US3331590A - Pressure reducing control valve - Google Patents

Pressure reducing control valve Download PDF

Info

Publication number
US3331590A
US3331590A US433761A US43376165A US3331590A US 3331590 A US3331590 A US 3331590A US 433761 A US433761 A US 433761A US 43376165 A US43376165 A US 43376165A US 3331590 A US3331590 A US 3331590A
Authority
US
United States
Prior art keywords
steam
valve
pressure
flow
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US433761A
Inventor
Battenfeld Werner
Odendahl Wilhelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US433761A priority Critical patent/US3331590A/en
Application granted granted Critical
Publication of US3331590A publication Critical patent/US3331590A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • F22G5/126Water injection apparatus in combination with steam-pressure reducing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/363Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor the fluid acting on a piston
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/13Desuperheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/78Sonic flow

Definitions

  • This invention relates to a pressure reducing control valve for steam conduits, which on its discharge side is provided with means for injecting cooling water into the steam flow.
  • Pressure reducing control valves are already known as steam conversion valves.
  • the cooling water is admitted near the valve seat in the place where the steam is subjected to the greatest constriction so that the water is entrained and finely dispersed by the high steam velocity prevailing in this place, and evaporated by the temperature gradient between the steam and the water. If a determined percentage of water thus added is not exceeded, the water can be absorbed by the steam within the valve. Due to the fact that the spraying orifice is in the form of an annular slot the percentage of added water reaches higher values.
  • a disadvantage is the high cooling water pressure required for reducing high pressure superheated steam to low pressure steam.
  • the cooling water either has to be taken from the boiler feed pump so that this latter must be designed correspondingly larger, which results in higher costs for the plant, or a special high pressure injection pump has to be installed which with the high pressures required and the small quantities to be injected would operate inefiiciently and uneconomically.
  • the boiler feed pumps lacks the reserve necessary for delivering also the injection Water.
  • the discharge pressure of the available cooling water pumps of the desuperheater to be replaced is, however, insufiicient for the water supply of the known steam conversion valve so that special high pressure injection pumps must be provided.
  • a further disadvantage consists in that desuperheating to a point close to the state of saturated steam is impossible because the temperature difierence between the steam and the water and thus the heat exchange disappear before the evaporation is completed.
  • the cooling water injection is provided in the valve portion located on the discharge or outlet side of the valve, which portion is preferably designed as a Venturi tube to achieve pressure recuperation. But this valve is only intended for use with subcritical pressure gradients.
  • a second constriction is provided on the discharge side and the Water is injected at this second constriction. This measure eliminates any danger for the valve seat but the steam velocity which determines the size of the drops is greatly reduced.
  • a throttle valve which has a discharge pipe arranged behind the position of the passage of the steam and a throttling member protruding into the discharge pipe, the throttling member being adjustable by means of the valve spindle and so shaped that in any position of the throttling member the steam will be guided in the same way as in a Laval nozzle.
  • This valve has for its object to maintain the flow of steam constant with a fixed valve adjustment and variable back-pressure but it is not suitable to control the back-pressure and to cool, at the same time, the steam by means of injected water.
  • the known steam conversion valves have the common feature that the atomization of the introduced Water is effected by the relative velocity while the evaporation is brought about by the temperature drop between the water and the steam.
  • the uneven flow resulting from such throttling and mixing actions is accompanied by intolerably intense noises and frequently also by dangerous vibrations.
  • These valves must, therefore, be followed by labyrinth type throttle paths which destroy the major part of the pressure head at full throughput and, moreover, act as filling bodies which cause the residual drops to evaporate subsequently. Due to the square dependence of the labyrinth throttling loss on the steam throughput there occur control difficulties and intense expansion noises with small steam throughput.
  • the present invention provides apparatus for reducing the pressure and temperature of superheated steam by first producing a supersonic flow of steam, injecting cooling water into the supersonic flow, and transforming the supersonic flow into subsonic flow by creating a pressure wave front in the water-injected supersonic flow.
  • a valve mechanism for carrying out the above-described method includes a casing having a steam inlet and a steam outlet, a pressure reducing valve in the casing, a fiow chamber situated in the casing downstream of the pressure reducing valve and having a cross-section which increases in the direction of flow, means at the outlet end of the flow chamber reducing the cross-section to cause the creation of a pressure wave front in the flow through the chamber, and outlet duct means for the injection of cooling Water opening into the flow chamber adjacent to and upstream of the means reducing the cross-section of the flow chamber.
  • the pressure reducing valve may include a valve stem disposed through the flow chamber, and preferably in cludes throttling ports for the supply of cooling water as, for example, in the shape of helically contoured slots or chambers.
  • the valve stem is advantageously mounted for reciprocal movement relative to the valve and the flow chamber whereby the cross-section of the cold Water supply ports and the passage of the steam pressure reducing valve are varied in proportion to the valve stem movement.
  • the How chamber opens downstream into the passage in which the media flows at subsonic velocities, the flow being guided by radially disposed guide ribs in the passage.
  • valve stem of the steam pressure reducing valve is also preferably coupled to a hydraulic actuator into which is introduced the cooling water for subsequent conduction into the flow chamber through the throttling ports,
  • the hydraulic actuator is preferably responsive to a pressure differential produced by a control valve responsive to the steam outlet pressure.
  • the great expansion of the steam and the resulting temperature drop enable a servomotor or a comparable hydraulic actuator for operating the valve to be provided immediately on the low pressure side of the valve casing, which servomotor is operated by hot water from the water supply tank.
  • the cylinder space of the servomotor on the valve side may communicate with the cooling water supply of the steam converting valve so that a stuffing box can be dispensed with on the steam side, especially in cases where the cooling water is injected along the valve stem.
  • the steam converting valve proposed by the present invention operates only with the cooling water and its relatively low pressure and requires no further means so that it is particularly reliable in operation.
  • the figure shows a valve casing 2 with an inlet 1 and the superheated steam to be expanded and cooled enters the valve casing 2 through the inlet 1.
  • a flow chamber 3 surrounding a valve stem 4 is designed so as to accelerate the steam flow by expansion to a supersonic velocity and acts like a Laval nozzle.
  • a generally concave upwardly opening end face 5 of a guide hub 6 provides an abrupt narrowing of the flow chamber 3 so that a pressure wave front 7 will form in which the supersonic flow is converted unevenly into a subsonic flow of increased pressure.
  • the valve stem 4 is preferably provided with helically disposed throttling ports 8 for the cooling 7 water supply.
  • the cooling water entering the flow chamber 3 through a connecting piece 9, an annular space 10 and the throttling ports 8 is fed immediately before the compression front 7, where the pressure and temperature of the steam are greatly reduced and Where, in some instances, the steam is already wet. Due to its helical introduction, the water is radially spread.
  • hot water e.g., boiler supply Water
  • the evaporation pressure of the cooling Water is higher than the steam A pressure in front of the pressure wave front 7, with the result that the small water drops are caused to burst due to internal steam generation and only thereafter will get into the pressure wave front 7 where they are completely smashed and evaporated.
  • subsonic velocity prevails.
  • the guide hub 6 For orienting the fiow in one direction and for supporting a hell-shaped wall 12 the guide hub 6 is provided with ribs 13 which direct the flow into a low pressure chamber 14 from where the steam fiows to an outlet 15.
  • a servocylinder 17 is arranged on a junction cover 16 and serves for movably guiding therein a piston 18.
  • the servocylinder 17 includes a cylinder space 19, in which the same pressure as in the annular space 10 prevails, and a cylinder spacer 20 in which a pressure modified by a governor 21 prevails, this governor causing the piston 18 to move against the action of a spring 22 when the steam pressure to be regulated drops.
  • the throttling ports 8 are so shaped that the water-to-steam ratio remains constant during the lifting movement of the valve stem 4 to ensure low-inertia regulation of the steam temperature.
  • the steam temperature is regulated by a governor 23 which varies the cooling water pressure prevailing at the connecting piece 9.
  • a valve mechanism for the pressure-reduction and cooling of superheated steam comprising a casing having a steam inlet and a steam outlet, a pressure reducing valve in said casing, a fiow chamber disposed in-sai-d casing downstream of said pressure reducing valve, said fiow chamber having a cross-section which increases in the direction of flow through which flows supersonic steam, means centrally located at a downstream end portion of said flow chamber reducing the cross-section thereof, said last-mentioned means including a concave surface portion opening in opposition to the steam fiow for creating a pressure wave front thereby transform'mg the supersonic flow to subsonic flow, and outlet duct means for injecting a cooling medium into the flow chamber adjacent to and upstream of said cross-section reducing means.
  • valve mechanism as defined in claim 1 wherein said valve includes a valve stem and said outlet duct means are formed in said valve stem.
  • valve mechanism as defined in claim 1 wherein said valve includes a valve stem having an end portion opening into said chamber, said outlet duct means are formed in said valve stem end portion, said cross-section reducing means surround said valve stem end portion, and means are provided for reciprocating said valve stem for selectively varying the portion of said outlet duct means exposed to the interior of the fiow'chamber thereby varying the quantity of cooling medium introduced into the flow chamber.
  • valve mechanism as defined in claim 1 wherein said valve includes a valve stem having an end portion opening into said chamber, said outlet duct means are formed in said valve stem end portion, and said outlet duct means are a plurality of helically extending throttling ports.
  • valve mechanism as defined in claim 1 wherein the casing includes a subsonic flow chamber downstream of said first-mentioned chamber, and flow orienting ribs downstream of said subsonic flow chamber.
  • valve mechanism as defined in claim 1 including hydraulic actuator means for operating said valve and means placing said actuator means in fluid communication with the cooling medium.
  • valve mechanism as defined in claim 6 including pressure governor means coupled to said actuator means for throttling the flow of the cooling medium to reduce pressure in a fluid chamber of the actuator means whereby the latter becomes operative.
  • valve mechanism as defined in claim 1 including means for operating said valve to at all times maintain a constant cooling medium-to-steam ratio irrespective of the position of the valve.
  • valve mechanism as defined in claim 8 wherein said outlet duct means are carried by said valve and said regulate the flow of the cooling medium into the flow chamber.
  • operating means are operative for selectively regulating 15 HARRY THORNTON: Pn-mary Examinerand varying the effective size of said duct means to T. R. MILES, Assistant Examiner.

Description

July 18, 1967 w BATTENFELD ET AL 3,331,590
PRESSURE REDUCING CONTROL VALVE Filed Feb. 18, 1965 l2 7 l5 /J M/VEA/Tdks WERNER BATTE/VFELD Mal/5AM Gamma/u United States Patent O 3,331,590 PRESSURE REDUCING CONTRGL VALVE Werner Battenfeld, 8 Lindenstrasse, Meinerzhagen, Germany, and Wilhelm Odendahl, 46 Homerichstrassc, Gummershach-Steinenbruck, German Filed Feb. 18, 1965, Ser. No. 433,761 9 Claims. (Cl. 26150) This invention relates to a pressure reducing control valve for steam conduits, which on its discharge side is provided with means for injecting cooling water into the steam flow. Pressure reducing control valves are already known as steam conversion valves.
In a known valve, the cooling water is admitted near the valve seat in the place where the steam is subjected to the greatest constriction so that the water is entrained and finely dispersed by the high steam velocity prevailing in this place, and evaporated by the temperature gradient between the steam and the water. If a determined percentage of water thus added is not exceeded, the water can be absorbed by the steam within the valve. Due to the fact that the spraying orifice is in the form of an annular slot the percentage of added water reaches higher values. A disadvantage is the high cooling water pressure required for reducing high pressure superheated steam to low pressure steam. The cooling water either has to be taken from the boiler feed pump so that this latter must be designed correspondingly larger, which results in higher costs for the plant, or a special high pressure injection pump has to be installed which with the high pressures required and the small quantities to be injected would operate inefiiciently and uneconomically. In existent steam boiler plants in which the desuperheater is to be replaced by a steam conversion valve, the boiler feed pumps lacks the reserve necessary for delivering also the injection Water. The discharge pressure of the available cooling water pumps of the desuperheater to be replaced is, however, insufiicient for the water supply of the known steam conversion valve so that special high pressure injection pumps must be provided. A further disadvantage consists in that desuperheating to a point close to the state of saturated steam is impossible because the temperature difierence between the steam and the water and thus the heat exchange disappear before the evaporation is completed.
It is known to improve the control behaviour of the known steam conversion valve by coupling the cooling water valve with the steam valve or by permitting pressure-dependent regulating means to act simultaneously on the steam valve and the water valve, whereas a temperature control means is only permitted to act on the water valve. Further, it is known to provide an abrupt widening of the fiow passage on the downstream side of the mixing zone of steam and water, thereby to intensify the vorticity and evaporation efiects. The disarranged flow, however, may cause intolerable noises and dangerous vibrations.
When the cooling water is injected near the valve seat,
damage to the valve and troubles in the operation thereof are the possible consequences of the thermic stress. In a known steam conversion valve, therefore, the cooling water injection is provided in the valve portion located on the discharge or outlet side of the valve, which portion is preferably designed as a Venturi tube to achieve pressure recuperation. But this valve is only intended for use with subcritical pressure gradients. In another steam conversion valve, a second constriction is provided on the discharge side and the Water is injected at this second constriction. This measure eliminates any danger for the valve seat but the steam velocity which determines the size of the drops is greatly reduced.
Patented July 18, 1967 In a known steam conversion valve with discharge side water injection, the water is injected ata suitable rate into the steam fiow through a self-controlling annular gap even in the case of partial load. Because of the intense noises which are due to the uneven flow, this valve is followed by a very effective labyrinth-type throttle path to keep the pressure level at such a height that the tapering tube between the steam valve and the throttle path acts as a Venturi tube.
Moreover, a throttle valve is known which has a discharge pipe arranged behind the position of the passage of the steam and a throttling member protruding into the discharge pipe, the throttling member being adjustable by means of the valve spindle and so shaped that in any position of the throttling member the steam will be guided in the same way as in a Laval nozzle. This valve has for its object to maintain the flow of steam constant with a fixed valve adjustment and variable back-pressure but it is not suitable to control the back-pressure and to cool, at the same time, the steam by means of injected water.
The known steam conversion valves have the common feature that the atomization of the introduced Water is effected by the relative velocity while the evaporation is brought about by the temperature drop between the water and the steam. The uneven flow resulting from such throttling and mixing actions is accompanied by intolerably intense noises and frequently also by dangerous vibrations. These valves must, therefore, be followed by labyrinth type throttle paths which destroy the major part of the pressure head at full throughput and, moreover, act as filling bodies which cause the residual drops to evaporate subsequently. Due to the square dependence of the labyrinth throttling loss on the steam throughput there occur control difficulties and intense expansion noises with small steam throughput.
To avoid the disadvantages of known valves the present invention provides apparatus for reducing the pressure and temperature of superheated steam by first producing a supersonic flow of steam, injecting cooling water into the supersonic flow, and transforming the supersonic flow into subsonic flow by creating a pressure wave front in the water-injected supersonic flow.
More particularly, a valve mechanism for carrying out the above-described method includes a casing having a steam inlet and a steam outlet, a pressure reducing valve in the casing, a fiow chamber situated in the casing downstream of the pressure reducing valve and having a cross-section which increases in the direction of flow, means at the outlet end of the flow chamber reducing the cross-section to cause the creation of a pressure wave front in the flow through the chamber, and outlet duct means for the injection of cooling Water opening into the flow chamber adjacent to and upstream of the means reducing the cross-section of the flow chamber.
The pressure reducing valve may include a valve stem disposed through the flow chamber, and preferably in cludes throttling ports for the supply of cooling water as, for example, in the shape of helically contoured slots or chambers.
The valve stem is advantageously mounted for reciprocal movement relative to the valve and the flow chamber whereby the cross-section of the cold Water supply ports and the passage of the steam pressure reducing valve are varied in proportion to the valve stem movement. The How chamber opens downstream into the passage in which the media flows at subsonic velocities, the flow being guided by radially disposed guide ribs in the passage.
The valve stem of the steam pressure reducing valve is also preferably coupled to a hydraulic actuator into which is introduced the cooling water for subsequent conduction into the flow chamber through the throttling ports,
and the hydraulic actuator is preferably responsive to a pressure differential produced by a control valve responsive to the steam outlet pressure.
In this arrangement, the steam How is accelerated to high supersonic velocity by orderly expansion and then receives the necessary cooling water addition immediately prior to be subjected to an abrupt rise in pressure and attended shock waves.
Temperature and pressure of the superheated steam flowing into the valve are considerably decreased by the large expansion. The steam may even get wet when this takes place. Under these conditions, the admission of hot cooling Water does not cause any significant flow disturbance, it merely increases the moisture of the steam. When the temperature of the cooling water is above the evaporation temperature corresponding to the decreased steam pressure, the injected water will be instantaneously divided into fine drops by internal evaporation. The wet steam penetrates into the pressure wave from having a thickness of much less than 0.001 mm. Within the pressure 'wave front the fine drops are subjected to high pressure from the front and to low pressure from the rear so that they are retained and smashed. When the shock waves and/ or pressure rise occurs, the entropy of the stream of wet steam is considerably increased. This causes the flow energy to be converted into heat in a very restricted space, whereby the steam is instantaneously dried. By the fact that all the fine drops penetrate into the pressure wave front it is ensured that the steam is completely dried.
The evaporation within the pressure wave front even enables the steam to be cooled down to the saturated state because any moisture is retained by the pressure wave front for the small water drops are prevented from en tering the zone of higher pressure by the pressure rise.
The great expansion of the steam and the resulting temperature drop enable a servomotor or a comparable hydraulic actuator for operating the valve to be provided immediately on the low pressure side of the valve casing, which servomotor is operated by hot water from the water supply tank. In this arrangement the cylinder space of the servomotor on the valve side may communicate with the cooling water supply of the steam converting valve so that a stuffing box can be dispensed with on the steam side, especially in cases where the cooling water is injected along the valve stem. The steam converting valve proposed by the present invention operates only with the cooling water and its relatively low pressure and requires no further means so that it is particularly reliable in operation.
An embodiment of the invention will now be described by way of example and with reference to the accompanying drawing, the only figure of which is a longitudinal sectional view of a pressure reducing control valve according to the invention.
The figure shows a valve casing 2 with an inlet 1 and the superheated steam to be expanded and cooled enters the valve casing 2 through the inlet 1. A flow chamber 3 surrounding a valve stem 4 is designed so as to accelerate the steam flow by expansion to a supersonic velocity and acts like a Laval nozzle. A generally concave upwardly opening end face 5 of a guide hub 6 provides an abrupt narrowing of the flow chamber 3 so that a pressure wave front 7 will form in which the supersonic flow is converted unevenly into a subsonic flow of increased pressure. The valve stem 4 is preferably provided with helically disposed throttling ports 8 for the cooling 7 water supply. The cooling water entering the flow chamber 3 through a connecting piece 9, an annular space 10 and the throttling ports 8 is fed immediately before the compression front 7, where the pressure and temperature of the steam are greatly reduced and Where, in some instances, the steam is already wet. Due to its helical introduction, the water is radially spread. When hot water, e.g., boiler supply Water, is used the evaporation pressure of the cooling Water is higher than the steam A pressure in front of the pressure wave front 7, with the result that the small water drops are caused to burst due to internal steam generation and only thereafter will get into the pressure wave front 7 where they are completely smashed and evaporated. In a flow chamber 11 adjacent the pressure wave front 7 subsonic velocity prevails. For orienting the fiow in one direction and for supporting a hell-shaped wall 12 the guide hub 6 is provided with ribs 13 which direct the flow into a low pressure chamber 14 from where the steam fiows to an outlet 15. A servocylinder 17 is arranged on a junction cover 16 and serves for movably guiding therein a piston 18. The servocylinder 17 includes a cylinder space 19, in which the same pressure as in the annular space 10 prevails, and a cylinder spacer 20 in which a pressure modified by a governor 21 prevails, this governor causing the piston 18 to move against the action of a spring 22 when the steam pressure to be regulated drops. The throttling ports 8 are so shaped that the water-to-steam ratio remains constant during the lifting movement of the valve stem 4 to ensure low-inertia regulation of the steam temperature. The steam temperature is regulated by a governor 23 which varies the cooling water pressure prevailing at the connecting piece 9.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
We claim:
1. A valve mechanism for the pressure-reduction and cooling of superheated steam comprising a casing having a steam inlet and a steam outlet, a pressure reducing valve in said casing, a fiow chamber disposed in-sai-d casing downstream of said pressure reducing valve, said fiow chamber having a cross-section which increases in the direction of flow through which flows supersonic steam, means centrally located at a downstream end portion of said flow chamber reducing the cross-section thereof, said last-mentioned means including a concave surface portion opening in opposition to the steam fiow for creating a pressure wave front thereby transform'mg the supersonic flow to subsonic flow, and outlet duct means for injecting a cooling medium into the flow chamber adjacent to and upstream of said cross-section reducing means.
2. The valve mechanism as defined in claim 1 wherein said valve includes a valve stem and said outlet duct means are formed in said valve stem.
3. The valve mechanism as defined in claim 1 wherein said valve includes a valve stem having an end portion opening into said chamber, said outlet duct means are formed in said valve stem end portion, said cross-section reducing means surround said valve stem end portion, and means are provided for reciprocating said valve stem for selectively varying the portion of said outlet duct means exposed to the interior of the fiow'chamber thereby varying the quantity of cooling medium introduced into the flow chamber.
4. The valve mechanism as defined in claim 1 wherein said valve includes a valve stem having an end portion opening into said chamber, said outlet duct means are formed in said valve stem end portion, and said outlet duct means are a plurality of helically extending throttling ports.
5. The valve mechanism as defined in claim 1 wherein the casing includes a subsonic flow chamber downstream of said first-mentioned chamber, and flow orienting ribs downstream of said subsonic flow chamber.
6. The valve mechanism as defined in claim 1 including hydraulic actuator means for operating said valve and means placing said actuator means in fluid communication with the cooling medium.
7. The valve mechanism as defined in claim 6 including pressure governor means coupled to said actuator means for throttling the flow of the cooling medium to reduce pressure in a fluid chamber of the actuator means whereby the latter becomes operative.
8. The valve mechanism as defined in claim 1 including means for operating said valve to at all times maintain a constant cooling medium-to-steam ratio irrespective of the position of the valve.
9. The valve mechanism as defined in claim 8 wherein said outlet duct means are carried by said valve and said regulate the flow of the cooling medium into the flow chamber.
References Cited UNITED STATES PATENTS 2,088,691 8/1937 Dill.
2,276,055 3/ 1942 Mastenbrook.
2,361,150 10/1944 Petroe.
3,116,348 12/1963 Walker.
3,207,492 9/1965 Zikesch 2611 18 X 3,219,325 11/1965 Brown 26150 X 3,220,708 11/ 1965 Matsui.
3,220,710 11/1965 Forster.
operating means are operative for selectively regulating 15 HARRY THORNTON: Pn-mary Examinerand varying the effective size of said duct means to T. R. MILES, Assistant Examiner.

Claims (1)

1. A VALVE MECHANISM FOR THE PRESSURE-REDUCTION AND COOLING OF SUPERHEATED STEAM COMPRISING A CASING HAVING A STEAM INLET AND A STEAM OUTLET, A PRESSURE REDUCING VALVE IN SAID CASING, A FLOW CHAMBER DISPOSED IN SAID CASING DOWNSTREAM OF SAID PRESSURE REDUCING VALVE, SAID FLOW CHAMBER HAVING A CROSS-SECTION WHICH INCREASES IN THE DIRECTION OF FLOW THROUGH WHICH FLOWS SUPERSONIC STEAM, MEANS CENTRALLY LOCATED AT A DOWNSTREAM END PORTION OF SAID FLOW CHAMBER REDUCING THE CROSS-SECTION THEREOF, SAID LAST-MENTIONED MEANS INCLUDING A CONCAVE SURFACE PORTION OPENING IN OPPOSITION TO THE STEAM FLOW FOR CREATING A PRESSURE WAVE FRONT THEREBY TRANSFORMING THE SUPERSONIC FLOW TO SUBSONIC FLOW, AND OUTLET DUCT MEANS FOR INJECTING A COOLING MEDIUM INTO THE FLOW CHAMBER ADJACENT TO AND UPSTREAM OF SAID CROSS-SECTION REDUCING MEANS.
US433761A 1965-02-18 1965-02-18 Pressure reducing control valve Expired - Lifetime US3331590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US433761A US3331590A (en) 1965-02-18 1965-02-18 Pressure reducing control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US433761A US3331590A (en) 1965-02-18 1965-02-18 Pressure reducing control valve

Publications (1)

Publication Number Publication Date
US3331590A true US3331590A (en) 1967-07-18

Family

ID=23721443

Family Applications (1)

Application Number Title Priority Date Filing Date
US433761A Expired - Lifetime US3331590A (en) 1965-02-18 1965-02-18 Pressure reducing control valve

Country Status (1)

Country Link
US (1) US3331590A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496724A (en) * 1967-11-30 1970-02-24 Allis Chalmers Mfg Co Main steam line desuperheater systems,apparatus and method
US3732851A (en) * 1971-05-26 1973-05-15 R Self Method of and device for conditioning steam
US4130611A (en) * 1976-12-06 1978-12-19 Yarway Corporation Attemperator
US4278619A (en) * 1979-09-05 1981-07-14 Sulzer Brothers Ltd. Steam throttle valve
US4442047A (en) * 1982-10-08 1984-04-10 White Consolidated Industries, Inc. Multi-nozzle spray desuperheater
US4718456A (en) * 1984-04-16 1988-01-12 Steam Systems And Services, Incorporated Steam conditioning valve
US4828767A (en) * 1988-09-01 1989-05-09 Atlantic Richfield Company Method and system for installing steam desuperheaters
US4931225A (en) * 1987-12-30 1990-06-05 Union Carbide Industrial Gases Technology Corporation Method and apparatus for dispersing a gas into a liquid
US5005605A (en) * 1989-07-10 1991-04-09 Keystone International Holdings Corp. Conditioning valve
US5012841A (en) * 1989-08-24 1991-05-07 Keystone International Holdings Corp. Pressure reducing and conditioning valves
US5045245A (en) * 1989-04-22 1991-09-03 Caldyn Apparatebau Gmbh Device for atomizing liquid or for comminuting gas into small bubbles
US5290486A (en) * 1990-05-08 1994-03-01 Btg Kalle Inventing Ag Desuperheater for controllable injection of cooling water in a steam or gas line
US5395569A (en) * 1992-12-09 1995-03-07 Nestec S.A. Tubular T-shaped nozzle assembly for treating fluids
US5439619A (en) * 1993-12-09 1995-08-08 Keystone International Holdings Corp. Steam conditioning butterfly valve
US5622655A (en) * 1995-04-10 1997-04-22 Hydro-Thermal Corporation Sanitary direct contact steam injection heater and method
US5692684A (en) * 1993-02-03 1997-12-02 Holter Regelarmaturen Gmbh & Co. Kg Injection cooler
US6082712A (en) * 1998-07-09 2000-07-04 Hydro-Thermal Corporation Direct contact steam injection heater
EP0971168A3 (en) * 1998-07-07 2001-08-22 Holter Regelarmaturen GmbH & Co. KG Injection attemperator for temperature control of superheated steam
US6361025B1 (en) 2000-04-11 2002-03-26 Hydro-Thermal Corporation Steam injection heater with transverse mounted mach diffuser
US6715505B2 (en) 2000-11-30 2004-04-06 Dresser, Inc. Steam pressure reducing and conditioning valve
US6742773B2 (en) 2000-11-30 2004-06-01 Dresser, Inc. Steam pressure reducing and conditioning valve
US6746001B1 (en) * 2003-02-28 2004-06-08 Control Components, Inc. Desuperheater nozzle
US6758232B2 (en) 2000-11-30 2004-07-06 Dresser, Inc. Steam pressure reducing and conditioning system
US6767007B2 (en) 2002-03-25 2004-07-27 Homer C. Luman Direct injection contact apparatus for severe services
US20040188869A1 (en) * 2003-03-28 2004-09-30 Cincotta Bruce A Improved seal and pressure relief for steam injection heater
US20140252125A1 (en) * 2013-03-11 2014-09-11 Control Components, Inc. Multi-Spindle Spray Nozzle Assembly
US8931717B2 (en) 2012-10-03 2015-01-13 Control Components, Inc. Nozzle design for high temperature attemperators
US8955773B2 (en) 2012-10-03 2015-02-17 Control Components, Inc. Nozzle design for high temperature attemperators
US10288280B2 (en) 2014-08-04 2019-05-14 Cci Italy Srl Dual cone spray nozzle assembly for high temperature attemperators
US11106227B2 (en) 2019-05-03 2021-08-31 Zurn Industries, Llc Pressure reducing valve with an integral venturi

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2088691A (en) * 1936-07-13 1937-08-03 Gilbert D Dill Gas and liquid contacting means and method
US2276055A (en) * 1939-06-13 1942-03-10 Swartwout Co Method of and apparatus for desuperheating
US2361150A (en) * 1941-01-24 1944-10-24 Mathieson Alkali Works Inc Method and apparatus for admitting chlorine to a liquid stream
US3116348A (en) * 1960-07-27 1963-12-31 Cottrell Res Inc Gas treating device
US3207492A (en) * 1960-07-05 1965-09-21 Bendek Fa Kohler Oscar Apparatus for controlling the pressure and temperature of gas by spraying it with water
US3219325A (en) * 1962-12-04 1965-11-23 Brown William Mixing valve
US3220708A (en) * 1963-03-29 1965-11-30 Maenaka Valve Works Co Ltd Desuperheating and pressure-reducing valve for superheated steam
US3220710A (en) * 1963-04-23 1965-11-30 Ingersoll Rand Co Self-regulating attemperator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2088691A (en) * 1936-07-13 1937-08-03 Gilbert D Dill Gas and liquid contacting means and method
US2276055A (en) * 1939-06-13 1942-03-10 Swartwout Co Method of and apparatus for desuperheating
US2361150A (en) * 1941-01-24 1944-10-24 Mathieson Alkali Works Inc Method and apparatus for admitting chlorine to a liquid stream
US3207492A (en) * 1960-07-05 1965-09-21 Bendek Fa Kohler Oscar Apparatus for controlling the pressure and temperature of gas by spraying it with water
US3116348A (en) * 1960-07-27 1963-12-31 Cottrell Res Inc Gas treating device
US3219325A (en) * 1962-12-04 1965-11-23 Brown William Mixing valve
US3220708A (en) * 1963-03-29 1965-11-30 Maenaka Valve Works Co Ltd Desuperheating and pressure-reducing valve for superheated steam
US3220710A (en) * 1963-04-23 1965-11-30 Ingersoll Rand Co Self-regulating attemperator

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496724A (en) * 1967-11-30 1970-02-24 Allis Chalmers Mfg Co Main steam line desuperheater systems,apparatus and method
US3732851A (en) * 1971-05-26 1973-05-15 R Self Method of and device for conditioning steam
US4130611A (en) * 1976-12-06 1978-12-19 Yarway Corporation Attemperator
US4278619A (en) * 1979-09-05 1981-07-14 Sulzer Brothers Ltd. Steam throttle valve
US4442047A (en) * 1982-10-08 1984-04-10 White Consolidated Industries, Inc. Multi-nozzle spray desuperheater
US4718456A (en) * 1984-04-16 1988-01-12 Steam Systems And Services, Incorporated Steam conditioning valve
US4931225A (en) * 1987-12-30 1990-06-05 Union Carbide Industrial Gases Technology Corporation Method and apparatus for dispersing a gas into a liquid
US4828767A (en) * 1988-09-01 1989-05-09 Atlantic Richfield Company Method and system for installing steam desuperheaters
US5045245A (en) * 1989-04-22 1991-09-03 Caldyn Apparatebau Gmbh Device for atomizing liquid or for comminuting gas into small bubbles
US5005605A (en) * 1989-07-10 1991-04-09 Keystone International Holdings Corp. Conditioning valve
US5012841A (en) * 1989-08-24 1991-05-07 Keystone International Holdings Corp. Pressure reducing and conditioning valves
US5290486A (en) * 1990-05-08 1994-03-01 Btg Kalle Inventing Ag Desuperheater for controllable injection of cooling water in a steam or gas line
US5395569A (en) * 1992-12-09 1995-03-07 Nestec S.A. Tubular T-shaped nozzle assembly for treating fluids
US5692684A (en) * 1993-02-03 1997-12-02 Holter Regelarmaturen Gmbh & Co. Kg Injection cooler
AU682925B2 (en) * 1993-12-09 1997-10-23 Keystone International Holdings Corporation Steam conditioning butterfly valve
US5439619A (en) * 1993-12-09 1995-08-08 Keystone International Holdings Corp. Steam conditioning butterfly valve
US5622655A (en) * 1995-04-10 1997-04-22 Hydro-Thermal Corporation Sanitary direct contact steam injection heater and method
EP0971168A3 (en) * 1998-07-07 2001-08-22 Holter Regelarmaturen GmbH & Co. KG Injection attemperator for temperature control of superheated steam
US6082712A (en) * 1998-07-09 2000-07-04 Hydro-Thermal Corporation Direct contact steam injection heater
US6361025B1 (en) 2000-04-11 2002-03-26 Hydro-Thermal Corporation Steam injection heater with transverse mounted mach diffuser
US6758232B2 (en) 2000-11-30 2004-07-06 Dresser, Inc. Steam pressure reducing and conditioning system
US6715505B2 (en) 2000-11-30 2004-04-06 Dresser, Inc. Steam pressure reducing and conditioning valve
US6742773B2 (en) 2000-11-30 2004-06-01 Dresser, Inc. Steam pressure reducing and conditioning valve
US6767007B2 (en) 2002-03-25 2004-07-27 Homer C. Luman Direct injection contact apparatus for severe services
US6746001B1 (en) * 2003-02-28 2004-06-08 Control Components, Inc. Desuperheater nozzle
US20040188869A1 (en) * 2003-03-28 2004-09-30 Cincotta Bruce A Improved seal and pressure relief for steam injection heater
US7025338B2 (en) 2003-03-28 2006-04-11 Hydro-Thermal Corporation Seal and pressure relief for steam injection heater
US8931717B2 (en) 2012-10-03 2015-01-13 Control Components, Inc. Nozzle design for high temperature attemperators
US8955773B2 (en) 2012-10-03 2015-02-17 Control Components, Inc. Nozzle design for high temperature attemperators
US20140252125A1 (en) * 2013-03-11 2014-09-11 Control Components, Inc. Multi-Spindle Spray Nozzle Assembly
US9492829B2 (en) * 2013-03-11 2016-11-15 Control Components, Inc. Multi-spindle spray nozzle assembly
US10288280B2 (en) 2014-08-04 2019-05-14 Cci Italy Srl Dual cone spray nozzle assembly for high temperature attemperators
US11106227B2 (en) 2019-05-03 2021-08-31 Zurn Industries, Llc Pressure reducing valve with an integral venturi
US11835971B2 (en) 2019-05-03 2023-12-05 Zurn Industries, Llc Pressure reducing valve with an integral venturi

Similar Documents

Publication Publication Date Title
US3331590A (en) Pressure reducing control valve
US3732851A (en) Method of and device for conditioning steam
US2966896A (en) Method and apparatus for controlling the outlet temperatures of superheaters and reheaters of a steam generating plant
US2155986A (en) Desuperheater
US3017870A (en) Steam or vapor generator having at least two firing systems
US3035557A (en) Method of cooling resuperheaters of a steam plant
GB1431430A (en) Spray attemperators for vapour
US2276055A (en) Method of and apparatus for desuperheating
US3220708A (en) Desuperheating and pressure-reducing valve for superheated steam
US3129564A (en) Forced flow steam generating plants including a reheater
GB1200954A (en) Method of operating a vapor power plant at subcritical and supercritical pressure and a plant for carrying out the method
US3769942A (en) Method of regulating the temperature of superheated steam in a steam generator
US2106414A (en) Control system
US3092677A (en) Desuperheater
ES348735A1 (en) Positively operated steam generator
US3096744A (en) Method of and apparatus for regulating the steam temperature in a steam generator
US3133528A (en) Tubular heating element for heating fluids
US3164136A (en) Method of and apparatus for regulating a forced flow steam generator
US3413809A (en) Steam power plants
US2879751A (en) Forced flow steam generator and method of starting same
US3231475A (en) Nuclear reactor plant
US2604085A (en) Apparatus for temperature regulation
US3425225A (en) Auxiliary jet stream injecting means for reaction engines
GB851754A (en) Improvements in heat generating and utilising plants
GB1122011A (en) A regulating device for elastic-fluid turbines