US4959086A - Removing hydrogen sulphide from a gas mixture - Google Patents
Removing hydrogen sulphide from a gas mixture Download PDFInfo
- Publication number
- US4959086A US4959086A US07/424,649 US42464989A US4959086A US 4959086 A US4959086 A US 4959086A US 42464989 A US42464989 A US 42464989A US 4959086 A US4959086 A US 4959086A
- Authority
- US
- United States
- Prior art keywords
- hydrogen
- alkyl group
- aminopyridine
- gas mixture
- absorbent composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 47
- 239000007789 gas Substances 0.000 title claims abstract description 24
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 19
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002250 absorbent Substances 0.000 claims abstract description 25
- 230000002745 absorbent Effects 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 19
- 150000003927 aminopyridines Chemical class 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 20
- 150000002431 hydrogen Chemical class 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 239000001569 carbon dioxide Substances 0.000 claims description 11
- 125000003545 alkoxy group Chemical group 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical group O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- YTQVUCXSUXFTFM-UHFFFAOYSA-N n,n,2-trimethylpyridin-4-amine Chemical group CN(C)C1=CC=NC(C)=C1 YTQVUCXSUXFTFM-UHFFFAOYSA-N 0.000 claims description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 13
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 7
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- -1 pyridine compound Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ISDZORVSNLUMDN-UHFFFAOYSA-N n,n,2,6-tetramethylpyridin-4-amine Chemical compound CN(C)C1=CC(C)=NC(C)=C1 ISDZORVSNLUMDN-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1493—Selection of liquid materials for use as absorbents
Definitions
- the present invention relates to a process for removing hydrogen sulphide from a gas mixture containing hydrogen sulphide and carbon dioxide, wherein the gas mixture is contacted in a gas/liquid contacting column with a liquid absorbent composition comprising a base in the form of an amine.
- a liquid absorbent composition comprising a base in the form of an amine.
- the base reacts with hydrogen sulphide and carbon dioxide to form soluble compounds.
- From the gas/liquid contacting column are removed a purified gas substantially free from hydrogen sulphide and rich absorbent composition loaded with the hydrogen sulphide and carbon dioxide removed from the gas mixture.
- the rich absorbent composition is regenerated by applying heat and/or stripping with an inert gas, such as steam, to produce a gas rich in hydrogen sulphide and lean absorbent composition which is reused.
- the invention relates more particularly to a process for removing selectively hydrogen sulphide from the gas mixture by using a selective absorbent composition.
- selective absorbent composition is used to refer to an absorbent composition containing a base which has a large H 2 S-loading capacity (mol H 2 S/mol base) and which has a small carbon dioxide absorption rate (J 0 ).
- a known absorbent composition for such a selective removal process is an absorbent composition including a tertiary amine, such as methyldiethanolamine (MDEA).
- MDEA methyldiethanolamine
- the process for removing hydrogen sulphide from a gas mixture including hydrogen sulphide according to the present invention comprises contacting the gas mixture with a liquid absorbent composition including an aminopyridine.
- aminopyridine is used to refer to a pyridine compound having an amino group which is directly attached to the pyridine ring.
- suitable aminopyridines include those compounds in which the amino group is attached to the pyridine ring in the para position, and so the aminopyridine has the structure as shown below. ##STR1##
- R 1 and R 2 can be hydrogen, an alkyl group. If R 1 and R 2 are hydrogen then suitably R 3 , R 4 , R 5 , and R 6 are independently selected from the group containing hydrogen, an alkyl group and an alkoxy group. If on the other hand R 1 and R 2 are an alkyl group, then R 3 and R 4 are hydrogen, and R 5 and R 6 are independently selected from the group containing hydrogen, an alkyl group and an alkoxy group.
- R 1 and R 2 form an alkylene group containing 4-5 carbon atoms
- R 3 and R 4 are hydrogen
- R 5 and R 6 are independently selected from the group containing hydrogen, an alkyl group and an alkoxy group.
- the alkyl and alkoxy groups can contain from 1 to about 10 carbon atoms, preferably from 1 to about 4 carbon atoms.
- Examples of the latter compounds are 4-dimethylaminopyridine (to be referred to as DMAP), 2-methyl-4-(dimethylamino)pyridine (to be referred to as DMAPP) and 2,6-dimethyl-4-(dimethylamino)pyridine (to be referred to as DMAPL).
- a suitable aminopyridine is DMAP.
- a preferred aminopyridine is DMAPP and especially DMAPL.
- the absorbent composition can also include water and a physical solvent.
- physical solvents include lower alkane diols (glycols) and polyols, or lower alkyl ethers thereof, esters, sulfolanes, and the like.
- the absorbent composition is an aqueous solution comprising between 0.3 to 2 mol/l physical solvent, such as sulfolane, and between 1 and 4 mol/l aminopyridine, and more suitably between 1 and 2 mol/l aminopyridine.
- the physical solvent is added to prevent phase separation of the absorbent composition.
- contacting is usually carried out at a temperature between 20° and 80° C. and at a pressure which is about atmospheric pressure. If required contacting can well be carried out at an elevated pressure.
- the gas mixture is counter-currently contacted in a gas/liquid contacting column, such as a tray column, with the absorbent composition.
- a gas/liquid contacting column such as a tray column
- Contacting can as well take place in a gas/liquid contacting column provided with swirl tubes, with random packing or with structured packing.
- Rich absorbent composition laden with hydrogen sulphide is regenerated by heating the solution and/or stripping the composition with an inert gas such as steam. Regeneration is suitably carried out at or close to atmospheric pressure. If contacting is carried out at an elevated pressure, regeneration can be preceded by one or more flash stage(s) in which the absorbent composition is flashed to a lower pressure to separate absorbed gas such as natural gas or carbon dioxide from the composition.
- the pKa of the MDEA and DMAP can be found in Dissociation Constants of Organic Bases in Aqueous Solutions by D. D. Perrin, London, 1965.
- the pKa of DMAPP and DMAPL was determined separately.
- H 2 S-loading capacity at equilibrium (x) of a DMAP-containing absorption composition and that of an MDEA-containing absorption composition were determined as a function of the partial pressure of hydrogen sulphide (pH 2 S).
- the aqueous DMAP-containing absorption composition contained 1.65 mol DMAP/l and 0.33 mol sulfolane/l; and the aqueous MDEA-containing absorption composition contained 1.71 mol MDEA/l. The experiments were carried out at 30° C.
- the H 2 S-loading capacity of aqueous DMAP is greater than that of aqueous MDEA and that the H 2 S-loading capacity of aqueous DMAPL is greater than the H 2 S-loading capacity of aqueous DMAP.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Industrial Gases (AREA)
- Catalysts (AREA)
- Pyridine Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8824943 | 1988-10-25 | ||
GB888824943A GB8824943D0 (en) | 1988-10-25 | 1988-10-25 | Removing hydrogen sulphide from gas mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
US4959086A true US4959086A (en) | 1990-09-25 |
Family
ID=10645740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/424,649 Expired - Lifetime US4959086A (en) | 1988-10-25 | 1989-10-20 | Removing hydrogen sulphide from a gas mixture |
Country Status (16)
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852144B1 (en) * | 1999-10-05 | 2005-02-08 | Basf Aktiengesellschaft | Method for removing COS from a stream of hydrocarbon fluid and wash liquid for use in a method of this type |
US20120152119A1 (en) * | 2010-12-17 | 2012-06-21 | Battelle Memorial Institute | System and process for capture of h2s from gaseous process streams and process for regeneration of the capture agent |
WO2013016063A1 (en) | 2011-07-28 | 2013-01-31 | Dow Global Technologies Llc | Aminopyridine derivatives for removal of hydrogen sulfide from a gas mixture |
US8506913B2 (en) | 2010-03-29 | 2013-08-13 | Kabushiki Kaisha Toshiba | Acidic gas absorbent, acidic gas removal device, and acidic gas removal method |
WO2013188375A1 (en) | 2012-06-15 | 2013-12-19 | Dow Global Technologies Llc | Process for the treatment of liquefied hydrocarbons using 3-(piperazine-1-yl) propane-1,2-diol compounds |
WO2013188361A1 (en) | 2012-06-15 | 2013-12-19 | Dow Global Technologies Llc | Process for the treatment of liquefied hydrocarbons using 3-(amino) propane-1,2-diol compounds |
WO2013188367A1 (en) | 2012-06-15 | 2013-12-19 | Dow Global Technologies Llc | Process for the treatment of liquefied hydrocarbon gas using 2 -amino -2 (hydroxymethyl) propane - 1, 3 - diol compounds |
US10130907B2 (en) | 2016-01-20 | 2018-11-20 | Battelle Memorial Institute | Capture and release of acid gasses using tunable organic solvents with aminopyridine |
US10456739B2 (en) | 2016-11-14 | 2019-10-29 | Battelle Memorial Institute | Capture and release of acid gasses using tunable organic solvents with binding organic liquids |
US11123688B2 (en) | 2016-04-29 | 2021-09-21 | Dow Global Technologies Llc | Composition and process for the dehydration of gases |
US20240002742A1 (en) * | 2020-11-25 | 2024-01-04 | Eni S.P.A. | Removal of acid gases from gaseous mixtures containing them |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1922135B1 (en) * | 2005-08-09 | 2011-01-19 | ExxonMobil Research and Engineering Company | Hindered cyclic polyamines and their salts for acid gas scrubbing process |
JP5659084B2 (ja) * | 2011-05-30 | 2015-01-28 | 株式会社東芝 | 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4360363A (en) * | 1982-02-16 | 1982-11-23 | Combustion Engineering, Inc. | Physical solvent for gas sweetening |
US4748011A (en) * | 1983-07-13 | 1988-05-31 | Baize Thomas H | Method and apparatus for sweetening natural gas |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4353840A (en) * | 1980-07-23 | 1982-10-12 | Tenneco Chemicals, Inc. | Use of amine-aluminum chloride adducts as alkylation inhibitors in a ligand-complexing process |
US4541946A (en) * | 1981-03-12 | 1985-09-17 | Standard Oil Company | Corrosion inhibitor for amine gas sweetening systems |
JP4915556B2 (ja) | 2006-05-26 | 2012-04-11 | パナソニック株式会社 | バランス訓練装置 |
-
1988
- 1988-10-25 GB GB888824943A patent/GB8824943D0/en active Pending
-
1989
- 1989-10-12 CA CA002000573A patent/CA2000573C/en not_active Expired - Fee Related
- 1989-10-20 US US07/424,649 patent/US4959086A/en not_active Expired - Lifetime
- 1989-10-23 MY MYPI89001467A patent/MY105609A/en unknown
- 1989-10-23 IN IN776MA1989 patent/IN173688B/en unknown
- 1989-10-23 BR BR898905377A patent/BR8905377A/pt not_active IP Right Cessation
- 1989-10-23 JP JP1273906A patent/JP2932191B2/ja not_active Expired - Fee Related
- 1989-10-23 AU AU43644/89A patent/AU620161B2/en not_active Ceased
- 1989-10-23 KR KR1019890015215A patent/KR0139634B1/ko not_active Expired - Fee Related
- 1989-10-23 NO NO894202A patent/NO175409C/no unknown
- 1989-10-23 ZA ZA898001A patent/ZA898001B/xx unknown
- 1989-10-24 AT AT89202690T patent/ATE84437T1/de not_active IP Right Cessation
- 1989-10-24 DE DE8989202690T patent/DE68904398T2/de not_active Expired - Fee Related
- 1989-10-24 EP EP89202690A patent/EP0366206B1/en not_active Expired - Lifetime
- 1989-10-24 ES ES89202690T patent/ES2044067T3/es not_active Expired - Lifetime
-
1993
- 1993-01-14 GR GR930400011T patent/GR3006789T3/el unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4360363A (en) * | 1982-02-16 | 1982-11-23 | Combustion Engineering, Inc. | Physical solvent for gas sweetening |
US4748011A (en) * | 1983-07-13 | 1988-05-31 | Baize Thomas H | Method and apparatus for sweetening natural gas |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852144B1 (en) * | 1999-10-05 | 2005-02-08 | Basf Aktiengesellschaft | Method for removing COS from a stream of hydrocarbon fluid and wash liquid for use in a method of this type |
EP2554243A4 (en) * | 2010-03-29 | 2015-06-03 | Toshiba Kk | ACIDIC GAS ABSORBER, ACID GAS REMOVAL DEVICE, AND ACID GAS REMOVAL METHOD |
US8506913B2 (en) | 2010-03-29 | 2013-08-13 | Kabushiki Kaisha Toshiba | Acidic gas absorbent, acidic gas removal device, and acidic gas removal method |
US20120152119A1 (en) * | 2010-12-17 | 2012-06-21 | Battelle Memorial Institute | System and process for capture of h2s from gaseous process streams and process for regeneration of the capture agent |
US8652237B2 (en) * | 2010-12-17 | 2014-02-18 | Battelle Memorial Institute | System and process for capture of H2S from gaseous process streams and process for regeneration of the capture agent |
WO2013016063A1 (en) | 2011-07-28 | 2013-01-31 | Dow Global Technologies Llc | Aminopyridine derivatives for removal of hydrogen sulfide from a gas mixture |
US9421492B2 (en) | 2011-07-28 | 2016-08-23 | Dow Global Technologies Llc | Aminopyridine derivatives for removal of hydrogen sulfide from a gas mixture |
CN103814013B (zh) * | 2011-07-28 | 2016-06-01 | 陶氏环球技术有限责任公司 | 用于从气体混合物除去硫化氢的氨基吡啶衍生物 |
CN103814013A (zh) * | 2011-07-28 | 2014-05-21 | 陶氏环球技术有限责任公司 | 用于从气体混合物除去硫化氢的氨基吡啶衍生物 |
WO2013188375A1 (en) | 2012-06-15 | 2013-12-19 | Dow Global Technologies Llc | Process for the treatment of liquefied hydrocarbons using 3-(piperazine-1-yl) propane-1,2-diol compounds |
WO2013188367A1 (en) | 2012-06-15 | 2013-12-19 | Dow Global Technologies Llc | Process for the treatment of liquefied hydrocarbon gas using 2 -amino -2 (hydroxymethyl) propane - 1, 3 - diol compounds |
WO2013188361A1 (en) | 2012-06-15 | 2013-12-19 | Dow Global Technologies Llc | Process for the treatment of liquefied hydrocarbons using 3-(amino) propane-1,2-diol compounds |
US10130907B2 (en) | 2016-01-20 | 2018-11-20 | Battelle Memorial Institute | Capture and release of acid gasses using tunable organic solvents with aminopyridine |
US10434460B2 (en) | 2016-01-20 | 2019-10-08 | Battelle Memorial Institute | Capture and release of acid gasses using tunable organic solvents with aminopyridine |
US11123688B2 (en) | 2016-04-29 | 2021-09-21 | Dow Global Technologies Llc | Composition and process for the dehydration of gases |
US10456739B2 (en) | 2016-11-14 | 2019-10-29 | Battelle Memorial Institute | Capture and release of acid gasses using tunable organic solvents with binding organic liquids |
US20240002742A1 (en) * | 2020-11-25 | 2024-01-04 | Eni S.P.A. | Removal of acid gases from gaseous mixtures containing them |
Also Published As
Publication number | Publication date |
---|---|
DE68904398T2 (de) | 1993-05-19 |
KR0139634B1 (ko) | 1998-06-01 |
NO894202D0 (no) | 1989-10-23 |
ATE84437T1 (de) | 1993-01-15 |
AU4364489A (en) | 1990-05-03 |
CA2000573A1 (en) | 1990-04-25 |
NO894202L (no) | 1990-04-26 |
EP0366206B1 (en) | 1993-01-13 |
KR900006014A (ko) | 1990-05-07 |
GR3006789T3 (enrdf_load_stackoverflow) | 1993-06-30 |
IN173688B (enrdf_load_stackoverflow) | 1994-06-25 |
AU620161B2 (en) | 1992-02-13 |
EP0366206A3 (en) | 1991-04-03 |
JPH02172517A (ja) | 1990-07-04 |
DE68904398D1 (de) | 1993-02-25 |
EP0366206A2 (en) | 1990-05-02 |
JP2932191B2 (ja) | 1999-08-09 |
NO175409B (no) | 1994-07-04 |
CA2000573C (en) | 2000-08-08 |
ES2044067T3 (es) | 1994-01-01 |
NO175409C (no) | 1994-10-12 |
BR8905377A (pt) | 1990-05-22 |
GB8824943D0 (en) | 1988-11-30 |
ZA898001B (en) | 1990-07-25 |
MY105609A (en) | 1994-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4959086A (en) | Removing hydrogen sulphide from a gas mixture | |
US4100257A (en) | Process and amine-solvent absorbent for removing acidic gases from gaseous mixtures | |
US4240922A (en) | Process and amine-solvent absorbent for removing acidic gases from gaseous mixtures | |
US4112051A (en) | Process and amine-solvent absorbent for removing acidic gases from gaseous mixtures | |
US5019361A (en) | Removal and recovery of sulphur dioxide from gas streams | |
RU2227060C2 (ru) | Способ удаления газовых компонентов кислотного характера из газов | |
CA2371778C (en) | Absorbent compositions for the removal of acid gases from the gas streams | |
US8313718B2 (en) | Method and composition for removal of mercaptans from gas streams | |
JP3054654B2 (ja) | 無機及び/又は有機硫黄化合物の選択的除去方法 | |
US4556546A (en) | Bis tertiary amino alkyl derivatives as solvents for acid gas removal from gas streams | |
JPH0417237B2 (enrdf_load_stackoverflow) | ||
JP2005524526A (ja) | 酸性ガス吸収方法 | |
JPS62110726A (ja) | 苛酷障害アミノ化合物及びアミノ塩を含有する吸収剤組成物並びにそれを使用するh↓2sの吸収法 | |
EP0134948A2 (en) | Absorbent formulation for enhanced removal of acid gases from gas mixtures and processes using same | |
US4238206A (en) | Using solvents for acidic gas removal | |
US4539189A (en) | Method for removing sulfides from industrial gas | |
KR850006327A (ko) | 가스로 부터 co₂및/또는 h₂s의 제거공정 | |
US4208385A (en) | Process for defoaming acid gas scrubbing solutions and defoaming solutions | |
US3928548A (en) | Process for purifying a sulfurous anhydride containing gas and producing elemental sulfur | |
US4344863A (en) | Process for defoaming acid gas scrubbing solutions and defoaming solutions | |
US3681015A (en) | Purification of gases | |
WO2018078154A1 (en) | Process for removing sulfur dioxide from a gas stream | |
JPS59109222A (ja) | ガスに含まれるメルカプタンの除去法 | |
NO820227L (no) | Fremgangsmaate for fjerning av sure gasser fra gassblandinger | |
CA1305306C (en) | Removal of hydrogen sulfide from supercritical carbon dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, A CORP. OF DE, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:VAN BAAR, JOHANNES F.;VAN LITH, WALTERUS J.;REEL/FRAME:005377/0863 Effective date: 19890904 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |