US5329451A - Steerable trailer and steering apparatus of combination vehicle - Google Patents
Steerable trailer and steering apparatus of combination vehicle Download PDFInfo
- Publication number
- US5329451A US5329451A US08/073,500 US7350093A US5329451A US 5329451 A US5329451 A US 5329451A US 7350093 A US7350093 A US 7350093A US 5329451 A US5329451 A US 5329451A
- Authority
- US
- United States
- Prior art keywords
- trailer
- tractor
- steering angle
- wheel steering
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/142—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks
- B62D7/144—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks for vehicles with more than two axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D13/00—Steering specially adapted for trailers
- B62D13/04—Steering specially adapted for trailers for individually-pivoted wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
- B62D7/159—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
Definitions
- the present invention relates to a semi-trailer with all wheels steerable.
- the present invention relates to a steering apparatus of a combination vehicle, that is, a semi-trailer.
- a steerable trailer As regards a steerable trailer, a full trailer is shown in the official gazette Japanese Patent Application Disclosure No. 61-60379. Also, a prior art of a semi-trailer is shown in the official gazette Japanese Patent Application Disclosure No. 56-163968. In the latter prior art, a steering mechanism of trailer wheels is controlled in response to output signals from a feedback circuit provided in a control circuit including a microcomputer which receives electric signals representing a steering status of the front wheel and a rotational status of the wheel as input signals. Also, in the latter art, a path of the trailer may approach that of the tractor so that a tractor and trailer can pass through a narrow curved path, and can prevent any obstacle from being caught under the wheels with the least inward turning.
- a steering apparatus of a combination vehicle a steering apparatus of a full trailer is shown in the above-mentioned official gazette Japanese Patent Application Disclosure No. 61-60379. Also, a steering apparatus of a semi-trailer is shown in Japanese Utility Model Application No. 1-20202, which has been filed with the Japanese Patent Office in the name of the applicant.
- Another object of the present invention is to provide a steerable trailer due to a simple control and no restrictions on the tractor for a trailer to be coupled.
- the present invention provides a combination vehicle comprising:
- front wheel steering angle detecting means for detecting a front wheel steering angle
- coupling angle detecting means for detecting a coupling angle
- rear wheel steering angle detecting means for detecting a rear wheel steering angle
- trailer wheel steering angle detecting means for detecting a trailer wheel steering angle
- control means for calculating and memorizing a travel direction of a front end of the tractor at voluntary points in response to signals transmitted from each of said detecting means, said control means transmitting output signals to each of said actuators so as to align travel directions of a coupling point and a rear end of the trailer with the memorized direction when the coupling point and the rear of the trailer reach a voluntary point.
- the coupling angle detection means comprises a coupling angle sensor being attached to a coupler and detecting a relative angle between center lines of the tractor and trailer.
- control means comprises a controller including a microcomputer.
- the controller calculates a travel direction on the front end of the tractor due to the front wheel steering angle being detected and memorizes the direction.
- the controller calculates a rear wheel steering angle such that a travel direction of the coupling point (referred to as point B) is equal to the travel direction on the front end of the tractor when point B reaches a location of the point A, and then, the controller controls the rear wheel actuator.
- the controller calculates a trailer wheel steering angle such that a travel direction of the rear end (referred to as point C) of the trailer is equal to the above-mentioned travel direction when point C reaches a location of the point A, and then, the controller controls the trailer wheel actuator.
- a steerable trailer comprising:
- a controller for controlling the steering mechanism so that a rear end of the trailer may follow (and/or trace) a path of a coupling point.
- a side slip angle should be considered in order to determine a travel direction of the coupling point.
- the sideslip angle can be considered as zero. Therefore, the controller can control the rear end of a trailer so as to make the rear end of the trailer follow (and/or trace) a path of the coupling point, due to a simple operation control calculation.
- FIG. 1 is a general arrangement showing an embodiment of the present invention.
- FIG. 2 is a control block diagram.
- FIG. 3 is a control flow chart.
- FIG. 4 is a drawing for explaining a unit distance.
- FIG. 5 is a drawing for explaining a calculation mode.
- FIG. 6 is a general arrangement showing an embodiment of the present invention.
- FIGS. 7 and 8 are plans for explaining the calculation modes.
- FIG. 9 is a control flow chart while the key switch is ON.
- FIG. 10 is a control flow chart of detection and storage of coupling angle.
- FIG. 11 is a control flow chart for calculating the rear wheel target steering angle.
- a steering mechanism 2 for steering a front wheel of a tractor T which includes a front wheel steering angle sensor 3 as a front wheel steering angle detection means.
- a rear wheel 4 a rear wheel hydraulic cylinder 5 and rear wheel steering angle sensor 7 is provided as a rear wheel steering angle detection means.
- a tractor T is provided with a vehicle speed sensor 8.
- the sensor 10 is provided as a coupling angle detection means.
- Trailer wheel 11 is provided with a trailer wheel hydraulic cylinder 12 and a trailer wheel steering angle sensor 16 as a trailer wheel steering angle detection means.
- Actuators 5 and 12 are selectively connected with a hydraulic pump 14 or an oil tank 15 through servo valves 6 and 13, respectively. Also, sensors 3, 7, 8, 10, and 16, and servo valves 6 and 13 are connected with controller 20 individually.
- a controller 20 which comprises a circuit including a microcomputer, is provided with a central processing unit (CPU) 21.
- CPU 21 central processing unit
- the CPU 21 is connected with the front wheel steering angle sensor 3, vehicle speed sensor 8, and coupling angle sensor 10.
- signals from these sensors 3, 8, and 10 are input to CPU 21 through the input interface 24.
- output interface 25 being followed by D/A conventers 26 and 28, a signal from CPU 21 is transmitted to a rear wheel servo amplifier 27 and a trailer wheel servo amplifier 29, respectively.
- controller 20 is provided with ROM 22 for memorizing programs and operation expressions, and RAM 23 for memorizing a travel direction of the front end of the tractor at a voluntary point, which direction is calculated by CPU 21.
- the above rear wheel servo amplifier 27 is connected with the rear wheel hydraulic cylinder 5, and also, the amplifier 27 is directly connected with rear wheel steering angle sensor 7.
- a trailer wheel servo amplifier 29 is connected with the trailer wheel hydraulic cylinder 12, and also, the amplifier 29 is directly connected with the trailer wheel steering angle sensor 16.
- controller 20 Upon controlling, as shown in FIG. 3, with every travel of a prescribed unit distance D (shown in FIG. 4) being calculated due to signals from vehicle speed sensor 8 (step S1 is YES), controller 20 detects the front wheel steering angle and coupling angle (steps S2 and S3) due to signals from front wheel steering angle sensor 3 and coupling angle sensor 10. Then, the controller 20 calculates the rear wheel steering angle, trailer wheel steering angle, tractor yawing angle, and trailer yawing angle (steps S4, S5, S6, and S7). Next, the controller 20 calculates a travel direction of front end of the tractor T at a voluntary point (step 8). Due to this calculated result, controller 20 outputs control signals to the rear wheel hydraulic cylinder 5 and trailer wheel hydraulic cylinder 12, and then, controlling procedure returns to step S1.
- symbols A, B, C, and P denote a point of the front end of the tractor T, coupling point, point of the rear end of trailer R, and a center of gravity of wheel base L of tractor T, respectively.
- symbols ⁇ f, ⁇ r, and ⁇ t denote steering angles of the front wheel 1, rear wheel 4, and trailer wheel 11, respectively. Additionally, all of the angles are represented by radian.
- Sh(i) corresponds to a direction in which the coupling point B should be advanced.
- a rear wheel steering angle ⁇ r with which angle the coupling point B may advance in the direction of Sh(i), is:
- Angle of sideslip ⁇ B 1 of coupling point B, which angle ⁇ B 1 is viewed from trailer R, is:
- a sideslip angle ⁇ C of point C on the rear end is:
- Sh(1) corresponds to a direction in which point C should be advanced.
- a trailer wheel steering angle ⁇ t with which the point C can advance in the direction of the yawing angle Sh(1) is:
- Vehicle angle in a unit time that is, yawing angle ⁇ 1 is:
- the controller calculates Sh(n), which represents a travel direction of point A, due to the front wheel steering angle ⁇ f, and memorizes Sh(n) in RAM 23. Also, the controller calculates the rear wheel steering angle ⁇ r so that the coupling point B may advance in the same direction, that is, the travel direction on the front end of the tractor when point B reaches a location of the point A. And then, the controller controls the rear wheel hydraulic actuator 5.
- the controller calculates the trailer wheel steering angle so that point C may advance in the same direction, that is, the travel direction on the front end of the tractor when point C reaches a location of the point A. And then, the controller controls trailer wheel hydraulic actuator 12.
- a tractor 101 is provided with a steering 111 and link mechanism 113 for steering a pair of front wheels 112 in combination with the steering 111. Also, the tractor 101 is provided with a front wheel steering angle sensor 114 for detecting a steered angle of front wheel 112 by measuring an angle of steering 111, and a coupling angle sensor 117 which is attached to a coupler 116 and detects a coupling angle of the coupler 116. And a numeral 118 denotes a pair of rear wheel of the tractor 101.
- the trailer 102 is provided with a vehicle speed sensor 115 for outputting a pulse signal, a frequency of which signal is proportional to a number of revolutions of the rear wheel, link mechanism 122 for steering the rear wheel 121, and a hydraulic actuator 123 for driving the link mechanism 122.
- the actuator 123 is connected with an oil pump 124 and an oil tank 125.
- These members 122-126 construct the steering mechanism.
- the trailer 102 is provided with a rear wheel steering angle sensor 127 for detecting a steering angle of rear wheel 121.
- These members, 114, 115, 117, 126 and 127 are connected with a controller, respectively.
- the controller is represented by a numeral 131, in general.
- the controller 131 consists of a microcomputer.
- a CPU 134 in the controller 131 is connected with a A/D converter 132, which is connected with the front wheel steering angle sensor 114 and the coupling angle sensor 117, and a pulse input interface 133 which is connected with vehicle speed sensor 115.
- ROM 136 and RAM 137 are connected with the CPU 134, respectively.
- the CPU 134 is connected with the servo valve 126, and the servo amplifier 135 is connected with the rear wheel steering angle sensor 127.
- C.G. center of gravity of the trailer 102.
- a yawing rate ⁇ 1 is:
- a sideslip angle ⁇ 1 of center of gravity C.G. is:
- a sideslip angle ⁇ c of point C is:
- equation (3) is:
- a character Lh denotes a distance between the rear wheel set of tractor 101 and the coupling point H
- a sideslip angle ⁇ h being viewed from the coupling point, that is, point H, is:
- a character L denotes a wheel base of the tractor 101. Since the distance Lh is so small as compared with the wheel base L, a value of "Lh/L" can be neglected, and therefore, we get:
- a travel direction ⁇ h of point H is:
- a yawing angle ⁇ 1 (x) is represented as follows:
- Equation (9) may also be transformed as follows:
- the controller operates and/or calculates a travel direction of the point H with every unit travel distance ⁇ x by the equation (5), and memorizes the travel direction in RAM 137. And then, the controller controls a target steering angle of rear wheel 121 of the trailer 102 by the equation (11), so as to make the point C move and/or pass in the same travel direction with the travel direction of the point H memorized in RAM 137 when the point C comes to a location that the point H has already passed.
- step S1 the controller 131 resets the previously memorized yawing angle ⁇ 1 to zero (step S1), and then, sets a counter of unit travel distance ⁇ x to 1 (step S2).
- step S3 the controller sets the travel direction ⁇ h(i) to zero (step S3), and increases a value of the count by one (step S4).
- step S5 is YES
- step S5 the controller returns.
- a target travel direction of the point C is kept in initialized condition that the point C moves in a straight advance direction until the point C reaches a location where the point H has passed.
- step S10 With every unit time ⁇ t, due to signals generated from the coupling angle sensor 117, the controller 131 detects the coupling angle ⁇ (step S10), eliminates noises (step S11), stores the coupling angle in RAM 137 (step S12), and returns.
- the controller 131 reads the coupling angle ⁇ , the yawing angle ⁇ , the travel direction ⁇ h(1) of the point H at the time that the point H was at the present location of the point C, and items (weight and lengths Lc, Lfr, Ltf, Lt, etc.) of the trailer 102 (steps S20, S21, S22, and S23).
- controller 131 calculates the target steering angle ⁇ t of the rear wheel 121 with reference to the equation (11) (step S24), and sets the count to 1 (step S25). Then, controller 131 increases the data value of the travel direction ⁇ h(i) by one (step S26), increases count value by one (step S27), and determines whether the count value has reached a predetermined count (value) n (step S28).
- step S26 If No, the controller 131 returns to step S26.
- the controller 131 calculates a travel direction of the point II by the equation (5) (step S29), stores such the direction in RAM 137 (step S30). Then, the controller 131 calculates the yawing rate ⁇ 1 by the equation (1) (step S31), calculates the yawing angle ⁇ 1 (x) by the equation (10) (step S32), outputs a signal of the target steering angle ⁇ t to the servo amplifier 135 (step S32), and then, returns.
- the present invention constructed as explained above, is able to control steering angles of rear wheel and trailer wheels by a feed forward control, make paths of any point on the front end of tractor, coupling point, and a point on the rear end of trailer concur (align) with one another, reduce inner wheel difference of the trailer, make a turn without overhang problems, and improve mobility thereof.
- the present invention is constructed as mentioned above, the rear wheel of trailer can be steered with a simple control, and the mobility of the vehicle carring out the present invention is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
Abstract
A combination vehicle is described herein including a tractor and a trailer. A front wheel steering angle detector is included for detecting a front wheel steering angle. A coupling angle detector also is included for detecting a coupling angle of a coupling point between the tractor and trailer. The rear wheel steering angle and the trailer wheel steering angle are detected via a rear wheel steering angle detector and a trailer wheel steering angle detector, respectively. Actuators are included for steering the rear wheels and the trailer wheels separately. A controller is provided for calculating and memorizing a travel direction of a front end of the tractor at a location in response to signals transmitted from the detectors. The controller transmits output signals to the actuators so as to align travel directions of the coupling point and the rear end of the trailer with the memorized direction of the front end of the tractor when the coupling point and the rear end of trailer reach the location. The controller calculates and memorizes the travel direction of the front end of the tractor at plural, discrete locations and transmits output signals to the actuators so as to align the travel direction of the coupling point and the rear end of the trailer with the memorized direction of the front end of the tractor when the coupling point and the rear end of the trailer reach the discrete locations.
Description
This is a divisional of co-pending application Ser. No. 07/764,304 filed on Sep. 24, 1991, now U.S. Pat. No. 5,289,892, which application is entirely incorporated by reference.
The present invention relates to a semi-trailer with all wheels steerable.
Also, the present invention relates to a steering apparatus of a combination vehicle, that is, a semi-trailer.
As regards a steerable trailer, a full trailer is shown in the official gazette Japanese Patent Application Disclosure No. 61-60379. Also, a prior art of a semi-trailer is shown in the official gazette Japanese Patent Application Disclosure No. 56-163968. In the latter prior art, a steering mechanism of trailer wheels is controlled in response to output signals from a feedback circuit provided in a control circuit including a microcomputer which receives electric signals representing a steering status of the front wheel and a rotational status of the wheel as input signals. Also, in the latter art, a path of the trailer may approach that of the tractor so that a tractor and trailer can pass through a narrow curved path, and can prevent any obstacle from being caught under the wheels with the least inward turning.
In the above-mentioned prior art, since steering thereof is controlled with a feedback control and rear wheels thereof are non-steering wheels, it is difficult to make a path of the trailer align with that of the tractor. Therefore, it gives a low mobility.
As regards a steering apparatus of a combination vehicle, a steering apparatus of a full trailer is shown in the above-mentioned official gazette Japanese Patent Application Disclosure No. 61-60379. Also, a steering apparatus of a semi-trailer is shown in Japanese Utility Model Application No. 1-20202, which has been filed with the Japanese Patent Office in the name of the applicant.
The above-mentioned prior art is effective in itself. However, since the rear wheel steering angle is controlled so as to make a rear end of trailer follow (and/or trace) a path of the front end of the tractor, a complicated operation is required to control the steering angle. Also, since trailer items (distances between coupler and rear end, coupler and rear wheel set, and rear wheel set and rear end) are included in the operation expression, there is a nonconformity by which the trailers to be coupled are restricted.
It is an object of the present invention to provide a combination vehicle which makes all of the path of the front end of the tractor, coupling point, and rear end of the trailer concur (align) with one another so as to improve a mobility thereof.
Another object of the present invention is to provide a steerable trailer due to a simple control and no restrictions on the tractor for a trailer to be coupled.
The present invention provides a combination vehicle comprising:
front wheel steering angle detecting means for detecting a front wheel steering angle;
coupling angle detecting means for detecting a coupling angle;
rear wheel steering angle detecting means for detecting a rear wheel steering angle;
trailer wheel steering angle detecting means for detecting a trailer wheel steering angle;
actuators for steering the rear wheels of the tractor and trailer, separately; and
control means for calculating and memorizing a travel direction of a front end of the tractor at voluntary points in response to signals transmitted from each of said detecting means, said control means transmitting output signals to each of said actuators so as to align travel directions of a coupling point and a rear end of the trailer with the memorized direction when the coupling point and the rear of the trailer reach a voluntary point.
It is preferable that the coupling angle detection means comprises a coupling angle sensor being attached to a coupler and detecting a relative angle between center lines of the tractor and trailer.
Also, it is preferable that the control means comprises a controller including a microcomputer.
In the combination vehicle being constructed as mentioned-above, at a voluntary point (represented by a point A), the controller calculates a travel direction on the front end of the tractor due to the front wheel steering angle being detected and memorizes the direction. Next, the controller calculates a rear wheel steering angle such that a travel direction of the coupling point (referred to as point B) is equal to the travel direction on the front end of the tractor when point B reaches a location of the point A, and then, the controller controls the rear wheel actuator.
Also, the controller calculates a trailer wheel steering angle such that a travel direction of the rear end (referred to as point C) of the trailer is equal to the above-mentioned travel direction when point C reaches a location of the point A, and then, the controller controls the trailer wheel actuator.
By the above-mentioned manner, steering angles of rear and trailer wheels are predicted, the rear wheel actuator and the trailer wheel actuator are controlled, and then, all of the paths of points A, B, and C concur (align) with one another.
According to the present invention, it is provided a steerable trailer comprising:
a steering mechanism for steering rear wheels; and
a controller for controlling the steering mechanism so that a rear end of the trailer may follow (and/or trace) a path of a coupling point.
Originally, a side slip angle should be considered in order to determine a travel direction of the coupling point. However, since a distance between the rear wheel set of a tractor and the coupling point is short, the sideslip angle can be considered as zero. Therefore, the controller can control the rear end of a trailer so as to make the rear end of the trailer follow (and/or trace) a path of the coupling point, due to a simple operation control calculation.
Embodiments of the present invention are explained hereinafter with reference to the accompanied drawings.
FIG. 1 is a general arrangement showing an embodiment of the present invention.
FIG. 2 is a control block diagram.
FIG. 3 is a control flow chart.
FIG. 4 is a drawing for explaining a unit distance.
FIG. 5 is a drawing for explaining a calculation mode.
FIG. 6 is a general arrangement showing an embodiment of the present invention.
FIGS. 7 and 8 are plans for explaining the calculation modes.
FIG. 9 is a control flow chart while the key switch is ON.
FIG. 10 is a control flow chart of detection and storage of coupling angle.
FIG. 11 is a control flow chart for calculating the rear wheel target steering angle.
The first embodiment of the present invention is explained with reference to FIGS. 1-5.
In FIG. 1, a steering mechanism 2 for steering a front wheel of a tractor T which includes a front wheel steering angle sensor 3 as a front wheel steering angle detection means. In a rear wheel 4, a rear wheel hydraulic cylinder 5 and rear wheel steering angle sensor 7 is provided as a rear wheel steering angle detection means. Also, a tractor T is provided with a vehicle speed sensor 8.
A coupler 9, which is a coupling point of tractor T and trailer R, is provided with a coupling angle sensor 10 for detecting a relative angle between center lines of tractor T and trailer R. The sensor 10 is provided as a coupling angle detection means.
Trailer wheel 11 is provided with a trailer wheel hydraulic cylinder 12 and a trailer wheel steering angle sensor 16 as a trailer wheel steering angle detection means. Actuators 5 and 12 are selectively connected with a hydraulic pump 14 or an oil tank 15 through servo valves 6 and 13, respectively. Also, sensors 3, 7, 8, 10, and 16, and servo valves 6 and 13 are connected with controller 20 individually.
In FIG. 2, a controller 20, which comprises a circuit including a microcomputer, is provided with a central processing unit (CPU) 21. Through an input interface 24, the CPU 21 is connected with the front wheel steering angle sensor 3, vehicle speed sensor 8, and coupling angle sensor 10. Thus, signals from these sensors 3, 8, and 10 are input to CPU 21 through the input interface 24. Also, through output interface 25 being followed by D/ A conventers 26 and 28, a signal from CPU 21 is transmitted to a rear wheel servo amplifier 27 and a trailer wheel servo amplifier 29, respectively. In addition to the CPU 21, controller 20 is provided with ROM 22 for memorizing programs and operation expressions, and RAM 23 for memorizing a travel direction of the front end of the tractor at a voluntary point, which direction is calculated by CPU 21. Through the servo valve 6, the above rear wheel servo amplifier 27 is connected with the rear wheel hydraulic cylinder 5, and also, the amplifier 27 is directly connected with rear wheel steering angle sensor 7. Similarly, through a servo valve 13, a trailer wheel servo amplifier 29 is connected with the trailer wheel hydraulic cylinder 12, and also, the amplifier 29 is directly connected with the trailer wheel steering angle sensor 16.
Upon controlling, as shown in FIG. 3, with every travel of a prescribed unit distance D (shown in FIG. 4) being calculated due to signals from vehicle speed sensor 8 (step S1 is YES), controller 20 detects the front wheel steering angle and coupling angle (steps S2 and S3) due to signals from front wheel steering angle sensor 3 and coupling angle sensor 10. Then, the controller 20 calculates the rear wheel steering angle, trailer wheel steering angle, tractor yawing angle, and trailer yawing angle (steps S4, S5, S6, and S7). Next, the controller 20 calculates a travel direction of front end of the tractor T at a voluntary point (step 8). Due to this calculated result, controller 20 outputs control signals to the rear wheel hydraulic cylinder 5 and trailer wheel hydraulic cylinder 12, and then, controlling procedure returns to step S1.
Hereinafter, a calculation mode is explained in reference to FIG. 5.
In FIG. 5, symbols A, B, C, and P denote a point of the front end of the tractor T, coupling point, point of the rear end of trailer R, and a center of gravity of wheel base L of tractor T, respectively. Also, symbols δf, δr, and δt denote steering angles of the front wheel 1, rear wheel 4, and trailer wheel 11, respectively. Additionally, all of the angles are represented by radian.
Angle of sideslip βA at point A is:
βA={(B+Lf)/L{δf+{(A-Lf)/L}δr
Angle of sideslip βB at coupling point B is: ##EQU1##
In this equation, Sh(i) corresponds to a direction in which the coupling point B should be advanced.
Hence, a rear wheel steering angle δr, with which angle the coupling point B may advance in the direction of Sh(i), is:
δr={L/(A+H)}{Sh(i)-ψ.sub.1 }-{(B-H)/(A+H)}δf
Angle of sideslip βB1 of coupling point B, which angle βB1 is viewed from trailer R, is:
βB.sub.1 =Sh(i)-ψ.sub.2
A sideslip angle βC of point C on the rear end is:
βC=Sh(1)-ψ.sub.2
In this equation, Sh(1) corresponds to a direction in which point C should be advanced.
Also,
βC={(L1-LR)/L1}βB.sub.1 +(LR/L1)δt
Hence, a trailer wheel steering angle δt, with which the point C can advance in the direction of the yawing angle Sh(1) is:
δt=(L1/LR){Sh(1)-ψ.sub.2 }-{(L1-LR)/LR}{Sh(i)-ψ.sub.2 }
Yawing rate ψ1 of tractor T is:
ψ.sub.1 =(ΔD/L)(δf-δr)
Vehicle angle in a unit time, that is, yawing angle ψ1 is:
ψ.sub.1 =ψ.sub.1 +ψ.sub.1
Yawing rate ψ2 of trailer R is:
ψ.sub.2 =(ΔD/L)(βB.sub.1 -δt)
Yawing angle ψ2 is:
ψ.sub.2 =ψ.sub.2 +ψ.sub.2
Also, assuming that coupling angle=φ, we get:
ψ.sub.2 =ψ.sub.1 -φ
As above-mentioned, the controller calculates Sh(n), which represents a travel direction of point A, due to the front wheel steering angle δf, and memorizes Sh(n) in RAM 23. Also, the controller calculates the rear wheel steering angle δr so that the coupling point B may advance in the same direction, that is, the travel direction on the front end of the tractor when point B reaches a location of the point A. And then, the controller controls the rear wheel hydraulic actuator 5.
Additionally, the controller calculates the trailer wheel steering angle so that point C may advance in the same direction, that is, the travel direction on the front end of the tractor when point C reaches a location of the point A. And then, the controller controls trailer wheel hydraulic actuator 12.
Thus, a path of voluntary point A on the front end of the tractor, coupling point B, and point C on the rear end of the trailer will surely concur (align) with one another.
The second embodiment of the present invention is explained with reference to FIGS. 6-11.
In FIG. 6, a tractor 101 is provided with a steering 111 and link mechanism 113 for steering a pair of front wheels 112 in combination with the steering 111. Also, the tractor 101 is provided with a front wheel steering angle sensor 114 for detecting a steered angle of front wheel 112 by measuring an angle of steering 111, and a coupling angle sensor 117 which is attached to a coupler 116 and detects a coupling angle of the coupler 116. And a numeral 118 denotes a pair of rear wheel of the tractor 101.
On the other hand, the trailer 102 is provided with a vehicle speed sensor 115 for outputting a pulse signal, a frequency of which signal is proportional to a number of revolutions of the rear wheel, link mechanism 122 for steering the rear wheel 121, and a hydraulic actuator 123 for driving the link mechanism 122. Through a servo valve 126, the actuator 123 is connected with an oil pump 124 and an oil tank 125. These members 122-126 construct the steering mechanism. Also, the trailer 102 is provided with a rear wheel steering angle sensor 127 for detecting a steering angle of rear wheel 121. These members, 114, 115, 117, 126 and 127 are connected with a controller, respectively. The controller is represented by a numeral 131, in general.
The controller 131 consists of a microcomputer. A CPU 134 in the controller 131 is connected with a A/D converter 132, which is connected with the front wheel steering angle sensor 114 and the coupling angle sensor 117, and a pulse input interface 133 which is connected with vehicle speed sensor 115. Also, ROM 136 and RAM 137 are connected with the CPU 134, respectively. Through a D/A converter 138 and a servo amplifier 135, the CPU 134 is connected with the servo valve 126, and the servo amplifier 135 is connected with the rear wheel steering angle sensor 127.
Next, a calculation mode is explained in FIG. 7.
In FIG. 7, assume that:
H: center of coupling point, that is, center of the coupler 116;
φ: coupling angle;
C: rear end of the trailer 102;
C.G.: center of gravity of the trailer 102.
Then, a yawing rate ψ1 is:
ψ.sub.1 =(φ-δt)V/Lt (1)
A sideslip angle β1 of center of gravity C.G. is:
β.sub.1 =(Ltr·φ/Lt)+(Lft·δt/Lt)(2)
A sideslip angle βc of point C is:
βc=β.sub.1 -(Lc·ψ.sub.1 /V) (3)
From equations (1) and (2), equation (3) is:
βc={(Ltr-Lc)φ/Lt}+{(Ltf+Lc)δt/Lt}
Assuming that a character Lh denotes a distance between the rear wheel set of tractor 101 and the coupling point H, a sideslip angle βh being viewed from the coupling point, that is, point H, is:
βh=(Lh/L)·df+φ
in which, a character L denotes a wheel base of the tractor 101. Since the distance Lh is so small as compared with the wheel base L, a value of "Lh/L" can be neglected, and therefore, we get:
βh≈φ (4)
A travel direction γh of point H is:
γh=φ+ψ.sub.1 (5)
Travel direction γc of point C is: ##EQU2##
If a discretion by a unit travel distance Δx (FIG. 8) is carried out in order to make the point C follow and/or trace a path of the point H,
γc(x)=γh(x-n·Δx) (7)
in which,
n=(Ltf+Lc)/Δx (8)
From the equations (5) and (6), we get:
{(Ltr-Lc)φ(x)/Lt}+{(Ltf+Lc)δt(x)/Lt}+ψ.sub.1 (x)=γh(x-n·Δx) (9)
A yawing angle ψ1 (x) is represented as follows:
ψ.sub.1 (x)=ψ.sub.1 (x-n·Δx)+{(φ(x)+δt(x)Δx/Lt}(10)
The equation (9) may also be transformed as follows:
δt(x)=γh(x-n·Δx)-{(Ltr-Lc)φ(x)/(Ltf+Lc)}-Lt.multidot.φ(x)/(Ltf+Lc) (11)
Thus, the controller operates and/or calculates a travel direction of the point H with every unit travel distance Δx by the equation (5), and memorizes the travel direction in RAM 137. And then, the controller controls a target steering angle of rear wheel 121 of the trailer 102 by the equation (11), so as to make the point C move and/or pass in the same travel direction with the travel direction of the point H memorized in RAM 137 when the point C comes to a location that the point H has already passed.
Next, control modes are explained with reference to FIGS. 9-11.
In FIG. 9, with a key switch (not shown) ON, the controller 131 resets the previously memorized yawing angle ψ1 to zero (step S1), and then, sets a counter of unit travel distance Δx to 1 (step S2). Next, the controller sets the travel direction γh(i) to zero (step S3), and increases a value of the count by one (step S4). Then, when the value of the count reaches a predetermined count n (step S5 is YES), the controller returns. In other words, while the power is ON, a target travel direction of the point C is kept in initialized condition that the point C moves in a straight advance direction until the point C reaches a location where the point H has passed.
In FIG. 10, with every unit time Δt, due to signals generated from the coupling angle sensor 117, the controller 131 detects the coupling angle φ (step S10), eliminates noises (step S11), stores the coupling angle in RAM 137 (step S12), and returns.
In FIG. 11, with every travel distance Δx, the controller 131 reads the coupling angle φ, the yawing angle ψ, the travel direction γh(1) of the point H at the time that the point H was at the present location of the point C, and items (weight and lengths Lc, Lfr, Ltf, Lt, etc.) of the trailer 102 (steps S20, S21, S22, and S23).
Then, the controller 131 calculates the target steering angle δt of the rear wheel 121 with reference to the equation (11) (step S24), and sets the count to 1 (step S25). Then, controller 131 increases the data value of the travel direction γh(i) by one (step S26), increases count value by one (step S27), and determines whether the count value has reached a predetermined count (value) n (step S28).
If No, the controller 131 returns to step S26.
If Yes, the controller 131 calculates a travel direction of the point II by the equation (5) (step S29), stores such the direction in RAM 137 (step S30). Then, the controller 131 calculates the yawing rate ψ1 by the equation (1) (step S31), calculates the yawing angle ψ1 (x) by the equation (10) (step S32), outputs a signal of the target steering angle δt to the servo amplifier 135 (step S32), and then, returns.
The present invention, constructed as explained above, is able to control steering angles of rear wheel and trailer wheels by a feed forward control, make paths of any point on the front end of tractor, coupling point, and a point on the rear end of trailer concur (align) with one another, reduce inner wheel difference of the trailer, make a turn without overhang problems, and improve mobility thereof.
Also, since the present invention is constructed as mentioned above, the rear wheel of trailer can be steered with a simple control, and the mobility of the vehicle carring out the present invention is improved.
In addition, restrictions on trailers to be coupled can be removed.
Claims (14)
1. A combination vehicle including a tractor and a trailer comprising:
front wheel steering angle detecting means for detecting a front wheel steering angle of the tractor;
coupling angle detecting means for detecting a coupling angle about a coupling point between the tractor and the trailer;
rear wheel steering angle detecting means for detecting a rear wheel steering angle of the tractor;
trailer wheel steering angle detecting means for detecting a trailer wheel steering angle;
actuators for steering the rear wheels of the tractor and the trailer wheels, separately; and
control means for calculating and memorizing a travel direction of a front end of the tractor at a location along a path of travel in response to signals transmitted from each of said detecting means, said control means transmitting output signals to said actuators so as to align travel directions of the coupling point and a rear end of the trailer with the memorized direction of the front end of the tractor when the coupling point and the rear end of the trailer reach said location.
2. A combination vehicle according to claim 1, wherein the control means includes a microcomputer.
3. A combination vehicle according to claim 2, wherein the microcomputer includes a CPU.
4. A combination vehicle according to claim 2, wherein the microcomputer includes a ROM.
5. A combination vehicle according to claim 2, wherein the microcomputer includes a RAM.
6. A combination vehicle according to claim 1, wherein the control means calculates and memorizes the travel direction of the front end of the tractor at plural, discrete locations in response to said signals transmitted from each of the detecting means, and the control means transmits said output signals to the actuators so as to align the travel direction of the coupling point and the rear end of the trailer with the memorized direction of the front end of the tractor when the coupling point and the rear end of the trailer reach each of the discrete locations.
7. A vehicle comprising:
a tractor provided with a steering mechanism and a link mechanism for steering a pair of front wheels;
a steerable trailer attached to the tractor;
front wheel steering angle detecting means for detecting a front wheel steering angle of the tractor;
coupling angle detecting means for detecting a coupling angle about a coupling point between the tractor and the steerable trailer;
rear wheel steering angle detecting means for detecting a rear wheel steering angle of the tractor;
trailer wheel steering angle detecting means for detecting a trailer wheel steering angle;
actuators for steering the rear wheels of the tractor and the trailer wheels, separately; and
control means for calculating and memorizing a travel direction of a front end of the tractor at a location along a path of travel in response to signals transmitted from said detecting means, said control means transmitting output signals to said actuators so as to align travel directions of the coupling point and a rear end of the trailer with the memorized direction of the front end of the tractor when the coupling point and the rear end of the trailer reach said location.
8. A vehicle according to claim 7, wherein a second link mechanism is provided for steering the rear wheels of the tractor.
9. A vehicle according to claim 7, wherein the vehicle further includes a vehicle speed sensor which is connected to the control means to provide signals to the control means.
10. A vehicle according to claim 7, wherein the control means of the vehicle includes a microcomputer.
11. A vehicle according to claim 10, wherein the microcomputer includes a CPU.
12. A vehicle according to claim 10, wherein the microcomputer includes a ROM.
13. A vehicle according to claim 10, wherein the microcomputer includes a RAM.
14. A vehicle according to claim 7, wherein the control means calculates and memorizes the travel direction of the front end of the tractor at plural, discrete locations in response to said signals transmitted from the detecting means, and the control means transmits said output signals to the actuators so as to align the travel direction of the coupling point and the rear end of the trailer with the memorized direction of the front end of the tractor when the coupling point and the rear end of the trailer reach each of the discrete locations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/073,500 US5329451A (en) | 1990-09-26 | 1993-06-09 | Steerable trailer and steering apparatus of combination vehicle |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1990099741U JP2515731Y2 (en) | 1990-09-26 | 1990-09-26 | Steerable trailer |
JP2-99741 | 1990-09-26 | ||
JP1990107914U JP2542574Y2 (en) | 1990-10-17 | 1990-10-17 | Steering device for articulated vehicles |
JP2-107914 | 1990-10-17 | ||
US07/764,304 US5289892A (en) | 1990-09-26 | 1991-09-24 | Steerable trailer and steering apparatus of combination vehicle |
US08/073,500 US5329451A (en) | 1990-09-26 | 1993-06-09 | Steerable trailer and steering apparatus of combination vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/764,304 Division US5289892A (en) | 1990-09-26 | 1991-09-24 | Steerable trailer and steering apparatus of combination vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
US5329451A true US5329451A (en) | 1994-07-12 |
Family
ID=26440852
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/764,304 Expired - Lifetime US5289892A (en) | 1990-09-26 | 1991-09-24 | Steerable trailer and steering apparatus of combination vehicle |
US08/073,500 Expired - Fee Related US5329451A (en) | 1990-09-26 | 1993-06-09 | Steerable trailer and steering apparatus of combination vehicle |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/764,304 Expired - Lifetime US5289892A (en) | 1990-09-26 | 1991-09-24 | Steerable trailer and steering apparatus of combination vehicle |
Country Status (3)
Country | Link |
---|---|
US (2) | US5289892A (en) |
EP (1) | EP0484668B1 (en) |
DE (1) | DE69105460T2 (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523947A (en) * | 1993-09-24 | 1996-06-04 | Eaton Corporation | System and method for estimating trailer length |
US5607028A (en) * | 1993-11-29 | 1997-03-04 | Braun; Eric E. | All-wheel steering system |
US5630604A (en) * | 1989-04-13 | 1997-05-20 | Ducote; Edgar A. | Remotely-steered trailers |
US6016885A (en) * | 1997-08-22 | 2000-01-25 | Caterpillar Inc. | Steering system |
US6186266B1 (en) | 1998-08-24 | 2001-02-13 | Marchant Waste Managers | Steerable tag axle system |
DE10031024A1 (en) * | 2000-06-26 | 2002-01-17 | Doll Fahrzeugbau Gmbh | Combination road train for transporting long or short material has steering device has additional function with which trailer can be steered independently of steering lock |
US6341251B1 (en) * | 1999-08-31 | 2002-01-22 | Hino Motors, Ltd. | Rear wheel steering control system for rear two-axle vehicle |
US6405113B1 (en) * | 1999-12-03 | 2002-06-11 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle behavior control apparatus |
US6409199B1 (en) * | 2000-12-04 | 2002-06-25 | Joseph James Boyd | Rear wheel steering system |
US6431576B1 (en) * | 1999-04-28 | 2002-08-13 | Deere & Company | System for steering towed implement in response to, or independently of, steering of towing vehicle |
US6450523B1 (en) * | 1999-11-23 | 2002-09-17 | Nathan E. Masters | Steering method for a trailing section of an articulated vehicle |
US6494476B2 (en) | 2000-05-16 | 2002-12-17 | Nathan Eugene Masters | Robotic vehicle that tracks the path of a lead vehicle |
US20030167107A1 (en) * | 2002-01-10 | 2003-09-04 | Kuhn-Nodet S.A. | Method for placing the wheels of a trailer in the wheel tracks left by a tractor vehicle, and device for implementing this method |
EP1449745A1 (en) | 2003-02-20 | 2004-08-25 | Optima Concept S.a.r.l | Method and device for steering a trailer and vehicle with such a device |
US20040217575A1 (en) * | 2003-05-01 | 2004-11-04 | Pat Beaujot | Steering device for towed implements |
US20050209763A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for controlling brake-steer in an automotive vehicle in reverse |
US20050206233A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for maintaining a trailer in a straight position relative to the vehicle |
US20050206231A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for controlling an automotive vehicle using brake-steer and normal load adjustment |
US20050206225A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for predicting the position of a trailer relative to a vehicle |
US20050236896A1 (en) * | 2004-03-18 | 2005-10-27 | Ford Global Technologies, Llc | Method and apparatus of controlling an automotive vehicle using brake-steer as a function of steering wheel torque |
US20060076828A1 (en) * | 2004-03-18 | 2006-04-13 | Ford Global Technologies, Llc | Utility vehicle using brake-steer assisted turning |
US20070090688A1 (en) * | 2004-02-27 | 2007-04-26 | Daimlerchrysler Ag | Control system for a vehicle combination |
US7225891B2 (en) * | 2003-05-19 | 2007-06-05 | Daimlerchrysler Ag | Control system for a vehicle |
US20070216134A1 (en) * | 2006-02-10 | 2007-09-20 | Padula Santo A | Trailer steering system for a tractor/trailer combination |
GB2411159B (en) * | 2004-02-20 | 2008-02-27 | Coldra Engineering Company Ltd | Load guidance system |
EP1929185A1 (en) * | 2005-09-08 | 2008-06-11 | Volvo Lastvagnar AB | A method for adapting gear selection in a vehicle |
US20080231701A1 (en) * | 2007-03-21 | 2008-09-25 | Jeremy John Greenwood | Vehicle maneuvering aids |
US20090199530A1 (en) * | 2008-02-11 | 2009-08-13 | Gordon Lee Salley | Articulated Transport Arrangement For Windrower With Cutting Platform |
US20090276122A1 (en) * | 2007-05-09 | 2009-11-05 | Prairie Machine & Parts Mfg.(1978) Ltd. | Steering system and method for train of wheeled vehicles |
US20110112721A1 (en) * | 2009-11-10 | 2011-05-12 | Guoping Wang | Towable Agricultural Implement Having Automatic Steering System |
US20110125371A1 (en) * | 2009-11-24 | 2011-05-26 | Guoping Wang | Auto-Steerable Farming System |
EP2243688A3 (en) * | 2009-04-20 | 2011-11-02 | CLAAS Selbstfahrende Erntemaschinen GmbH | Corrected forced steering for steered trailers or semi-trailers on multiple axle steering agricultural or forestry traction vehicles |
US20110315234A1 (en) * | 2010-06-29 | 2011-12-29 | Cnh America Llc | Fluid control system for steerable agricultural implement |
US20120240546A1 (en) * | 2009-12-07 | 2012-09-27 | Georg Kormann | Tractor Implement Combination |
US20130098703A1 (en) * | 2011-10-20 | 2013-04-25 | Sabertooth Motorcycles, Llc | Motorized three-wheeled vehicle rear steering mechanism |
US8469125B2 (en) | 2011-03-25 | 2013-06-25 | Honda Motor Co., Ltd. | System and method for controlling a trailer connected to a vehicle |
US20130187361A1 (en) * | 2012-01-25 | 2013-07-25 | Prairie Machine & Parts Mfg. (1978) Ltd. | Hitch system for steering vehicle for train |
US8505656B1 (en) | 2010-02-10 | 2013-08-13 | Jesus Gonzalez | Automotive hauling system |
US8626390B2 (en) | 2011-01-13 | 2014-01-07 | Cnh America Llc | Method for speed based control of an implement steering system |
US8914198B2 (en) | 2011-01-13 | 2014-12-16 | Cnh Industrial Canada, Ltd. | Method for controlling an implement steering system for farm implement in transport |
WO2015010671A1 (en) * | 2013-07-23 | 2015-01-29 | Friedhelm Hilken | Trailing axle having forced steering |
US9004519B1 (en) | 2011-09-28 | 2015-04-14 | Geoffrey S. Beech | Tow bar controlled trailer and method |
US9114822B2 (en) | 2011-01-13 | 2015-08-25 | Cnh Industrial Canada, Ltd. | Method for automatic headland turn correction of farm implement steered by implement steering system |
TWI513618B (en) * | 2013-10-16 | 2015-12-21 | Aleees Eco Ark Co Ltd | An active turning system for articulated buses |
US9878740B2 (en) | 2013-10-16 | 2018-01-30 | Aleees Eco Ark (Cayman) Co. Ltd. | Active steering system for articulated bus |
US20180043930A1 (en) * | 2015-03-04 | 2018-02-15 | Zhengzhou Research Institute Of Mechanical Engineering | Vehicle, single-wheelset/double-wheelset trackless train, and tracking and steering control method therefor |
US10350954B2 (en) * | 2016-02-02 | 2019-07-16 | Premier Coil Solutions, Inc. | Transport trailer load balancing suspension and steering systems |
US11129331B2 (en) | 2019-01-04 | 2021-09-28 | Cnh Industrial America Llc | Steering control system for harvester and methods of using the same |
US11643139B2 (en) | 2017-11-10 | 2023-05-09 | Syn Trac Gmbh | Method for steering a vehicle |
US11675357B2 (en) | 2019-09-18 | 2023-06-13 | Waymo Llc | Independently actuated wheel sets for large autonomous self-driving vehicles |
WO2023150274A1 (en) * | 2022-02-04 | 2023-08-10 | Zimeno, Inc. Dba Monarch Tractor | Tight turn wheel locking |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579228A (en) * | 1991-05-21 | 1996-11-26 | University Of Utah Research Foundation | Steering control system for trailers |
SE503204C2 (en) * | 1993-06-03 | 1996-04-15 | Arne Henriksson Transporttekni | Device for arrangements for steering wheels, for example the rear wheel pair of a trailer |
US5479999A (en) * | 1994-09-19 | 1996-01-02 | Proia; Cataldo | Powered, automatic, self-tracking system for the rear axles of trucks, trailers and buses |
US5597087A (en) * | 1995-07-07 | 1997-01-28 | Vinarsky; Michael A. | Sports bottle |
GB9722386D0 (en) * | 1997-10-24 | 1997-12-24 | Meritor Hvs Limited | Trailer steering system |
US5960694A (en) * | 1998-02-23 | 1999-10-05 | Eaton Corporation | Hydrostatic power steering system having reduced wheel slip |
WO2002083480A1 (en) * | 2001-04-12 | 2002-10-24 | Mtd Products Inc | Four-wheel steering system |
US6527078B1 (en) | 2001-08-03 | 2003-03-04 | Melvin J. Nelson | Steering system for rear wheels of a trailer |
US7073620B2 (en) | 2003-06-06 | 2006-07-11 | Oshkosh Truck Corporation | Vehicle steering system having a rear steering control mechanism |
WO2006005124A1 (en) * | 2004-07-13 | 2006-01-19 | Gene Kostecki | Multiaxle vehicle with steerable rear wheels |
GB0715142D0 (en) * | 2007-08-03 | 2007-09-12 | Cambridge Entpr Ltd | Active steering controller |
CN102372022B (en) * | 2010-08-26 | 2013-06-05 | 中联重科股份有限公司 | Multi-axle vehicle electro-hydraulic servo steering system, steering control method and multi-axle vehicle |
US9248858B2 (en) | 2011-04-19 | 2016-02-02 | Ford Global Technologies | Trailer backup assist system |
US9290203B2 (en) | 2011-04-19 | 2016-03-22 | Ford Global Technologies, Llc | Trailer length estimation in hitch angle applications |
US10196088B2 (en) | 2011-04-19 | 2019-02-05 | Ford Global Technologies, Llc | Target monitoring system and method |
US9937953B2 (en) | 2011-04-19 | 2018-04-10 | Ford Global Technologies, Llc | Trailer backup offset determination |
US9335163B2 (en) | 2011-04-19 | 2016-05-10 | Ford Global Technologies, Llc | Trailer length estimation in hitch angle applications |
US9513103B2 (en) | 2011-04-19 | 2016-12-06 | Ford Global Technologies, Llc | Hitch angle sensor assembly |
US9434414B2 (en) | 2011-04-19 | 2016-09-06 | Ford Global Technologies, Llc | System and method for determining a hitch angle offset |
US9290202B2 (en) | 2011-04-19 | 2016-03-22 | Ford Global Technologies, Llc | System and method of calibrating a trailer backup assist system |
US8905177B2 (en) * | 2012-03-27 | 2014-12-09 | Vitaly Grossman | Wheeled platform powered by a cargo tracked vehicle and method of propulsion control thereof |
DE102012012572A1 (en) | 2012-06-25 | 2014-01-02 | Alois Pöttinger Maschinenfabrik Ges.m.b.H. | Device for steering an agricultural implement |
SE538165C2 (en) * | 2012-10-03 | 2016-03-22 | Scania Cv Ab | Control system for an articulated vehicle, and a method in an articulation system in an articulated vehicle |
CN102935861B (en) * | 2012-12-10 | 2015-04-01 | 中联重科股份有限公司 | Multi-axle vehicle and steering control system and steering control method thereof |
DE102013002565B4 (en) * | 2013-02-14 | 2022-12-22 | Man Truck & Bus Se | Electric hydraulic unit for steering leading and trailing axles |
US9517668B2 (en) | 2014-07-28 | 2016-12-13 | Ford Global Technologies, Llc | Hitch angle warning system and method |
US9963004B2 (en) | 2014-07-28 | 2018-05-08 | Ford Global Technologies, Llc | Trailer sway warning system and method |
US9340228B2 (en) | 2014-10-13 | 2016-05-17 | Ford Global Technologies, Llc | Trailer motion and parameter estimation system |
US9315212B1 (en) | 2014-10-13 | 2016-04-19 | Ford Global Technologies, Llc | Trailer sensor module and associated method of wireless trailer identification and motion estimation |
US9533683B2 (en) | 2014-12-05 | 2017-01-03 | Ford Global Technologies, Llc | Sensor failure mitigation system and mode management |
US9607242B2 (en) | 2015-01-16 | 2017-03-28 | Ford Global Technologies, Llc | Target monitoring system with lens cleaning device |
US9522699B2 (en) | 2015-02-05 | 2016-12-20 | Ford Global Technologies, Llc | Trailer backup assist system with adaptive steering angle limits |
US9616923B2 (en) | 2015-03-03 | 2017-04-11 | Ford Global Technologies, Llc | Topographical integration for trailer backup assist system |
US9804022B2 (en) | 2015-03-24 | 2017-10-31 | Ford Global Technologies, Llc | System and method for hitch angle detection |
US10384607B2 (en) | 2015-10-19 | 2019-08-20 | Ford Global Technologies, Llc | Trailer backup assist system with hitch angle offset estimation |
US10611407B2 (en) | 2015-10-19 | 2020-04-07 | Ford Global Technologies, Llc | Speed control for motor vehicles |
US9836060B2 (en) | 2015-10-28 | 2017-12-05 | Ford Global Technologies, Llc | Trailer backup assist system with target management |
US10017115B2 (en) | 2015-11-11 | 2018-07-10 | Ford Global Technologies, Llc | Trailer monitoring system and method |
US10155478B2 (en) | 2015-12-17 | 2018-12-18 | Ford Global Technologies, Llc | Centerline method for trailer hitch angle detection |
US9827818B2 (en) | 2015-12-17 | 2017-11-28 | Ford Global Technologies, Llc | Multi-stage solution for trailer hitch angle initialization |
US9798953B2 (en) | 2015-12-17 | 2017-10-24 | Ford Global Technologies, Llc | Template matching solution for locating trailer hitch point |
US9934572B2 (en) | 2015-12-17 | 2018-04-03 | Ford Global Technologies, Llc | Drawbar scan solution for locating trailer hitch point |
US9610975B1 (en) | 2015-12-17 | 2017-04-04 | Ford Global Technologies, Llc | Hitch angle detection for trailer backup assist system |
US10011228B2 (en) | 2015-12-17 | 2018-07-03 | Ford Global Technologies, Llc | Hitch angle detection for trailer backup assist system using multiple imaging devices |
US9796228B2 (en) | 2015-12-17 | 2017-10-24 | Ford Global Technologies, Llc | Hitch angle detection for trailer backup assist system |
PL3187397T3 (en) * | 2015-12-31 | 2019-05-31 | Tirsan Treyler Sanayi Ve Ticaret Anonim Sirketi | Automatic alignment system with warning light |
US10005492B2 (en) | 2016-02-18 | 2018-06-26 | Ford Global Technologies, Llc | Trailer length and hitch angle bias estimation |
US10106193B2 (en) | 2016-07-01 | 2018-10-23 | Ford Global Technologies, Llc | Enhanced yaw rate trailer angle detection initialization |
US10046800B2 (en) | 2016-08-10 | 2018-08-14 | Ford Global Technologies, Llc | Trailer wheel targetless trailer angle detection |
US10222804B2 (en) | 2016-10-21 | 2019-03-05 | Ford Global Technologies, Llc | Inertial reference for TBA speed limiting |
EP3652043B8 (en) * | 2017-07-13 | 2021-08-04 | Rolf Dr. Meissner | Method for maintaining the track of a two-track vehicle |
US10710585B2 (en) | 2017-09-01 | 2020-07-14 | Ford Global Technologies, Llc | Trailer backup assist system with predictive hitch angle functionality |
CN108609047A (en) * | 2018-03-06 | 2018-10-02 | 深圳智慧车联科技有限公司 | Vehicle all-wheel control system, method and vehicle |
DE112019005571B4 (en) | 2018-11-07 | 2024-04-18 | Hitachi Astemo, Ltd. | Steering control device, steering control method and steering control system |
US11077795B2 (en) | 2018-11-26 | 2021-08-03 | Ford Global Technologies, Llc | Trailer angle detection using end-to-end learning |
US10829046B2 (en) | 2019-03-06 | 2020-11-10 | Ford Global Technologies, Llc | Trailer angle detection using end-to-end learning |
AT524355B1 (en) * | 2021-03-04 | 2022-05-15 | Ceres Gmbh | System for steering a trailer attached to a towing vehicle |
CA3178011A1 (en) | 2022-03-11 | 2023-09-11 | Gerard Noel | Vehicle steering wheels system |
EP4446201A1 (en) * | 2023-04-11 | 2024-10-16 | Etablissements Deves | Self-steering self-steering axle trailer with autonomous steering |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56163968A (en) * | 1980-05-19 | 1981-12-16 | Hino Motors Ltd | Automatic followup steering device for trailer |
US4553390A (en) * | 1981-07-03 | 1985-11-19 | Zahnradfabrik Friedrichshafen, Ag. | Hydrostatic steering arrangement |
US4565257A (en) * | 1984-02-08 | 1986-01-21 | J. I. Case Company | Multi-mode steering system |
US4570965A (en) * | 1982-02-10 | 1986-02-18 | National Research Development Corporation | Vehicle steering mechanisms |
JPS6160379A (en) * | 1984-09-03 | 1986-03-28 | Tokyu Car Corp | Steering device for full trailer |
US4763916A (en) * | 1984-02-24 | 1988-08-16 | Autoipari Kutato Es Fejleszto Vallalat | Hydraulic jackknifing-affecting apparatus for articulated vehicles |
US4798256A (en) * | 1986-11-08 | 1989-01-17 | Zahnradfabrik Friedrichshafen, Ag. | Hydrostatic auxiliary steering device |
US4848499A (en) * | 1985-09-30 | 1989-07-18 | Simon Martinet | Servo-control device for steering an articulated vehicle |
JPH02120202A (en) * | 1988-06-20 | 1990-05-08 | Texaco Dev Corp | Preparation of gas mixture containing h2 and co by partial oxidation of chare stock |
US5244226A (en) * | 1991-09-23 | 1993-09-14 | Bergh C John | Trailer and steerable wheels therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS626869A (en) * | 1985-07-02 | 1987-01-13 | Nissan Motor Co Ltd | Vehicle rear wheel steering device |
DE8616691U1 (en) * | 1986-06-23 | 1986-08-07 | Doll-Fahrzeugbau GmbH, 7603 Oppenau | Log transporter |
FR2611635B1 (en) * | 1987-02-27 | 1991-03-15 | Billig Sarl Ets | CONTROL DEVICE FOR STEERING WHEELS OF A TRAILER, AND TRAILER EQUIPPED WITH SUCH A DEVICE |
JPH078652B2 (en) * | 1987-09-16 | 1995-02-01 | 本田技研工業株式会社 | Rear wheel steering angle control method for front and rear wheel steering vehicle |
DE3837981C2 (en) * | 1988-11-09 | 1993-10-07 | Ernst Winsauer | Trucks or semitrailers with a forced steering additional axle |
-
1991
- 1991-09-24 US US07/764,304 patent/US5289892A/en not_active Expired - Lifetime
- 1991-09-25 DE DE69105460T patent/DE69105460T2/en not_active Expired - Fee Related
- 1991-09-25 EP EP91116330A patent/EP0484668B1/en not_active Expired - Lifetime
-
1993
- 1993-06-09 US US08/073,500 patent/US5329451A/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56163968A (en) * | 1980-05-19 | 1981-12-16 | Hino Motors Ltd | Automatic followup steering device for trailer |
US4553390A (en) * | 1981-07-03 | 1985-11-19 | Zahnradfabrik Friedrichshafen, Ag. | Hydrostatic steering arrangement |
US4570965A (en) * | 1982-02-10 | 1986-02-18 | National Research Development Corporation | Vehicle steering mechanisms |
US4565257A (en) * | 1984-02-08 | 1986-01-21 | J. I. Case Company | Multi-mode steering system |
US4763916A (en) * | 1984-02-24 | 1988-08-16 | Autoipari Kutato Es Fejleszto Vallalat | Hydraulic jackknifing-affecting apparatus for articulated vehicles |
JPS6160379A (en) * | 1984-09-03 | 1986-03-28 | Tokyu Car Corp | Steering device for full trailer |
US4848499A (en) * | 1985-09-30 | 1989-07-18 | Simon Martinet | Servo-control device for steering an articulated vehicle |
US4798256A (en) * | 1986-11-08 | 1989-01-17 | Zahnradfabrik Friedrichshafen, Ag. | Hydrostatic auxiliary steering device |
JPH02120202A (en) * | 1988-06-20 | 1990-05-08 | Texaco Dev Corp | Preparation of gas mixture containing h2 and co by partial oxidation of chare stock |
US5244226A (en) * | 1991-09-23 | 1993-09-14 | Bergh C John | Trailer and steerable wheels therefor |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5630604A (en) * | 1989-04-13 | 1997-05-20 | Ducote; Edgar A. | Remotely-steered trailers |
US5523947A (en) * | 1993-09-24 | 1996-06-04 | Eaton Corporation | System and method for estimating trailer length |
US5607028A (en) * | 1993-11-29 | 1997-03-04 | Braun; Eric E. | All-wheel steering system |
US6016885A (en) * | 1997-08-22 | 2000-01-25 | Caterpillar Inc. | Steering system |
US6129170A (en) * | 1997-08-22 | 2000-10-10 | Caterpillar Inc. | Steering system |
US6186266B1 (en) | 1998-08-24 | 2001-02-13 | Marchant Waste Managers | Steerable tag axle system |
US6431576B1 (en) * | 1999-04-28 | 2002-08-13 | Deere & Company | System for steering towed implement in response to, or independently of, steering of towing vehicle |
US6341251B1 (en) * | 1999-08-31 | 2002-01-22 | Hino Motors, Ltd. | Rear wheel steering control system for rear two-axle vehicle |
US6450523B1 (en) * | 1999-11-23 | 2002-09-17 | Nathan E. Masters | Steering method for a trailing section of an articulated vehicle |
US6405113B1 (en) * | 1999-12-03 | 2002-06-11 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle behavior control apparatus |
US6494476B2 (en) | 2000-05-16 | 2002-12-17 | Nathan Eugene Masters | Robotic vehicle that tracks the path of a lead vehicle |
DE10031024A1 (en) * | 2000-06-26 | 2002-01-17 | Doll Fahrzeugbau Gmbh | Combination road train for transporting long or short material has steering device has additional function with which trailer can be steered independently of steering lock |
DE10031024B4 (en) * | 2000-06-26 | 2004-05-19 | Doll Fahrzeugbau Gmbh | Combination transport train for the transport of long or short material |
US6409199B1 (en) * | 2000-12-04 | 2002-06-25 | Joseph James Boyd | Rear wheel steering system |
US20030167107A1 (en) * | 2002-01-10 | 2003-09-04 | Kuhn-Nodet S.A. | Method for placing the wheels of a trailer in the wheel tracks left by a tractor vehicle, and device for implementing this method |
EP1449745A1 (en) | 2003-02-20 | 2004-08-25 | Optima Concept S.a.r.l | Method and device for steering a trailer and vehicle with such a device |
FR2851542A1 (en) * | 2003-02-20 | 2004-08-27 | Optima Concept | METHOD AND DEVICE FOR GUIDING A TRAILER, VEHICLE EQUIPPED WITH SUCH A DEVICE |
US20040217575A1 (en) * | 2003-05-01 | 2004-11-04 | Pat Beaujot | Steering device for towed implements |
US7147241B2 (en) * | 2003-05-01 | 2006-12-12 | One Pass Implements Inc. | Steering device for towed implements |
AU2004201771B2 (en) * | 2003-05-01 | 2011-01-20 | One Pass Implements Inc. | Steering device for towed implements |
US7225891B2 (en) * | 2003-05-19 | 2007-06-05 | Daimlerchrysler Ag | Control system for a vehicle |
GB2411159B (en) * | 2004-02-20 | 2008-02-27 | Coldra Engineering Company Ltd | Load guidance system |
US20070090688A1 (en) * | 2004-02-27 | 2007-04-26 | Daimlerchrysler Ag | Control system for a vehicle combination |
US20050206231A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for controlling an automotive vehicle using brake-steer and normal load adjustment |
US20050206233A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for maintaining a trailer in a straight position relative to the vehicle |
US7165644B2 (en) | 2004-03-18 | 2007-01-23 | Ford Global Technologies, Llc | Method and apparatus of controlling an automotive vehicle using brake-steer as a function of steering wheel torque |
US20050236896A1 (en) * | 2004-03-18 | 2005-10-27 | Ford Global Technologies, Llc | Method and apparatus of controlling an automotive vehicle using brake-steer as a function of steering wheel torque |
US20050206225A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for predicting the position of a trailer relative to a vehicle |
US20060076828A1 (en) * | 2004-03-18 | 2006-04-13 | Ford Global Technologies, Llc | Utility vehicle using brake-steer assisted turning |
US8380416B2 (en) | 2004-03-18 | 2013-02-19 | Ford Global Technologies | Method and apparatus for controlling brake-steer in an automotive vehicle in reverse |
US7950751B2 (en) * | 2004-03-18 | 2011-05-31 | Ford Global Technologies | Method and apparatus for maintaining a trailer in a straight position relative to the vehicle |
US20050209763A1 (en) * | 2004-03-18 | 2005-09-22 | Ford Global Technologies, Llc | Method and apparatus for controlling brake-steer in an automotive vehicle in reverse |
EP1929185A1 (en) * | 2005-09-08 | 2008-06-11 | Volvo Lastvagnar AB | A method for adapting gear selection in a vehicle |
US20090023551A1 (en) * | 2005-09-08 | 2009-01-22 | Volvo Lastvagnar Ab | Method for adapting gear selection in a vehicle |
US8554431B2 (en) | 2005-09-08 | 2013-10-08 | Volvo Lastvagnar Ab | Method for adapting gear selection in a vehicle |
EP1929185A4 (en) * | 2005-09-08 | 2010-08-25 | Volvo Lastvagnar Ab | A method for adapting gear selection in a vehicle |
US20070216134A1 (en) * | 2006-02-10 | 2007-09-20 | Padula Santo A | Trailer steering system for a tractor/trailer combination |
US7793965B2 (en) * | 2006-02-10 | 2010-09-14 | Padula Santo A | Trailer steering system for a tractor/trailer combination |
US9156496B2 (en) | 2007-03-21 | 2015-10-13 | Ford Global Technologies, Llc | Vehicle maneuvering aids |
US9566911B2 (en) | 2007-03-21 | 2017-02-14 | Ford Global Technologies, Llc | Vehicle trailer angle detection system and method |
US9971943B2 (en) | 2007-03-21 | 2018-05-15 | Ford Global Technologies, Llc | Vehicle trailer angle detection system and method |
US20080231701A1 (en) * | 2007-03-21 | 2008-09-25 | Jeremy John Greenwood | Vehicle maneuvering aids |
US7949447B2 (en) | 2007-05-09 | 2011-05-24 | Prairie Machine & Parts Mfg. (1978) Ltd. | Steering system and method for train of wheeled vehicles |
US20090276122A1 (en) * | 2007-05-09 | 2009-11-05 | Prairie Machine & Parts Mfg.(1978) Ltd. | Steering system and method for train of wheeled vehicles |
US8087225B2 (en) * | 2008-02-11 | 2012-01-03 | Deere & Company | Articulated transport arrangement for windrower with cutting platform |
US20090199530A1 (en) * | 2008-02-11 | 2009-08-13 | Gordon Lee Salley | Articulated Transport Arrangement For Windrower With Cutting Platform |
EP2243688A3 (en) * | 2009-04-20 | 2011-11-02 | CLAAS Selbstfahrende Erntemaschinen GmbH | Corrected forced steering for steered trailers or semi-trailers on multiple axle steering agricultural or forestry traction vehicles |
US9849909B2 (en) | 2009-11-10 | 2017-12-26 | Cnh Industrial America Llc | Towable agricultural implement having automatic steering system |
US20110112721A1 (en) * | 2009-11-10 | 2011-05-12 | Guoping Wang | Towable Agricultural Implement Having Automatic Steering System |
US20110125371A1 (en) * | 2009-11-24 | 2011-05-26 | Guoping Wang | Auto-Steerable Farming System |
US9114832B2 (en) | 2009-11-24 | 2015-08-25 | Cnh Industrial America Llc | Auto-steerable farming system |
US20120240546A1 (en) * | 2009-12-07 | 2012-09-27 | Georg Kormann | Tractor Implement Combination |
US8505656B1 (en) | 2010-02-10 | 2013-08-13 | Jesus Gonzalez | Automotive hauling system |
US8640785B2 (en) * | 2010-06-29 | 2014-02-04 | Cnh America Llc | Fluid control system for steerable agricultural implement |
US20110315234A1 (en) * | 2010-06-29 | 2011-12-29 | Cnh America Llc | Fluid control system for steerable agricultural implement |
US9114822B2 (en) | 2011-01-13 | 2015-08-25 | Cnh Industrial Canada, Ltd. | Method for automatic headland turn correction of farm implement steered by implement steering system |
US8626390B2 (en) | 2011-01-13 | 2014-01-07 | Cnh America Llc | Method for speed based control of an implement steering system |
US8914198B2 (en) | 2011-01-13 | 2014-12-16 | Cnh Industrial Canada, Ltd. | Method for controlling an implement steering system for farm implement in transport |
RU2534600C1 (en) * | 2011-03-25 | 2014-11-27 | Хонда Мотор Ко., Лтд. | System and method for control of vehicle trailer |
US8469125B2 (en) | 2011-03-25 | 2013-06-25 | Honda Motor Co., Ltd. | System and method for controlling a trailer connected to a vehicle |
US9004519B1 (en) | 2011-09-28 | 2015-04-14 | Geoffrey S. Beech | Tow bar controlled trailer and method |
US20130098703A1 (en) * | 2011-10-20 | 2013-04-25 | Sabertooth Motorcycles, Llc | Motorized three-wheeled vehicle rear steering mechanism |
US8607913B2 (en) * | 2011-10-20 | 2013-12-17 | Ben Daniels | Motorized three-wheeled vehicle rear steering mechanism |
US8955865B2 (en) * | 2012-01-25 | 2015-02-17 | Prairie Machine & Parts Mfg. (1978) Ltd. | Hitch system for steering vehicle for train |
US9037322B2 (en) | 2012-01-25 | 2015-05-19 | Prairie Machine & Parts Mfg. (1978) Ltd. | Steering system and method for train vehicle |
WO2013110195A1 (en) * | 2012-01-25 | 2013-08-01 | Prairie Machine & Parts Mfg. (1978) Ltd. | Hitch system for steering vehicle for train |
US20130187361A1 (en) * | 2012-01-25 | 2013-07-25 | Prairie Machine & Parts Mfg. (1978) Ltd. | Hitch system for steering vehicle for train |
WO2015010671A1 (en) * | 2013-07-23 | 2015-01-29 | Friedhelm Hilken | Trailing axle having forced steering |
TWI513618B (en) * | 2013-10-16 | 2015-12-21 | Aleees Eco Ark Co Ltd | An active turning system for articulated buses |
US9878740B2 (en) | 2013-10-16 | 2018-01-30 | Aleees Eco Ark (Cayman) Co. Ltd. | Active steering system for articulated bus |
US20180043930A1 (en) * | 2015-03-04 | 2018-02-15 | Zhengzhou Research Institute Of Mechanical Engineering | Vehicle, single-wheelset/double-wheelset trackless train, and tracking and steering control method therefor |
US10647348B2 (en) * | 2015-03-04 | 2020-05-12 | Zhengzhou Research Institute Of Mechanical Engineering Co., Ltd | Vehicle, single-wheelset/double-wheelset trackless train, and tracking and steering control method therefor |
US10350954B2 (en) * | 2016-02-02 | 2019-07-16 | Premier Coil Solutions, Inc. | Transport trailer load balancing suspension and steering systems |
US11643139B2 (en) | 2017-11-10 | 2023-05-09 | Syn Trac Gmbh | Method for steering a vehicle |
US11129331B2 (en) | 2019-01-04 | 2021-09-28 | Cnh Industrial America Llc | Steering control system for harvester and methods of using the same |
US11675357B2 (en) | 2019-09-18 | 2023-06-13 | Waymo Llc | Independently actuated wheel sets for large autonomous self-driving vehicles |
US12085943B2 (en) | 2019-09-18 | 2024-09-10 | Waymo Llc | Independently actuated wheel sets for large autonomous self-driving vehicles |
WO2023150274A1 (en) * | 2022-02-04 | 2023-08-10 | Zimeno, Inc. Dba Monarch Tractor | Tight turn wheel locking |
Also Published As
Publication number | Publication date |
---|---|
US5289892A (en) | 1994-03-01 |
DE69105460D1 (en) | 1995-01-12 |
EP0484668A1 (en) | 1992-05-13 |
DE69105460T2 (en) | 1995-05-18 |
EP0484668B1 (en) | 1994-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5329451A (en) | Steerable trailer and steering apparatus of combination vehicle | |
US5523947A (en) | System and method for estimating trailer length | |
JP3928628B2 (en) | Vehicle control system | |
US8548683B2 (en) | Active steering controller | |
US6655710B2 (en) | System for detecting trailer instability | |
US6999856B2 (en) | Trailer tongue length estimation using a trailer yaw rate sensor | |
US7154385B2 (en) | Vehicle-trailer backing up system using active front steer | |
US20070152424A1 (en) | Vehicle-trailer low-speed offtracking control | |
US8245811B2 (en) | Hybrid steering system | |
JP3363869B2 (en) | Measurement and control system and method for controlling the lateral direction of a vehicle running continuously back and forth | |
GB1426316A (en) | Steering control system for a motor vehicle | |
CA1091792A (en) | Combined automatic and manual guidance system | |
US11155298B2 (en) | Modified steering angle at completion of hitch assist operation | |
US6148951A (en) | Reactive steering control system | |
US4832149A (en) | Device for correcting the angle of attitude of an automotive vehicle | |
US5105899A (en) | Rear wheel steering angle control system for vehicles | |
JP3001926B2 (en) | Vehicle steering system | |
JP2001306146A (en) | Method for operating machine on prescribed running route and device executint the method | |
JP2542575Y2 (en) | Steering device for articulated vehicles | |
JP3507215B2 (en) | Power steering device | |
JP2515731Y2 (en) | Steerable trailer | |
JP2956012B1 (en) | Self-driving articulated vehicle | |
JP2542574Y2 (en) | Steering device for articulated vehicles | |
JP2542876Y2 (en) | Steering control device for connected vehicles | |
JPH0635864Y2 (en) | Steering device for articulated vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060712 |