US5692684A - Injection cooler - Google Patents

Injection cooler Download PDF

Info

Publication number
US5692684A
US5692684A US08/495,613 US49561395A US5692684A US 5692684 A US5692684 A US 5692684A US 49561395 A US49561395 A US 49561395A US 5692684 A US5692684 A US 5692684A
Authority
US
United States
Prior art keywords
sealing
cooling water
accordance
spray cooler
throttle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/495,613
Other languages
English (en)
Inventor
Gunter Zurmuhlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holter Regelarmaturen GmbH and Co KG
Original Assignee
Holter Regelarmaturen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holter Regelarmaturen GmbH and Co KG filed Critical Holter Regelarmaturen GmbH and Co KG
Assigned to HOLTER REGELARMATUREN GMBH & CO., KG reassignment HOLTER REGELARMATUREN GMBH & CO., KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZURMUHLEN, GUNTER
Application granted granted Critical
Publication of US5692684A publication Critical patent/US5692684A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/16Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets
    • B05B1/1627Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets with a selecting mechanism comprising a gate valve, a sliding valve or a cock
    • B05B1/1672Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets with a selecting mechanism comprising a gate valve, a sliding valve or a cock the selectively-effective outlets being arranged on a tube or pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3033Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head
    • B05B1/304Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2230/00Signal processing
    • F16N2230/10Timing network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/13Desuperheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/38Needle valves

Definitions

  • the invention relates to a spray cooler for regulating the temperature of superheated steam.
  • the spary cooler has a housing consisting of a housing head with a water inlet opening and a nozzle insertion pipe, and a nozzle head disposed at the end of the nozzle insertion pipe into the walls of which nozzles have been placed axially one behind the other.
  • An axially movable piston rod with a regulating piston on the nozzle end which controls the nozzles as a function of its position for unblocking or blocking the flow-through of cooling water is disposed inside the housing in a hollow-cylindrical cooling water line arranged between the water inlet opening and the nozzles. In in a closed position the regulating piston completely seals the nozzle head at the inlet side and in an open position unblocks all nozzles.
  • Spray coolers of the above mentioned type are known and are often used for temperature regulation of superheated steam, for example in power plants.
  • a spray cooler of the above described type is described in a pamphlet of the Narvik Armaturenvertriebsippo mbH Narvik Fitting Sales Company!, Erich Mullerstr. 22-24, 4000 Dusseldorf 13, Pamphlet No.: VN-A.T.-Temp-9002/08.
  • the known spray cooler cools superheated steam contained in a boiler or flowing in a steam line by injecting water which has been atomized by the nozzles.
  • the continuous amount of the cooling medium injected into the boiler or the steam line can be preset by a stroke setting of the regulating piston, wherein one or several of the nozzles are unblocked or blocked and the steam temperature of the released steam can be controlled in this way.
  • the stroke position of the regulating piston can be adjusted manually or can be controlled or regulated hydraulically or by an electric motor, in which case a temperature sensor introduced into the steam line transmits appropriate signals to a microprocessor controlling the stroke movements.
  • the known spray coolers have the disadvantage that often the nozzles are exposed to a very high feed pressure of the cooling water provided and are relatively rapidly worn or destroyed by this.
  • Pressure water lines under an operating pressure of more than 100 bar are often provided at the place where they are used.
  • the known spray coolers are used with a water pressure of sometimes more than 100 bar and the counterpressure of the steam to be cooled often is considerably less, so that almost the entire force of the water pressure is applied to the respectively open nozzles.
  • the nozzles are being destroyed relatively rapidly by erosion as a result of the flow speed. This causes, in addition to increased repair and replacement part costs, short maintenance intervals which increase the costs.
  • the object is attained in accordance with the invention in that at least one coaxial throttle area with an axially continuously widening throttle cross section is disposed on the piston rod between the water inlet opening and the nozzles, which is closed in the blocking position of the piston rod and which releases a largest possible ring-shaped throttle cross section in the open position.
  • the spray cooler in accordance with the invention advantageously utilizes the stroke travel of the regulating piston preset by the control of the nozzle sealing by means of the control pistons for achieving a pre-sealing of the cooling water line and a pressure pre-reduction at the respectively unblocked nozzles.
  • the pre-sealing throttle body which usually is a throttle cone, blocks the cooling water line in addition to the control pistons which block the water exit openings of the nozzles.
  • the pre-sealing piston unblocks the cooling water line in that upstream of the nozzles one cooling water admitting surface respectively matched to the opened nozzle surface is unblocked.
  • the cone-shaped design of the pre-sealing piston results in an increase of the cooling water admitting surface proportional to the stroke movement.
  • the cooling water admitting surface defined by the position of the pre-sealing cone reduces the pressure of the cooling water present at the water inlet opening to a degree which is designed for the nozzles and in this way reduces the wear on the nozzles caused by erosion.
  • the cooling water pressure is reduced in two stages in the novel spray cooler.
  • the first partial pressure reduction in this two-stage spray cooler takes place at the pre-sealing piston and the second partial pressure reduction in the nozzles.
  • the pre-sealing cone is advantageously disposed in the housing head.
  • nozzle insertion pipes of different lengths respectively the same housing head with the guidance receptacle in combination with the respective nozzle insertion pipe can therefore be used, because of which the storage and production costs are kept low.
  • a guidance receptacle which acts as a cone seat, in which the pre-sealing cone disposed on the piston rod is inserted, is advantageously screwed into the cooling water line.
  • This design permits the employment of particularly erosion-resistant materials for the guidance receptacle. Because of this the housing head can be made of a different, less expensive material.
  • the pressed-in guidance receptacle is preferably sealed steam-tight against the housing head.
  • the length of the pre-sealing cone corresponds to at least the stroke travel of the regulating piston.
  • the guidance of the pre-sealing piston in the outlet of the guidance receptacle on the nozzle side is assured by means of this. Because of its conical design, the pre-sealing piston is centered when the outlet on the nozzle side is closed, which assures the exact closing of the cooling water line in the closing stroke position.
  • the pre-sealing cone preferably has an expanded sealing collar on the outside of the guidance receptacle which, in the closing stroke position, additionally completely seals the guidance receptacle and thus the cooling water line on the outside of the outlet opening.
  • this expanded sealing collar assures a steam-tight blocking of the cooling water line in the closing stroke position and also is used as a stop for the closing stroke position.
  • the pre-sealing throttle body is advantageously designed to be conical or paraboloidal.
  • the curvature of the conical shape of the pre-sealing body which is determined by a parabola results in a more accurate adaptation of the cooling water admitting surface to the water outlet opening surface, while taking into consideration the flow and pressure conditions.
  • a three-stage spray cooler it has been provided to arrange two pre-sealing cones axially one behind the other on the regulating piston.
  • the two pre-sealing cones are assigned to respectively one guidance receptacle in the cooling water line, and in the closing stroke position block the respective guidance receptacle and therefore the cooling water line in a steam-tight manner.
  • This design of the spray cooler reduces the cooling water pressure at the water inlet opening in two additional stages, so that the reduced remaining pressure is present at the nozzles.
  • the cooling water pressure is reduced in a first stage at the first pre-sealing cone and reduced in a second stage at the second pre-sealing cone, because of which it is also possible to use a particularly high cooling water pressure present at the water inlet opening for cooling the steam without resulting in damage to the nozzles which represent the third pressure reduction stage.
  • the two cone seats disposed one behind the other are embodied in a guidance receptacle made of a flow-resistant material screwed into the cooling water line.
  • the guidance receptacle with two cone seats is sealed steam-tight against the housing head by means of a sealing ring.
  • the lower pre-sealing cone advantageously has an expanded sealing collar on the outside of the guidance receptacle which, in the closing stroke position, additionally seals the guidance receptacle and thus the cooling water line at the outlet side and is used as closing stroke position stop.
  • the spray cooler in accordance with the invention can be used without damage of the nozzles even at high cooling water pressures, since the pre-sealing cone(s) reduce the water pressure to a sufficient degree prior to reaching the nozzles.
  • a cooling water pressure of, for example, 85 bar is reduced by 30 bar by means of the pre-sealing cone in accordance with the invention.
  • a remaining pressure of 45 bar is present at the nozzles which, on the one hand, does not damage the nozzles and, on the other, is still sufficiently high to cause atomization of the water in the nozzles sufficient for steam cooling.
  • a cooling water pressure of, for example, 115 bar is reduced by the first pre-sealing cone by 30 bar and by the further pre-sealing cone also by 30 bar.
  • a remaining pressure of 45 bar is present at the nozzles which, on the one hand, does not damage the nozzles and, on the other, is still sufficiently high to cause atomization of the water in the nozzles sufficient for steam cooling.
  • FIG. 1 represents an axial section of the two-stage spray cooler
  • FIG. 2 represents an axial section of the guidance receptacle with a pre-sealing cone
  • FIG. 3 represents an axial section of the three-stage spray cooler.
  • FIG. 1 represents an axial section of the two-stage spray cooler (1).
  • the spray cooler (1) has a housing (2, 3) comprising a housing head (2) with a water inlet opening (4) and a nozzle insertion pipe (3).
  • the water inlet opening (4) is provided with a welding neck flange (4A).
  • An axially movable piston rod (10) with a control piston (11) at the nozzle end, which seals the nozzle head chamber (7) steam-tight and controls the flow-through of the cooling water, is disposed in the housing (2, 3) of the spray cooler (1) in the hollow-cylindrical cooling water line (9) extending between the water inlet opening (4) and the nozzles (8).
  • the section (10A) of the piston rod (10), at the top in the drawing figure, extends through a stuffing box packing (21) out of the housing head (2) and can be actuated on the outside of the housing, for example by an electric motor, by means of which the stroke movements of the regulating piston (11) are controllable within the stroke travel (HS).
  • the piston rings In a closed position of the regulating piston (11), the piston rings completely block the nozzle head chamber (7) on the inlet side. In the course of a stroke movement of the regulating piston (11), and thus of the control pistons, in the direction toward the outlet, the nozzles (8) disposed one behind the other or the water outlet openings (8A) are unblocked to a degree corresponding to the stroke movement or closed in the other direction.
  • the pre-sealing cone (12) has been seated in a guidance receptacle (13A) with a cone seat (13), which is pressed into the cooling water line (9) and sealed steam-tight against the housing head (2) by means of a sealing ring (14).
  • the pre-sealing cone (12) tightly closes the cooling water line (9) and in this way supports the sealing of the nozzles (8) by the control piston (11) with the piston rings.
  • the pre-sealing cone (12) opens the cooling water line (9) to the nozzle head chamber (7) in a manner matched to the unblocking of the water outlet opening (8) by the piston (11), by means of which a first pressure reduction stage is created ahead of the nozzles (8), which assures an almost constant water pressure at the nozzles (8) independently of the degree of unblocking of the nozzles.
  • the spray cooler has two pressure reduction stages by means of this design, namely the nozzles (8) at the lower end and the pre-sealing cone (12) disposed in the housing head (2).
  • the pre-sealing cone (12) On the outside of the guidance receptacle the pre-sealing cone (12) has an expanded sealing collar (15), which additionally seals the guidance receptacle (13A) and therefore the cooling water line (9) on the outside in the closed position and beyond that acts as a closing position stop.
  • FIG. 2 represents an axial section of the guidance receptacle (13A) with a pre-sealing cone (12).
  • the pre-sealing cone (12) is arranged conically formed on the piston rod (10).
  • the pre-sealing cone (12) has been seated in a guidance receptacle (13A) with a cone seat (13), which is screwed into the cooling water line (9) and sealed steam-tight against the housing head (2) by means of a sealing ring (14).
  • the guidance receptacle (13A) is essentially hollow-cylindrical and has an interior diameter (I), wherein the cone seat (13) has an outlet (5) with a tapered diameter (D) on the nozzle side.
  • the pre-sealing cone (12) tightly closes the cooling water line (9).
  • the pre-sealing cone (12) On the outside of the guidance receptacle the pre-sealing cone (12) has an expanded sealing collar (15), which additionally seals the guidance receptacle (13A) and therefore the cooling water line (9) on the outside in the closed position, and beyond that acts as a closing position stop.
  • a pre-sealing cone length (VL) approximately corresponds to the stroke travel (HS) of the regulating piston (11) represented in FIG. 1.
  • the pre-sealing cone (12) is conical or paraboloidal.
  • FIG. 3 represents an axial section of the three-stage spray cooler (1A).
  • the spray cooler (1A) has two pre-sealing cones (12, 12A) axially disposed one behind the other.
  • the pre-sealing cones (12, 12A) are arranged on the piston rod (10) respectively assigned to a cone seat (13B, 13C) in the cooling water line (9).
  • the cone seats (13B, 13C) are disposed in a guidance receptacle (13D), which is screwed into the cooling water line (9), disposed in the housing head (2A).
  • the guidance receptacle (13D) is sealed steam-tight against the housing head (2A) by means of a sealing ring (14).
  • the lower pre-sealing cone (12) On the outside of the guidance receptacle the lower pre-sealing cone (12) has an expanded sealing collar (15), which additionally seals the guidance receptacle (13D) and therefore the cooling water line (9) on the outside in the closing stroke position and additionally acts as a closing position stop.
  • the cone seat (13) and guidance receptacle (13D) can also be pressed into the cooling water line (9).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Optical Head (AREA)
  • Heat Treatment Of Articles (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
US08/495,613 1993-02-03 1994-01-18 Injection cooler Expired - Fee Related US5692684A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4302974 1993-02-03
DE4302974.4 1993-02-03
PCT/EP1994/000113 WO1994018499A1 (de) 1993-02-03 1994-01-18 Einspritzkühler

Publications (1)

Publication Number Publication Date
US5692684A true US5692684A (en) 1997-12-02

Family

ID=6479500

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/495,613 Expired - Fee Related US5692684A (en) 1993-02-03 1994-01-18 Injection cooler

Country Status (11)

Country Link
US (1) US5692684A (ru)
EP (1) EP0682762B1 (ru)
JP (1) JPH08506885A (ru)
CN (1) CN1117311A (ru)
AT (1) ATE151159T1 (ru)
AU (1) AU5884294A (ru)
DE (2) DE4305116A1 (ru)
DK (1) DK0682762T3 (ru)
ES (1) ES2101505T3 (ru)
RU (1) RU2100694C1 (ru)
WO (1) WO1994018499A1 (ru)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238080B1 (en) 1999-07-09 2001-05-29 Apv North America, Inc. Homogenization valve with outside high pressure volume
US6244739B1 (en) 1999-07-09 2001-06-12 Apv North America, Inc. Valve members for a homogenization valve
US6305836B1 (en) 1999-07-09 2001-10-23 Apv North America, Inc. Force absorbing homogenization valve
US20090174087A1 (en) * 2008-01-04 2009-07-09 Charles Gustav Bauer One piece liquid injection spray cylinder/nozzle
US20090200688A1 (en) * 2008-01-24 2009-08-13 Cincotta Bruce A Angled diffuser and steam injection heater assembly
US20110298141A1 (en) * 2010-06-03 2011-12-08 Spx Corporation Desuperheater seat-ring apparatus
US20120121475A1 (en) * 2010-11-12 2012-05-17 Cummins Cal Pacific, Llc Fluid Injector
US20140054394A1 (en) * 2012-08-27 2014-02-27 Continental Automotive Systems Us, Inc. Reductant delivery unit for automotive selective catalytic reduction systems - active cooling
US20140175186A1 (en) * 2012-12-20 2014-06-26 Thomas Alfred Caine Insulated solution injector, system including the same, and method of injecting using the same
US20160290629A1 (en) * 2015-04-02 2016-10-06 Pentair Flow Services Ag Desuperheater System
US9759332B2 (en) 2009-06-19 2017-09-12 Spx Flow, Inc. Atomizing desuperheater shutoff apparatus and method
US10290381B2 (en) 2011-12-30 2019-05-14 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for a high-temperature deposition solution injector
US10515729B2 (en) 2015-11-04 2019-12-24 Ge-Hitachi Nuclear Energy Americas Llc Insulated solution injector including an insulating liner, system including the same, and method of injecting using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008025A1 (en) * 1996-08-22 1998-02-26 Copes-Vulcan, Inc. Spring assisted multi-nozzle desuperheater
DE19830244C2 (de) * 1998-07-07 2000-05-18 Holter Gmbh & Co Einspritzkühler zur Temperaturregelung von überhitztem Dampf
DE10251407B4 (de) * 2002-11-05 2005-06-16 Holter Regelarmaturen Gmbh & Co. Kg Dampfumformer mit Düsenstock zur Kühlwassereinspritzung
DE102010026116A1 (de) 2010-07-05 2012-01-05 Tec Artec Valves Gmbh & Co. Kg Einspritzkühler
DE202010009860U1 (de) 2010-07-05 2011-10-24 Tec Artec Valves Gmbh & Co. Kg Einspritzkühler
EP2565538A1 (de) * 2011-08-31 2013-03-06 Siemens Aktiengesellschaft Umleitdampfleitung
DE102011054793B4 (de) 2011-10-25 2015-05-28 TEC artec GmbH Einspritzkühler
DE102013103496B4 (de) 2013-04-08 2015-07-09 Artes Valve & Service GmbH Einspritzkühler
CN105728223A (zh) * 2016-03-14 2016-07-06 刘旭玲 一种蒸汽管道熏烟壳
CN107088484B (zh) * 2017-06-28 2023-07-18 迈德乐喷雾系统广州有限公司 一种小型空气雾化喷嘴

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL289690A (ru) *
US2483719A (en) * 1945-07-13 1949-10-04 Air Reduction Gas torch
US2515301A (en) * 1945-08-10 1950-07-18 Air Reduction Gas torch
DE1020642B (de) * 1956-10-17 1957-12-12 Askania Werke Ag Druckminder-Regelventil
US3331590A (en) * 1965-02-18 1967-07-18 Battenfeld Werner Pressure reducing control valve
US3732851A (en) * 1971-05-26 1973-05-15 R Self Method of and device for conditioning steam
US4071586A (en) * 1976-10-26 1978-01-31 Copes-Vulcan, Inc. Variable orifice desuperheater
US4130611A (en) * 1976-12-06 1978-12-19 Yarway Corporation Attemperator
GB1592153A (en) * 1977-12-23 1981-07-01 Abtec Ltd Spraying apparatus
US4442047A (en) * 1982-10-08 1984-04-10 White Consolidated Industries, Inc. Multi-nozzle spray desuperheater
US4522582A (en) * 1984-06-22 1985-06-11 The Coleman Company, Inc. Fuel control system for burners
DE3713726A1 (de) * 1987-04-24 1988-11-03 Schneider Bochumer Maschf A Vorrichtung fuer die kuehlung von heissdampf
US4828767A (en) * 1988-09-01 1989-05-09 Atlantic Richfield Company Method and system for installing steam desuperheaters
US5380470A (en) * 1992-08-26 1995-01-10 Btg Kalle Inventing Ab Method and apparatus for reducing the pressure and temperature of steam in a steam conditioning valve
US5439619A (en) * 1993-12-09 1995-08-08 Keystone International Holdings Corp. Steam conditioning butterfly valve

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL289690A (ru) *
US2483719A (en) * 1945-07-13 1949-10-04 Air Reduction Gas torch
US2515301A (en) * 1945-08-10 1950-07-18 Air Reduction Gas torch
DE1020642B (de) * 1956-10-17 1957-12-12 Askania Werke Ag Druckminder-Regelventil
US3331590A (en) * 1965-02-18 1967-07-18 Battenfeld Werner Pressure reducing control valve
US3732851A (en) * 1971-05-26 1973-05-15 R Self Method of and device for conditioning steam
US4071586A (en) * 1976-10-26 1978-01-31 Copes-Vulcan, Inc. Variable orifice desuperheater
US4130611A (en) * 1976-12-06 1978-12-19 Yarway Corporation Attemperator
GB1592153A (en) * 1977-12-23 1981-07-01 Abtec Ltd Spraying apparatus
US4442047A (en) * 1982-10-08 1984-04-10 White Consolidated Industries, Inc. Multi-nozzle spray desuperheater
US4522582A (en) * 1984-06-22 1985-06-11 The Coleman Company, Inc. Fuel control system for burners
DE3713726A1 (de) * 1987-04-24 1988-11-03 Schneider Bochumer Maschf A Vorrichtung fuer die kuehlung von heissdampf
US4828767A (en) * 1988-09-01 1989-05-09 Atlantic Richfield Company Method and system for installing steam desuperheaters
US5380470A (en) * 1992-08-26 1995-01-10 Btg Kalle Inventing Ab Method and apparatus for reducing the pressure and temperature of steam in a steam conditioning valve
US5439619A (en) * 1993-12-09 1995-08-08 Keystone International Holdings Corp. Steam conditioning butterfly valve

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238080B1 (en) 1999-07-09 2001-05-29 Apv North America, Inc. Homogenization valve with outside high pressure volume
US6244739B1 (en) 1999-07-09 2001-06-12 Apv North America, Inc. Valve members for a homogenization valve
US6305836B1 (en) 1999-07-09 2001-10-23 Apv North America, Inc. Force absorbing homogenization valve
US20090174087A1 (en) * 2008-01-04 2009-07-09 Charles Gustav Bauer One piece liquid injection spray cylinder/nozzle
US20090200688A1 (en) * 2008-01-24 2009-08-13 Cincotta Bruce A Angled diffuser and steam injection heater assembly
US8167278B2 (en) * 2008-01-24 2012-05-01 Prosonix, Llc Angled diffuser and steam injection heater assembly
US9759332B2 (en) 2009-06-19 2017-09-12 Spx Flow, Inc. Atomizing desuperheater shutoff apparatus and method
US8469341B2 (en) * 2010-06-03 2013-06-25 Spx Corporation Desuperheater seat-ring apparatus
US20110298141A1 (en) * 2010-06-03 2011-12-08 Spx Corporation Desuperheater seat-ring apparatus
US20120121475A1 (en) * 2010-11-12 2012-05-17 Cummins Cal Pacific, Llc Fluid Injector
US8549840B2 (en) * 2010-11-12 2013-10-08 Cummins Cal Pacific, Llc Fluid injector
US10290381B2 (en) 2011-12-30 2019-05-14 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for a high-temperature deposition solution injector
US20140054394A1 (en) * 2012-08-27 2014-02-27 Continental Automotive Systems Us, Inc. Reductant delivery unit for automotive selective catalytic reduction systems - active cooling
US20140175186A1 (en) * 2012-12-20 2014-06-26 Thomas Alfred Caine Insulated solution injector, system including the same, and method of injecting using the same
US9761336B2 (en) * 2012-12-20 2017-09-12 Ge-Hitachi Nuclear Energy Americas Llc Insulated solution injector, system including the same, and method of injecting using the same
US10650934B2 (en) 2012-12-20 2020-05-12 Ge-Hitachi Nuclear Energy Americas Llc Insulated solution injector, system including the same, and method of injecting using the same
US20160290629A1 (en) * 2015-04-02 2016-10-06 Pentair Flow Services Ag Desuperheater System
US10443837B2 (en) * 2015-04-02 2019-10-15 Emerson Vulcan Holding Llc Desuperheater system
US10515729B2 (en) 2015-11-04 2019-12-24 Ge-Hitachi Nuclear Energy Americas Llc Insulated solution injector including an insulating liner, system including the same, and method of injecting using the same

Also Published As

Publication number Publication date
EP0682762A1 (de) 1995-11-22
ATE151159T1 (de) 1997-04-15
JPH08506885A (ja) 1996-07-23
AU5884294A (en) 1994-08-29
DK0682762T3 (da) 1997-07-28
DE4305116A1 (de) 1994-08-04
DE59402306D1 (de) 1997-05-07
EP0682762B1 (de) 1997-04-02
WO1994018499A1 (de) 1994-08-18
RU2100694C1 (ru) 1997-12-27
ES2101505T3 (es) 1997-07-01
CN1117311A (zh) 1996-02-21

Similar Documents

Publication Publication Date Title
US5692684A (en) Injection cooler
US9759332B2 (en) Atomizing desuperheater shutoff apparatus and method
US5853129A (en) Spray nozzle
RU95115554A (ru) Впрыскивающий охладитель
US3732851A (en) Method of and device for conditioning steam
US5018667A (en) Phase change injection nozzle
AU629584B2 (en) Process and device for regulating a flow of liquid co2, and application thereof in a cooling tunnel
CA1063894A (en) Attemperator
CN107764080A (zh) 多锥形、多阶段喷射喷嘴
US5383647A (en) Gas-injection valve for internal combustion engine
US4909445A (en) Desuperheat flow nozzle
CA1178432A (en) Combination spray gun and pressure regulator
CA2128960C (en) Spray element especially for mold sprayers
RU2118749C1 (ru) Паропреобразовательный клапан
US4718456A (en) Steam conditioning valve
AU682925B2 (en) Steam conditioning butterfly valve
EP1036598B1 (en) High flow pneumatic adhesive applicator valve
US4332309A (en) Apparatus for the atomization of oil in a compressed air line
US3524592A (en) Device for introducing cooling water into a conduit for superheated steam
US5158235A (en) Turbulence-quelling fluid-flow controller and method
US3848809A (en) Atomizers
US2579004A (en) Liquid fuel burner with nondribble tip valve
US20070257135A1 (en) Spray Nozzle
RU2160867C1 (ru) Охладительная установка
RU2239863C1 (ru) Регулятор давления газа прямого действия с самообогревом

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOLTER REGELARMATUREN GMBH & CO., KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZURMUHLEN, GUNTER;REEL/FRAME:007776/0350

Effective date: 19950308

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20011202