desiccants has a desiccant ability even at RH as low as 10% RH, and this desiccant ability is relatively unaffected by washing. [0095]
  • EXAMPLE 4 Hydrophilic Hydrogels
  • Samples (a)-(f) of known hydrogels as tabulated below were obtained in a hydrated state and were activated by heating to ca. 120° C. under vacuum for a minimum of 3 hours. [0096]
  • (a) 90:10 hydroxyethyl methacrylate:N,N-dimethylacrylamide copolymer [0097]
  • (b) 90:10 hydroxyethyl methacrylate:N-vinyl pyrrolidone copolymer [0098]
  • (c) 90:10 hydroxyethyl methacrylate:acryloyl morpholine copolymer [0099]
  • (d) 70:30 N-vinyl pyrrolidone:methyl methacrylate copolymer [0100]
  • (e) 30:70 methyl methacrylate:acryloyl morpholine copolymer [0101]
  • (f) 50:50 hydroxy methacrylate:acryloyl morpholine copolymer [0102]
  • The moisture uptake of all six samples was evaluated in a standardized 24 hour cycle on the Dynamic Vapor Sorption apparatus. The samples were prepared and placed at a nominal 0% RH (actual 2%) for 4 hours to complete activation. The RH was then raised to a nominal 10% (actual 12%) for 1000 minutes and then returned to 0% for a further 200 minutes completing the 24 hour cycle. Data was normalized to allow for any weight loss during the 4 hour activation stage, and is illustrated in FIG. 8. [0103]
  • In order to evaluate whether the samples had reached a stable equilibrium at the end of the holding time at 10% RH two samples (c) and (d) with different profiles in the screening test above were selected and held for 24 hours at 0% RH followed by ca. 45 hours at 10% RH. This confirmed that maximum moisture uptake was achieved within 1000 minutes. [0104]
  • It was clear from these results that all hydrogels tested had highly significant water uptake at low RH, i.e. 10%. The majority of the water uptake occurred extremely rapidly and final equilibrium was attained within 17 hours or less. The maximum uptake using hydrogel polymers was for sample (d) which was able to absorb approximately 1.7% of its own weight of water at 10% RH when fully dried. [0105]
  • The hydrogel samples showed the physical changes listed below during the test: [0106]
  • (a) very brittle when dried [0107]
  • (b) least brittle when dried [0108]
  • (c) very brittle when dried [0109]
  • (d) considerable shrinkage on drying [0110]
  • (e) opaque when dried. [0111]
  • It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims. [0112]

Claims (16)

We claim:
1. A container for a moisture-sensitive material comprising
(a) a container body comprising a substantially atmospheric moisture-impermeable material and
(b) a closure comprising at least one part that is a desiccant polymer, wherein the at least one part of the closure is in contact with an atmosphere in an interior of the container and the desiccant polymer is a water-absorbent hydrophilic polymer.
2. The container of claim 1, wherein the closure comprises a closure wall having a puncturable region therein in direct communication with the interior of the container.
3. The container of claim 2, wherein the closure wall comprises at least one part that is a desiccating polymer.
4. The container according to claim 1, wherein the container body comprises at least one part that is a desiccant polymer and the at least one part is exposed to the interior of the container.
5. The container according to claim 3, wherein the puncturable region is located in a part of the closure wall that is not a desiccating polymer.
6. The container of claim 1, wherein the closure wall contains a first part that is a desiccant polymer, wherein the first part is in the form of a ring shape encircling the puncturable region within.
7. The container of claim 6, wherein the first part of the closure wall is encircled by a second part that is ring shaped, wherein the second part is not made of a desiccant polymer.
8. The container of claim 7, wherein the second part comprises two generally concentric walls extending inwardly from the closure wall and the space between the walls defines a ring-shaped cavity, the cavity having a central space, wherein the central space defines a central passage in direct communication with the puncturable region.
9. The container of claim 1, wherein the closure of the container relies on a compression fit on a lip of a mouth of the container and the closure comprises an insert that is capable of forming a compression seal between the lip and the mouth of the container when the closure is tightened, wherein the insert consists of the desiccant polymer, and is selected from the group consisting a disc, a ring washer, and an inward facing coating layer.
10. The container of claim 1, wherein the water-absorbent hydrophilic polymer is selected from the group consisting of a hydrogel polymer, a homologous ester of the glycol monomethacrylate series, a homologous ester of the glycol monomethacrylate series that is slightly cross-linked, a copolymer of the higher glycol monomethacrylates and 2-hydroxyethyl methacrylate, an acrylamide hydrogel, a 2-hydroxyethyl methacrylate-vinylpyrrolidinone copolymer, and a water-insoluble methacrylate copolymerised with 2-hydroxyethyl methacrylate.
11. The container of claim 1, wherein the container is a vial suitable for a moisture-sensitive pharmaceutical material.
12. The container of claim 1, comprising at least on part of desiccant polymer in an amount capable of taking up atmospheric moisture at 30% RH or less, wherein the vial contains potassium clavulanate or its mixture with sodium amoxycillin.
13. The container of claim 12, wherein the desiccant polymer is capable of taking up atmospheric moisture at 10% RH or less.
14. The container of claim 12, wherein the sodium amoxycillin is crystalline sodium amoxycillin.
15. A closure capable of sealing engagement with a mouth of a container, the closure comprising a closure wall having an inwardly facing region wherein the wall comprises or has thereon a desiccant polymer.
16. A method of desiccating a moisture sensitive material, the method comprising enclosing the material in a container and maintaining a desiccant polymer in contact with the atmosphere inside the container.
US10/170,755 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material Abandoned US20030010668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/170,755 US20030010668A1 (en) 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB9415864A GB9415864D0 (en) 1994-08-05 1994-08-05 Container
GB9415864.9 1994-08-05
GBGB9512243.8A GB9512243D0 (en) 1995-06-16 1995-06-16 Container and closure
GB9512243.8 1995-06-16
US08/776,807 US5947274A (en) 1994-08-05 1995-08-04 Desiccating container for moisture-sensitive material
US24568499A 1999-02-08 1999-02-08
US10/170,755 US20030010668A1 (en) 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US24568499A Continuation 1994-08-05 1999-02-08

Publications (1)

Publication Number Publication Date
US20030010668A1 true US20030010668A1 (en) 2003-01-16

Family

ID=26305410

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/776,807 Expired - Lifetime US5947274A (en) 1994-08-05 1995-08-04 Desiccating container for moisture-sensitive material
US10/170,755 Abandoned US20030010668A1 (en) 1994-08-05 2002-06-13 Desiccating container for moisture-sensitive material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/776,807 Expired - Lifetime US5947274A (en) 1994-08-05 1995-08-04 Desiccating container for moisture-sensitive material

Country Status (16)

Country Link
US (2) US5947274A (en)
EP (3) EP0879772B1 (en)
JP (3) JPH10503739A (en)
KR (1) KR100487466B1 (en)
CN (2) CN1075022C (en)
AT (2) ATE208333T1 (en)
CA (1) CA2196673C (en)
CZ (2) CZ9700328A3 (en)
DE (2) DE69523757T2 (en)
ES (2) ES2171192T3 (en)
HU (1) HU222053B1 (en)
MX (1) MX9700952A (en)
NO (2) NO314624B1 (en)
NZ (1) NZ291443A (en)
PL (1) PL179210B1 (en)
WO (1) WO1996004189A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108319A1 (en) * 2004-11-24 2006-05-25 Meittunen Eric J Vial attachment to prevent needle sticks
US20070034630A1 (en) * 2003-03-03 2007-02-15 Didier Lancesseur Device for dispensing oblong objects, comprising one main opening and at least one other elongated opening
US20070267304A1 (en) * 2006-05-19 2007-11-22 Airsec S.A.S. Sealed assembly for storage and distribution with discharge control for solid pharmaceutical products
US20070269401A1 (en) * 2006-05-19 2007-11-22 Airsec S.A.S. Device for Distributing and/or Controlling the Discharge of Unitary Products, Fitted Onto a Container, and For the In-Situ Treatment of its Internal Atmosphere
US20080041875A1 (en) * 2004-03-30 2008-02-21 Didier Lancesseur Device for the Single-Unit Dispensing of Shaped Objects, Such as Pharmaceutical Tablets
US20090302048A1 (en) * 2004-12-21 2009-12-10 Airsec Device for storing and dispensing in single units objects in the form of sheets or thin strips
US20130240476A1 (en) * 2010-11-24 2013-09-19 West Pharmaceutical Services Deautschland GmbH & Co. KG Device for stopping a container, container provided with such a device, and method for closing a batch of such containers
US8875919B2 (en) 2010-06-08 2014-11-04 Clariant Production (France) Sas Stopper for closing a dispensing opening of a container
US9823234B2 (en) 2013-02-04 2017-11-21 Clariant Production (France) S.A.S. Dispensing device for holding and dispensing strip-like objects
US20190168904A1 (en) * 2016-08-11 2019-06-06 Partner Local Grup, Sl Tubular glass bottle neck

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9405249D0 (en) * 1994-03-17 1994-04-27 Smithkline Beecham Plc Container
JPH10503739A (en) * 1994-08-05 1998-04-07 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Container for moisture sensitive material
AU755082B2 (en) * 1995-03-17 2002-12-05 Inverness Medical Switzerland Gmbh Assay devices
GB9505425D0 (en) 1995-03-17 1995-05-03 Unilever Plc Assay devices
GB2306169B (en) * 1995-10-13 2000-01-12 Eastman Kodak Co Zeolite molecular sieves for packaging structures
US5789044A (en) * 1996-01-24 1998-08-04 Eastman Kodak Company Zeolite molecular sieves for packaging structures
US5962333A (en) * 1996-01-25 1999-10-05 Multisorb Technologies, Inc. Medical diagnostic test strip with desiccant
GB9607236D0 (en) * 1996-04-04 1996-06-12 Smith David S Packaging A dispenser
US5677120A (en) * 1996-05-23 1997-10-14 Eastman Kodak Company Tellurium complexes as chemical sensitizers for silver halides
US6180708B1 (en) 1996-06-28 2001-01-30 W. R. Grace & Co.-Conn. Thermoplastic adsorbent compositions containing wax and insulating glass units containing such compositions
US6112888A (en) * 1996-06-28 2000-09-05 W. R. Grace & Co.-Conn. Non-reclosable packages containing desiccant matrix
DE19633495A1 (en) * 1996-08-20 1998-02-26 Sanner Friedr Gmbh Co Kg Desiccant seal for container filled with moisture sensitive goods
GB9621822D0 (en) * 1996-10-19 1996-12-11 Smithkline Beecham Plc Novel process
JPH10142227A (en) * 1996-11-15 1998-05-29 Dainabotsuto Kk Well plate for immunity analysis
GB9818927D0 (en) * 1998-08-28 1998-10-21 Smithkline Beecham Plc Pharmaceutical formulation
US20020197300A1 (en) * 1999-02-22 2002-12-26 Schultz Clyde L. Drug delivery system for anti-glaucomatous medication
DE19950311A1 (en) * 1999-10-13 2001-04-19 Schering Ag Stable storage of parenteral ultrasonic contrast agent formulation, using vial closed with dry stopper to prevent reduction of in vivo effectiveness
DE19961300A1 (en) * 1999-12-18 2001-06-21 Asta Medica Ag Storage system for medicinal products in powder form and inhaler equipped with them
CZ20024015A3 (en) 2000-06-09 2003-04-16 Lek Pharmaceutical D.D. Stable pharmaceutical product and formulation thereof
IT1319655B1 (en) 2000-11-15 2003-10-23 Eurand Int PANCREATIC ENZYME MICROSPHERES WITH HIGH STABILITY AND RELATIVE PREPARATION METHOD.
US6688081B2 (en) 2001-12-18 2004-02-10 Schmalbach-Lubeca Ag Method for reducing headspace gas
US7258118B2 (en) * 2002-01-24 2007-08-21 Sofotec Gmbh & Co, Kg Pharmaceutical powder cartridge, and inhaler equipped with same
US7413083B2 (en) * 2002-04-11 2008-08-19 Csp Technologies, Inc. Desiccant vial assembly for effervescent tablets
US8110260B2 (en) 2007-02-02 2012-02-07 Rick Merical Containers intended for moisture-sensitive products
US20040131805A1 (en) * 2002-06-20 2004-07-08 Merical Rick L. Films having a desiccant material incorporated therein and methods of use and manufacture
US7871558B2 (en) 2002-06-20 2011-01-18 Alcan Global Pharmaceutical Packaging, Inc. Containers intended for moisture-sensitive products
US20030235664A1 (en) * 2002-06-20 2003-12-25 Rick Merical Films having a desiccant material incorporated therein and methods of use and manufacture
US8003179B2 (en) 2002-06-20 2011-08-23 Alcan Packaging Flexible France Films having a desiccant material incorporated therein and methods of use and manufacture
FR2858301B1 (en) * 2003-07-29 2006-05-26 Airsec WATERPROOF DESSICATIVE CONTAINER FOR PACKAGING AMBIENT HUMIDITY-SENSITIVE PRODUCTS
US20060110295A1 (en) * 2003-09-16 2006-05-25 Vici Gig Harbor Group, Inc. Closed well plate surface sorption extraction
US20060115383A1 (en) * 2003-09-16 2006-06-01 Vici Gig Harbor Group, Inc. Flow through well plate surface sorption extarction
US20060115384A1 (en) * 2003-09-16 2006-06-01 Vici Gig Harbor Group, Inc. Pipette tip surface sorption extraction
US7087437B2 (en) * 2003-09-16 2006-08-08 Vici Gig Harbor Group, Inc. Direct vial surface sorbent micro extraction device and method
FR2863968B1 (en) * 2003-12-19 2007-03-02 Airsec APPARATUS FOR SEALED SHUTTERING AND TREATMENT FOR PURIFYING AMBIENT AIR FROM PACKAGING CONTAINERS FOR PRODUCTS SENSITIVE TO POLLUTANTS
DE602005007736D1 (en) * 2004-04-30 2008-08-07 Certest Biotec S L QUICK DIAGNOSTIC STRIPS WITH MOISTURE ABSORBING MATERIAL AND BLISTER PACK FOR THIS
DE102004049349A1 (en) * 2004-10-08 2006-04-13 Friedrich Sanner Gmbh & Co Kg Spritzgusswerk Dispenser arrangement for containers
US7475773B2 (en) 2005-02-01 2009-01-13 Airsec S.A.S. Container for moisture-sensitive goods
JP5050334B2 (en) * 2005-10-04 2012-10-17 凸版印刷株式会社 Desiccant-containing resin molded body and production method thereof, container using desiccant-containing resin molded body
US20070128268A1 (en) * 2005-12-07 2007-06-07 Herwig Jennewein Pharmaceutical compositions comprising an antibiotic
EP1801583B1 (en) * 2005-12-23 2008-09-17 F.Hoffmann-La Roche Ag Container for medical consumables, with desiccant compartment
DE102006007830A1 (en) * 2006-02-17 2007-08-30 Grünenthal GmbH Storage-stable oral dosage form of amoxicillin and clavulanic acid
JP2009533203A (en) * 2006-04-17 2009-09-17 ウェスト ファーマシューティカル サービシズ インコーポレイテッド Cryogenic elastomer seal for cryogen containers
JP4894345B2 (en) * 2006-04-26 2012-03-14 凸版印刷株式会社 Desiccant-containing resin molded article having flashiness and durability and container using the same
BRPI0720951A2 (en) * 2007-01-20 2014-03-18 Merck Patent Gmbh PACKAGING CONTAINING SOFT CAPSULES.
SG186648A1 (en) 2007-02-20 2013-01-30 Aptalis Pharma Ltd Stable digestive enzyme compositions
EP2465609B1 (en) 2007-06-21 2016-12-28 Gen-Probe Incorporated Method for mixing the contents of a detection chamber
DK2207727T3 (en) * 2007-11-16 2016-06-20 Clariant Production (France) S A S Container
EP2077237B1 (en) 2008-01-04 2011-04-20 Airsec S.A.S. Container having improved oxygen barier function
EP2093162B1 (en) 2008-02-20 2019-08-14 Clariant Production (France) S.A.S. Moisture absorbing polymeric formulations with enhanced absorption properties
JP2009196666A (en) * 2008-02-21 2009-09-03 Toyo Seikan Kaisha Ltd Sealing stopper, sealed container, and freeze drying method
US10087493B2 (en) 2008-03-07 2018-10-02 Aptalis Pharma Canada Ulc Method for detecting infectious parvovirus in pharmaceutical preparations
EP3401233B1 (en) 2008-05-15 2022-03-02 CSP Technologies, Inc. Moisture-tight, resealable container
EP2179942B1 (en) * 2008-10-24 2014-12-10 Clariant Production (France) S.A.S. Screw cap, container body and container
JP5282326B2 (en) * 2009-01-21 2013-09-04 東洋製罐株式会社 Seal plug using hygroscopic laminate
US20150166219A1 (en) * 2010-01-29 2015-06-18 Integrity Products, Inc. Perforable container cap
US9375714B2 (en) * 2009-12-21 2016-06-28 Abbott Laboratories Container having gas scrubber insert for automated clinical analyzer
ITMI20100080U1 (en) * 2010-03-22 2011-09-23 Getters Spa COMPOSITION FOR THE PROTECTION OF DEVICES SENSITIVE TO THE PRESENCE OF H2O.
UA111726C2 (en) 2010-10-01 2016-06-10 Апталіс Фарма Лімітед LOW FORCE PANCRELIPASE PREPARATION WITH INTRA-SOLID COVERING
KR20130114684A (en) 2010-12-22 2013-10-17 콜게이트-파아므올리브캄파니 Package of oral care implements and method of using the same
EP2741766B1 (en) 2011-08-08 2015-10-07 Aptalis Pharma Limited Method for dissolution testing of solid compositions containing digestive enzymes
US9155606B2 (en) * 2012-03-20 2015-10-13 C. R. Bard, Inc. Method and apparatus for rehydration of lyophilized biologic materials
WO2014066693A1 (en) 2012-10-25 2014-05-01 Kohler Co. Engineered composite material and products produced therefrom
US10456786B2 (en) 2013-03-12 2019-10-29 Abbott Laboratories Septums and related methods
EP2972404B1 (en) 2013-03-15 2021-11-24 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
US10993996B2 (en) 2013-08-09 2021-05-04 Allergan Pharmaceuticals International Limited Digestive enzyme composition suitable for enteral administration
CA2947998A1 (en) 2014-06-19 2015-12-23 Aptalis Pharma Ltd. Methods for removing viral contaminants from pancreatic extracts
KR101679574B1 (en) * 2015-02-09 2016-11-25 엘지전자 주식회사 Air conditioner
WO2017031139A1 (en) 2015-08-17 2017-02-23 Csp Technologies, Inc. Container orifice reducer with tamper evident seal
GB2564481B (en) 2017-07-14 2019-10-23 4D Pharma Leon S L U Process
AU2019262000B2 (en) * 2018-05-01 2024-02-08 Csp Technologies, Inc. Medicament delivery device and method of using and making same
CN113474083A (en) * 2019-01-04 2021-10-01 仪器实验室公司 Container stopper for high puncture count applications
CN114929363B (en) * 2020-01-03 2024-08-23 艾尔诺沃股份有限公司 Breathable element for a container
CN114288180B (en) * 2021-12-22 2024-05-17 湖北华强科技股份有限公司 Piston for pen-type injector of explosion-proof plug
WO2024081219A1 (en) * 2022-10-14 2024-04-18 Csp Technologies, Inc. Container and method for storing and stabilizing moisture sensitive products

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1509916A (en) * 1924-09-30 of springville
US2160607A (en) * 1935-07-01 1939-05-30 Shell Dev Extraction process
US2173046A (en) * 1938-10-15 1939-09-12 Harry T Smith Saltcellar
US2783908A (en) * 1953-02-13 1957-03-05 Glaxo Lab Ltd Closures for bottles, vials and the like
US2812231A (en) * 1955-09-26 1957-11-05 Jacob L Zar Container assembly and method
US2848130A (en) * 1953-10-07 1958-08-19 Duo Vent Vacuum Closure Compan Pressure resistant closures
US3081137A (en) * 1960-06-20 1963-03-12 George B Kolokythas Absorbent storage insert for container cap
US3254784A (en) * 1963-05-10 1966-06-07 Lancesseur Francois Dehydrating stopper
US3918578A (en) * 1974-04-01 1975-11-11 Multiform Desiccant Products I Desiccant end cap
US4146277A (en) * 1978-06-29 1979-03-27 Santoro Dario S Desiccant cap
US4301149A (en) * 1977-10-11 1981-11-17 Beecham Group Limited Pharmaceutical compositions
US4350508A (en) * 1981-12-21 1982-09-21 Santoro Dario S Desiccant cap
US4485204A (en) * 1981-08-26 1984-11-27 Phillips Petroleum Company Polyester blends comprising a desiccant and a rubbery block copolymer
US4537887A (en) * 1980-09-27 1985-08-27 Beecham Group Limited Pharmaceutical formulation
US4547536A (en) * 1981-08-26 1985-10-15 Phillips Petroleum Company Polyester blends containing a metal oxide desiccant
US4834234A (en) * 1987-05-13 1989-05-30 Boehringer Mannheim Gmbh Container for test strips
US4840280A (en) * 1988-01-28 1989-06-20 American Air Liquide Sealing cap for liquid food or beverage containers
US4898580A (en) * 1987-10-06 1990-02-06 Beecham Group P.L.C. Syringe for a liquid pharmaceutical composition
US5018671A (en) * 1989-03-06 1991-05-28 Kao Corporation Process for the continuous granulation of high density detergent granules
US5018621A (en) * 1990-04-16 1991-05-28 Connell Jr John J O Cylindrical container and dispenser for spherical objects
US5114003A (en) * 1991-03-28 1992-05-19 E. I. Du Pont De Nemours And Company Tablet vial with desiccant in bottom
US5288560A (en) * 1991-01-30 1994-02-22 Daikyo Gomu Seiko, Ltd. Laminated sanitary rubber article
US5433330A (en) * 1992-08-07 1995-07-18 The West Company, Incorporated Needleless access stopper
US5894949A (en) * 1994-03-17 1999-04-20 Smithkline Beecham P.L.C. Container for pharmaceutical substances
US5947274A (en) * 1994-08-05 1999-09-07 Smithkline Beecham P.L.C. Desiccating container for moisture-sensitive material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1408981A (en) * 1973-04-16 1975-10-08 Monsanto Ltd Polymer composition
JPS5829939U (en) * 1981-08-24 1983-02-26 武田薬品工業株式会社 Rubber stopper for vial
DE3236570A1 (en) * 1982-10-02 1984-04-05 Hans-Erich 7595 Sasbachwalden Gubela Foam plastic mouldings containing open cells, in particular made from phenolic resin
EP0131147B2 (en) 1983-06-10 1996-12-04 Beecham Group p.l.c. Crystalline amoxycillin salt
CS256437B1 (en) * 1985-09-04 1988-04-15 Otto Wichterle Hydrophilic copolymer especially for contact lenses and medicinal application and method of its production
JPS63105064A (en) * 1986-10-22 1988-05-10 Nippon Synthetic Chem Ind Co Ltd:The Resin composition having high water absorption property
JP2708426B2 (en) * 1987-07-29 1998-02-04 三菱化学株式会社 Manufacturing method of stabilized superabsorbent resin particles
DE3929712A1 (en) * 1988-04-30 1991-03-14 Felten & Guilleaume Energie Removing traces of moisture from cable - by applying electrochemical mixt. of metal powders in or on material which swells up in water, seals cable, and decomposes water
DE3814764C2 (en) * 1988-04-30 1998-07-23 Felten & Guilleaume Energie Use of substances forming a galvanic element to remove the last water residues from a sealed finished product
JP2673367B2 (en) * 1989-03-08 1997-11-05 第一工業製薬株式会社 Method of manufacturing desiccant granulated product
DE4013799A1 (en) * 1990-04-28 1991-10-31 Gaplast Gmbh PLASTIC CONTAINER AND CONTAINER CLOSURE, ESPECIALLY FOR MEDICINAL PRODUCTS
WO1992000889A1 (en) * 1990-07-13 1992-01-23 J.G. Finneran Associates Sealed snap top cap
EP0577276B1 (en) * 1992-06-30 1997-08-20 Dow Corning Corporation High strength elastomeric desiccant
FR2698289B1 (en) * 1992-11-20 1995-01-27 Airsec Ind Sa Desiccants based on polymers.
JPH0768125A (en) * 1993-09-02 1995-03-14 Mitsui Petrochem Ind Ltd Solid drying agent

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1509916A (en) * 1924-09-30 of springville
US2160607A (en) * 1935-07-01 1939-05-30 Shell Dev Extraction process
US2173046A (en) * 1938-10-15 1939-09-12 Harry T Smith Saltcellar
US2783908A (en) * 1953-02-13 1957-03-05 Glaxo Lab Ltd Closures for bottles, vials and the like
US2848130A (en) * 1953-10-07 1958-08-19 Duo Vent Vacuum Closure Compan Pressure resistant closures
US2812231A (en) * 1955-09-26 1957-11-05 Jacob L Zar Container assembly and method
US3081137A (en) * 1960-06-20 1963-03-12 George B Kolokythas Absorbent storage insert for container cap
US3254784A (en) * 1963-05-10 1966-06-07 Lancesseur Francois Dehydrating stopper
US3918578A (en) * 1974-04-01 1975-11-11 Multiform Desiccant Products I Desiccant end cap
US4441609A (en) * 1977-10-11 1984-04-10 Beecham Group Limited Pharmaceutical compositions
US4301149A (en) * 1977-10-11 1981-11-17 Beecham Group Limited Pharmaceutical compositions
US4146277A (en) * 1978-06-29 1979-03-27 Santoro Dario S Desiccant cap
US4537887A (en) * 1980-09-27 1985-08-27 Beecham Group Limited Pharmaceutical formulation
US4485204A (en) * 1981-08-26 1984-11-27 Phillips Petroleum Company Polyester blends comprising a desiccant and a rubbery block copolymer
US4547536A (en) * 1981-08-26 1985-10-15 Phillips Petroleum Company Polyester blends containing a metal oxide desiccant
US4350508A (en) * 1981-12-21 1982-09-21 Santoro Dario S Desiccant cap
US4834234A (en) * 1987-05-13 1989-05-30 Boehringer Mannheim Gmbh Container for test strips
US4898580A (en) * 1987-10-06 1990-02-06 Beecham Group P.L.C. Syringe for a liquid pharmaceutical composition
US4840280A (en) * 1988-01-28 1989-06-20 American Air Liquide Sealing cap for liquid food or beverage containers
US5018671A (en) * 1989-03-06 1991-05-28 Kao Corporation Process for the continuous granulation of high density detergent granules
US5018621A (en) * 1990-04-16 1991-05-28 Connell Jr John J O Cylindrical container and dispenser for spherical objects
US5288560A (en) * 1991-01-30 1994-02-22 Daikyo Gomu Seiko, Ltd. Laminated sanitary rubber article
US5114003A (en) * 1991-03-28 1992-05-19 E. I. Du Pont De Nemours And Company Tablet vial with desiccant in bottom
US5433330A (en) * 1992-08-07 1995-07-18 The West Company, Incorporated Needleless access stopper
US5894949A (en) * 1994-03-17 1999-04-20 Smithkline Beecham P.L.C. Container for pharmaceutical substances
US5947274A (en) * 1994-08-05 1999-09-07 Smithkline Beecham P.L.C. Desiccating container for moisture-sensitive material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070034630A1 (en) * 2003-03-03 2007-02-15 Didier Lancesseur Device for dispensing oblong objects, comprising one main opening and at least one other elongated opening
US7628292B2 (en) 2003-03-03 2009-12-08 Airsec S.A. Device for dispensing oblong objects, comprising one main opening and at least one other elongated opening
US20080041875A1 (en) * 2004-03-30 2008-02-21 Didier Lancesseur Device for the Single-Unit Dispensing of Shaped Objects, Such as Pharmaceutical Tablets
US7810673B2 (en) 2004-03-30 2010-10-12 Airsec Device for the single-unit dispensing of shaped objects, such as pharmaceutical tablets
US20060108319A1 (en) * 2004-11-24 2006-05-25 Meittunen Eric J Vial attachment to prevent needle sticks
US20090302048A1 (en) * 2004-12-21 2009-12-10 Airsec Device for storing and dispensing in single units objects in the form of sheets or thin strips
FR2901248A1 (en) * 2006-05-19 2007-11-23 Airsec Soc Par Actions Simplif DEVICE FOR DISTRIBUTOR / LIMITER OF UNITARY PRODUCTS FLOW RATE, INTEGRATED WITH A CONTAINER AND IN-SITU TREATMENT OF ITS INTERNAL ATMOSPHERE
WO2007135276A1 (en) * 2006-05-19 2007-11-29 Airsec Dispensing/flow-limiting device for unitary products
US20070269401A1 (en) * 2006-05-19 2007-11-22 Airsec S.A.S. Device for Distributing and/or Controlling the Discharge of Unitary Products, Fitted Onto a Container, and For the In-Situ Treatment of its Internal Atmosphere
US7780008B2 (en) 2006-05-19 2010-08-24 Airsec S.A.S. Sealed assembly for storage and distribution with discharge control for solid pharmaceutical products
US20070267304A1 (en) * 2006-05-19 2007-11-22 Airsec S.A.S. Sealed assembly for storage and distribution with discharge control for solid pharmaceutical products
US8875919B2 (en) 2010-06-08 2014-11-04 Clariant Production (France) Sas Stopper for closing a dispensing opening of a container
US20130240476A1 (en) * 2010-11-24 2013-09-19 West Pharmaceutical Services Deautschland GmbH & Co. KG Device for stopping a container, container provided with such a device, and method for closing a batch of such containers
US8950609B2 (en) * 2010-11-24 2015-02-10 West Pharmaceutical Services Deutschland Gmbh & Co. Kg Device for stopping a container, container provided with such a device, and method for closing a batch of such containers
US9823234B2 (en) 2013-02-04 2017-11-21 Clariant Production (France) S.A.S. Dispensing device for holding and dispensing strip-like objects
US20190168904A1 (en) * 2016-08-11 2019-06-06 Partner Local Grup, Sl Tubular glass bottle neck
US11618603B2 (en) * 2016-08-11 2023-04-04 Dsigntank, S.L. Tubular glass bottle neck

Also Published As

Publication number Publication date
JP2000070333A (en) 2000-03-07
NO970502D0 (en) 1997-02-04
HUT76669A (en) 1997-10-28
EP0879772A3 (en) 1999-04-14
NO994184L (en) 1997-04-04
CN1075022C (en) 2001-11-21
ATE208333T1 (en) 2001-11-15
CA2196673C (en) 2005-07-05
EP0768980B1 (en) 2001-11-07
NZ291443A (en) 1998-07-28
WO1996004189A1 (en) 1996-02-15
HU222053B1 (en) 2003-04-28
NO314624B1 (en) 2003-04-22
JP2005218862A (en) 2005-08-18
CZ307799A3 (en) 2000-02-16
CN1252274A (en) 2000-05-10
EP0879772A2 (en) 1998-11-25
ES2171192T3 (en) 2002-09-01
US5947274A (en) 1999-09-07
EP0937648A2 (en) 1999-08-25
PL179210B1 (en) 2000-08-31
KR20040004409A (en) 2004-01-13
ATE219015T1 (en) 2002-06-15
EP0768980A1 (en) 1997-04-23
ES2178077T3 (en) 2002-12-16
NO994184D0 (en) 1999-08-27
CZ9700328A3 (en) 2002-10-16
AU694548B2 (en) 1998-07-23
AU3257795A (en) 1996-03-04
CN1159792A (en) 1997-09-17
EP0879772B1 (en) 2002-06-12
DE69523757T2 (en) 2002-08-01
NO970502L (en) 1997-04-04
PL318455A1 (en) 1997-06-09
JP3359305B2 (en) 2002-12-24
EP0937648A3 (en) 2001-01-17
DE69523757D1 (en) 2001-12-13
DE69527096D1 (en) 2002-07-18
DE69527096T2 (en) 2003-02-06
JPH10503739A (en) 1998-04-07
KR100487466B1 (en) 2005-05-06
MX9700952A (en) 1997-05-31
CA2196673A1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
US5947274A (en) Desiccating container for moisture-sensitive material
US5894949A (en) Container for pharmaceutical substances
EP0764121B1 (en) Package
TWI797108B (en) Container for medical and/or pharmaceutical products, method of manufacturing the same and use of the same
AU694548C (en) Container for moisture-sensitive material
AU711609B2 (en) Container for moisture-sensitive material
CA2279608C (en) Container for moisture-sensitive material
WO2000012088A1 (en) Pharmaceutical formulation of sodium amoxycillin and potassium clavulanate
JPS6213627Y2 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION