US4392668A - Shock-absorbing wheel suspension assembly - Google Patents
Shock-absorbing wheel suspension assembly Download PDFInfo
- Publication number
- US4392668A US4392668A US06/214,485 US21448580A US4392668A US 4392668 A US4392668 A US 4392668A US 21448580 A US21448580 A US 21448580A US 4392668 A US4392668 A US 4392668A
- Authority
- US
- United States
- Prior art keywords
- sleeves
- assembly
- arms
- neck
- wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 14
- 230000035939 shock Effects 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims abstract description 5
- 238000010276 construction Methods 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B9/00—Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/10—Parts, details or accessories
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/10—Parts, details or accessories
- A61G5/1078—Parts, details or accessories with shock absorbers or other suspension arrangements between wheels and frame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G3/00—Resilient suspensions for a single wheel
- B60G3/02—Resilient suspensions for a single wheel with a single pivoted arm
- B60G3/04—Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle
- B60G3/10—Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle the arm itself being resilient, e.g. leaf spring
Definitions
- the present invention generally relates to suspension means and more particularly, an improved shock-absorbing wheel suspension assembly.
- shock absorbers have been devised for vehicles. Most such shock absorbers are complicated in construction and are utilized as separate devices in addition to wheel axles and other components comprising the primary wheel suspension system for the vehicle. Moreover, the shock absorbers normally absorb shocks through the use of a single mechanism or mode of operation, e.g. resilient compression in a single plane and are subject to considerable wear and stress. Many smaller types of vehicles, such as wheeled cots, stretchers and wheel chairs incorporate ineffective or literally no shock-absorbing means whatsoever, although shock dampening means would be desireable for the same.
- U.S. Pat. No. 3,057,642 discloses a novel type of wheel suspension apparatus which incorporates directly thereinto improved shock absorbing means.
- This shock absorbing means comprises a considerable number of interconnected components carefully fitted together to cause shock absorption and force dissipation by two separate mechanisms; namely, linear bending and torsional stressing.
- the apparatus is somewhat complicated in construction and expensive to build and maintain. Accordingly, it would therefore be desireable to be able to provide an improved unitary, simple shock absorbing wheel suspension assembly suitable for a wide variety of uses, which assembly would be less complicated and less expensive to construct and maintain.
- the improved shock absorbing wheel suspension assembly of the present invention satisfies the foregoing needs. It is substantially as set forth in the Abstract above. It comprises a rigid yoke with upstanding neck and a downwardly diverging pair of sleeves, also directed forwardly or rearwardly of the neck and a flexible pair of lever support arms, the upper ends of which are disposed in the sleeve and the middle portions of which are parallel to each other and directed in the same rearward or forward direction as the sleeves.
- the lower ends of the support arms are angled toward each other and are disposed in the hub of a wheel from opposite sides thereof.
- the assembly may include an upstanding stem connected to the yoke neck and connectable to the underside of a vehicle body.
- the yoke may be a simple unitary metal casting or the like and each arm may be formed of a single rod of flexible steel or the like. Thus, the assembly provides both suspension and shock-absorbing means in a simple inexpensive efficient construction.
- the assembly can have the wheel located in front of or behind the yoke and stem. Shocks transmitted to the vehicle body during movement of the assembly, as a result of sudden upward displacements of the wheel caused by road bumps, etc., are substantially and effectively dampened and absorbed due to simultaneous linear bending and torsional stressing of the lever arms themselves. Thus, the wheel during such displacement travels upwardly in an arc carrying with it the lower ends of the arms. The center of rotation for this is located in about the point of which each lever arm enters its associated sleeve. However, since the two sleeves are sloped downwardly and away from each other, this wheel displacement also simultaneously causes each arm to undergo twisting or torsional stress the combined flexing and torsion of the arms effectively dampen and absorb the road shocks. To assist insertion of the arms into the sleeves and limit the degree of rotation of the arms, each sleeve is cut away a predetermined amount at its lower end. Further features of the assembly are set forth in the following detailed description and accompanying drawings.
- FIG. 1 is a schematic side elevation, partly broken away, of a first preferred embodiment of the improved shock absorbing wheel suspension assembly of the present invention showing the assembly attached to the underside of a vehicle body, and also showing the path of deflection of the wheel when subjected to road shocks and the like;
- FIG. 2 is a schematic front elevation, partly broken away and partly in section, of the assembly of FIG. 1;
- FIG. 3 is a schematic perspective view, partly broken away, of a second preferred embodiment of the improved shock absorbing wheel suspension assembly of the present invention, showing the assembly attached to the underside of a vehicle body.
- assembly 10 which comprises a yoke 12, cylindrical stem 14, arms 16 and 18 and wheel 20 with control hub 22. Also shown is the underside of the body portion 24 of a vehcile (not shown) bearing a socket 26 into which the upper end 28 of stem 14 is received, preferably for rotation.
- the upper portion 30 of stem 14 may be cylindrical and is vertical while the lower portion 32 thereof is angled therefrom with the lower end 24 thereof inserted into a cavity 36 in the angled upper portion or neck 38 of yoke 12 and releasably secured therein, as by spring pins 40 and 42 (FIG. 1) or the like.
- the lower portion 44 of yoke 12 comprises a pair of hollow tubular sleeves 46 and 48 which extend downwardly and rearwardly or forwardly from neck 38 at about a 90° angle, although other angles substantially less than 180° are acceptable.
- Yoke 12 preferably is forged or cast of a single rigid piece of steel or the like into a unitary body.
- Sleeves 46 and 48 preferably diverge from each other at about a 90° angle (FIG. 2), although other angles are also acceptable.
- Sleeves 46 and 48 define central cylindrical passageways 50 and 52, respectively, within which the upper ends 54 and 56 respectively of flexible resilient cylindrical lever arms 16 and 18 are disposed.
- arms 16 and 18 are fabricated of high tensile strength steel rod or the like.
- Ends 54 and 56 preferably converge within yoke 12 at the base of neck 38.
- Ends 54 and 56 are angled relative to the elongated middle portions 58 and 60 of arms 16 and 18, respectively, as shown in FIG. 2, which portions 58 and 60 are parallel to each other.
- Rivets 62 and 64 or other means such as screws, etc. may be disposed through the sleeve wall at the lower ends 66 and 68 of sleeves 46 and 48, respectively, to prevent ends 54 and 56 from sliding out of sleeves 46 and 48.
- portions 58 and 60 lie in the same angled plane as sleeves 46 and 48 and thus extend downwardly and rearwardly to lower ends 70 and 72 thereof.
- Ends 70 and 72 are angled to approximate each other in the horizontal plane and are releasably secured in opposed ends of horizontal hub 22 of vertical wheel 20 by any suitable means, such as for example, in each instance, a spanner 74 configured sleeve 76 and bearing and race assembly 78.
- the wheel 20 is thus free to rotate around the axle formed of ends 70 and 72 of arms 16 and 18 while ends 70 and 72 remain in fixed relation thereto.
- wheel 20 When assembly 10 is secured to body 24, as shown in FIG. 1, wheel 20 is largely behind yoke 12 with wheel 20 centered between sleeves 46 and 48 (FIG. 2) and preferably in the same vertical plane as stem 14 and neck 38.
- body 24 When body 24 is moved so that wheel 20 rotates, shocks due to uneven ground, etc., which are transmitted to wheel 20 cause it to deflect upwardly along an arc 80 (FIG. 1) the center of rotation of which is at about the lower ends 66 and 68 of sleeves 46 and 48.
- wheel 20 can be deflected to the position shown in dotted outline in FIG. 1. Ends 70 and 72 are connected thereto and move therewith.
- Ends 66 and 68 of sleeves 46 and 448 are cut away in the areas designated 82 and 84 in FIGS. 1 and 2 to facilitate initial insertion of ends 54 and 56 in sleeves 46 and 48 during construction of assembly 10, and limit the angular rotation of arms 16 and 18.
- Linear flexing and bending of arms 16 and 18 occurs along the length of middle portions 58 and 60 thereof to absorb the deflecting force transmitted thereto.
- ends 54 and 56 of arms 16 and 18 are angled away from the plane of rotation of the portion 58 and 60 of arms 16 and 18 the described linear flexing is accompanied by torsional stressing or twisting of arms 16 and 18 in the area of the juncture of ends 54 and 56 with middle portions 58 and 60 and for some distance therebeyond.
- assembly 10a is shown which includes vertical stem 14a connected to the body 26a and to a vertical neck 38a of yoke 12a.
- Yoke 12a includes downwardly and forwardly diverging sleeves 46a and 48a within which are received upper ends 54a and 56a of resilient flexible arms 16a and 18a, respectively, the middle portions 58a and 60a of arms 16a and 18a, respectively, being parallel to each other extending forwardly and terminating in lower ends 70a and 72a which are angled into the horizontal plane so as to approximate each other. Ends 70a and 72a are secured in opposite sides of hub 22a for rotation of wheel 20a in a vertical plane therebetween.
- assembly 10a differs in construction from assembly 10 only in that neck 38a is vertical rather than angled, sleeves 46a and 48a do not have cut-away portions on their lower ends, legs 16a and 18a are directed forwardly rather than rearwardly and ends 54a and 56a are not pinned or riveted into sleeves 46a and 48a but are free to slide thereon.
- the wheel suspending and shock absorbing properties of assembly 10a are substantially the same as those already described for assembly 10 and the two assemblies function similarly. Both are very inexpensive to make and maintain, durable and efficient and are adaptable to a wide variety of applications. Both can be constructed of similar materials.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vehicle Body Suspensions (AREA)
- Vibration Dampers (AREA)
- Axle Suspensions And Sidecars For Cycles (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/214,485 US4392668A (en) | 1980-12-09 | 1980-12-09 | Shock-absorbing wheel suspension assembly |
JP56196430A JPS57121907A (en) | 1980-12-09 | 1981-12-08 | Impact absorbing wheel suspension system |
DE3148799A DE3148799C2 (de) | 1980-12-09 | 1981-12-09 | Lenkrolle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/214,485 US4392668A (en) | 1980-12-09 | 1980-12-09 | Shock-absorbing wheel suspension assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US4392668A true US4392668A (en) | 1983-07-12 |
Family
ID=22799257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/214,485 Expired - Lifetime US4392668A (en) | 1980-12-09 | 1980-12-09 | Shock-absorbing wheel suspension assembly |
Country Status (3)
Country | Link |
---|---|
US (1) | US4392668A (enrdf_load_stackoverflow) |
JP (1) | JPS57121907A (enrdf_load_stackoverflow) |
DE (1) | DE3148799C2 (enrdf_load_stackoverflow) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4997066A (en) * | 1988-08-29 | 1991-03-05 | Ampafrance | Wheel-locking device, in particular for a pram |
WO1996015000A1 (en) * | 1994-11-16 | 1996-05-23 | Sunrise Medical Limited | Vehicle having castors |
WO1998056597A1 (de) * | 1997-06-11 | 1998-12-17 | Rhombus Rollen Gmbh & Co. | Radgabel und zugehörige lenkrolle |
US5967535A (en) * | 1997-08-14 | 1999-10-19 | Graco Children's Products Inc. | Swivel wheel mount |
EP1222948A1 (en) * | 2001-01-08 | 2002-07-17 | SportsFX | Suspension system for inline skates |
US20100012400A1 (en) * | 2008-05-06 | 2010-01-21 | Steven J Patmont | Wheelchair having torsion-acting shock absorption and detachable dirve train |
CN102224264A (zh) * | 2008-11-24 | 2011-10-19 | 维维乐内德兰公司 | 弹性拖曳臂的硬化 |
US20150102573A1 (en) * | 2013-10-15 | 2015-04-16 | Samsonite IP Holdings S.ar.I. | Luggage article with cantilevered wheel bracket having elongated arms |
EP3075567A1 (en) | 2015-03-31 | 2016-10-05 | Samsonite IP Holdings S.à.r.l. | Luggage article with loop-shaped wheel bracket |
USD811090S1 (en) | 2016-06-27 | 2018-02-27 | Samsonite Ip Holdings S.A R.L. | Luggage wheel housing with a wheel |
US11819102B2 (en) | 2016-06-27 | 2023-11-21 | Samsonite Ip Holdings S.A R.L. | Spinner wheel assembly for a luggage case |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6286201U (enrdf_load_stackoverflow) * | 1985-11-20 | 1987-06-02 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2557275A (en) * | 1950-02-28 | 1951-06-19 | Geisse John Harlin | Cross wind airplane undercarriage |
US2923961A (en) * | 1960-02-09 | black | ||
US2987752A (en) * | 1958-11-10 | 1961-06-13 | Pemco Wheel Co | Caster |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE617428C (de) * | 1935-08-19 | Peschke & Comp G M B H C | Laufrolle fuer Handfahrzeuge | |
US3057642A (en) * | 1960-02-15 | 1962-10-09 | Mulholland Lawrence Keith | Suspension apparatus |
JPH058236U (ja) * | 1991-07-11 | 1993-02-05 | サンデン株式会社 | 気化式燃焼装置 |
-
1980
- 1980-12-09 US US06/214,485 patent/US4392668A/en not_active Expired - Lifetime
-
1981
- 1981-12-08 JP JP56196430A patent/JPS57121907A/ja active Granted
- 1981-12-09 DE DE3148799A patent/DE3148799C2/de not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2923961A (en) * | 1960-02-09 | black | ||
US2557275A (en) * | 1950-02-28 | 1951-06-19 | Geisse John Harlin | Cross wind airplane undercarriage |
US2987752A (en) * | 1958-11-10 | 1961-06-13 | Pemco Wheel Co | Caster |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4997066A (en) * | 1988-08-29 | 1991-03-05 | Ampafrance | Wheel-locking device, in particular for a pram |
WO1996015000A1 (en) * | 1994-11-16 | 1996-05-23 | Sunrise Medical Limited | Vehicle having castors |
US5899475A (en) * | 1994-11-16 | 1999-05-04 | Sunrise Medical Limited | Vehicle having wheels and castors |
WO1998056597A1 (de) * | 1997-06-11 | 1998-12-17 | Rhombus Rollen Gmbh & Co. | Radgabel und zugehörige lenkrolle |
US5967535A (en) * | 1997-08-14 | 1999-10-19 | Graco Children's Products Inc. | Swivel wheel mount |
EP1222948A1 (en) * | 2001-01-08 | 2002-07-17 | SportsFX | Suspension system for inline skates |
US8434775B2 (en) * | 2008-05-06 | 2013-05-07 | Steven J. Patmont | Wheelchair having torsion-acting shock absorption and detachable drive train |
US20100012400A1 (en) * | 2008-05-06 | 2010-01-21 | Steven J Patmont | Wheelchair having torsion-acting shock absorption and detachable dirve train |
US8480104B2 (en) * | 2008-11-24 | 2013-07-09 | Weweler Nederland B.V. | Hardening of flexible trailing arms |
CN102224264A (zh) * | 2008-11-24 | 2011-10-19 | 维维乐内德兰公司 | 弹性拖曳臂的硬化 |
US20110254243A1 (en) * | 2008-11-24 | 2011-10-20 | Weweler Nederland B.V. | hardening of flexible trailing arms |
US20150102573A1 (en) * | 2013-10-15 | 2015-04-16 | Samsonite IP Holdings S.ar.I. | Luggage article with cantilevered wheel bracket having elongated arms |
EP2862473A1 (en) | 2013-10-15 | 2015-04-22 | Samsonite IP Holdings S.a.r.l | Luggage article with a cantilevered wheel bracket having elongated arms |
US9636948B2 (en) * | 2013-10-15 | 2017-05-02 | Samsonite Ip Holdings S.A.R.L. | Luggage article with cantilevered wheel bracket having elongated arms |
US10897970B2 (en) | 2015-03-31 | 2021-01-26 | Samsonite Ip Holdings S.A R.L. | Luggage article with loop-shaped wheel bracket |
EP3075567A1 (en) | 2015-03-31 | 2016-10-05 | Samsonite IP Holdings S.à.r.l. | Luggage article with loop-shaped wheel bracket |
US11944175B2 (en) | 2015-03-31 | 2024-04-02 | Samsonite Ip Holdings S.A R.L. | Luggage article with loop-shaped wheel bracket |
USD811090S1 (en) | 2016-06-27 | 2018-02-27 | Samsonite Ip Holdings S.A R.L. | Luggage wheel housing with a wheel |
USD841331S1 (en) | 2016-06-27 | 2019-02-26 | Samsonite Ip Holdings S.A R.L. | Luggage wheel fork with a wheel |
USD848740S1 (en) | 2016-06-27 | 2019-05-21 | Samsonite Ip Holdings S.A R.L. | Luggage wheel |
USD841330S1 (en) | 2016-06-27 | 2019-02-26 | Samsonite Ip Holdings S.A R.L. | Luggage wheel fork with a wheel |
US11819102B2 (en) | 2016-06-27 | 2023-11-21 | Samsonite Ip Holdings S.A R.L. | Spinner wheel assembly for a luggage case |
USD841332S1 (en) | 2016-06-27 | 2019-02-26 | Samsonite Ip Holdings S.A R.L. | Luggage wheel fork with a wheel |
Also Published As
Publication number | Publication date |
---|---|
JPS6230923B2 (enrdf_load_stackoverflow) | 1987-07-06 |
JPS57121907A (en) | 1982-07-29 |
DE3148799C2 (de) | 1986-10-16 |
DE3148799A1 (de) | 1982-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1177098A (en) | Vehicle wheel suspension | |
US6318739B1 (en) | Suspension for a skateboard | |
US4337958A (en) | Suspension and stabilizing system for a snowmobile | |
EP0172999B1 (en) | Vehicle rear wheel suspension with dual links extending in the overall forward direction | |
US4392668A (en) | Shock-absorbing wheel suspension assembly | |
US4989894A (en) | Independent rear suspension | |
US4781364A (en) | Elastic beam-torsion rod connection | |
EP0302226A2 (en) | Vehicle rear suspension system | |
US4540197A (en) | Vehicle wheel suspension | |
US2998241A (en) | Torsion bar wheel suspension for motor vehicles | |
US4429900A (en) | Automotive suspension system for maintaining the rear wheels substantially parallel to one another throughout use | |
US9346518B2 (en) | Snowmobile suspension systems | |
US20190232749A1 (en) | Suspension assembly for a tilting vehicle, forecarriage and tilting vehicle | |
JPS5820805B2 (ja) | 自動車用スタビライザ−装置 | |
CA2174657A1 (en) | Device for spring-loaded wheel control in the frame of a bicycle | |
JPS62221988A (ja) | 2輪車用の懸架装置 | |
US20130175774A1 (en) | Skateboard truck and caster with suspension mechanism | |
JP2002012015A (ja) | サスペンション装置 | |
EP2961499B1 (en) | Skateboard truck and caster with suspension mechanism | |
US4372418A (en) | Front set of wheels for an automobile vehicle | |
US5209319A (en) | Motorcycle front suspension | |
US5749591A (en) | Motorcycle leaf spring suspension system | |
CA1192919A (en) | Vehicle wheel suspension | |
US5758898A (en) | Rear axle suspension for a motor vehicle | |
US5362091A (en) | Rear suspension for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MULHOLLAND DESIGNS, INC., 725 MARKET STREET, WILMI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MULHOLLAND, LAWRENCE, K.,;REEL/FRAME:004814/0032 Effective date: 19871110 |