US4177403A - Electronic starter for igniting a discharge lamp - Google Patents

Electronic starter for igniting a discharge lamp Download PDF

Info

Publication number
US4177403A
US4177403A US05/870,026 US87002678A US4177403A US 4177403 A US4177403 A US 4177403A US 87002678 A US87002678 A US 87002678A US 4177403 A US4177403 A US 4177403A
Authority
US
United States
Prior art keywords
temperature
lamp
electronic starter
circuit
starter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/870,026
Other languages
English (en)
Inventor
Michel Remery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US4177403A publication Critical patent/US4177403A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • H05B41/044Starting switches using semiconductor devices for lamp provided with pre-heating electrodes
    • H05B41/046Starting switches using semiconductor devices for lamp provided with pre-heating electrodes using controlled semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/30Igniting arrangements

Definitions

  • the invention relates to an electronic starter for igniting a discharge lamp, the starter having two input terminals which are interconnected by an electric circuit comprising at least a controlled semiconductor switch.
  • the starter further comprises a control circuit for controlling said semiconductor switch, said control circuit comprising a temperature-sensitive circuit element which inhibits the igniting function of the starter at elevated temperatures.
  • the invention also relates to an electric circuit comprising a gas and/or vapour discharge lamp as well as an electronic starter of the type mentioned in the preamble, which starter is used for igniting the lamp.
  • French Patent Application No. 2,279,302 describes a lamp circuit comprising an electronic starter of the type mentioned in the preamble wherein the above-mentioned protection is obtained by means of a resistor having a negative temperature coefficient (NTC).
  • NTC negative temperature coefficient
  • this resistor is arranged in parallel with a capacitor which is a part of the control circuit of the semiconductor switch of the starter.
  • a drawback of that prior art electronic starter is that, in the operating condition of the lamp, an electric current flows continuously through the NTC resistor so that it is difficult, and sometimes even impossible, after a brief interruption of the power supply voltage, to ignite the lamp again after it has extinguished.
  • a second drawback of the above-mentioned prior art electronic starter is that an accidental interruption of the NTC resistor makes the protection of the ballast inoperative in the case of a lamp which fails to ignite.
  • An electronic starter according to the invention for igniting a discharge lamp has two input terminals which are interconnected by an electric circuit comprising at least a controlled semiconductor switch.
  • the starter further comprises a control circuit controlling said semiconductor switch which includes a temperature-sensitive circuit element which inhibits the igniting function of the starter at an elevated temperature.
  • This electronic starter is characterized in that the control circuit of the controlled semiconductor switch comprises an auxiliary switch which is connected to the temperature-sensitive circuit element, the auxiliary switch being controlled by a threshold voltage element so that the auxiliary switch is open if the voltage across the threshold voltage element is lower than its threshold voltage.
  • An advantage of this electronic starter is that, after a very brief interruption in the supply voltage, the relevant discharge-lamp after extinguishing can again ignite reliably. This is the result of the fact that the temperature-sensitive circuit element carries no current in the operating condition of the lamp. The temperature of that temperature-sensitive circuit element can consequently be sufficiently low--after a very brief interruption in the supply voltage has ended--to enable re-ignition of the lamp.
  • the threshold voltage component is preferably a zener diode.
  • the temperature-sensitive circuit element it is advantageous for the temperature-sensitive circuit element to be thermally coupled to one of the starter components in which the current which flows also passes through the stabilisation ballast. As a result thereof, the ballast current can be kept low in the case of a failing lamp.
  • a further resistor is present in parallel with the circuit which includes the semiconductor switch, and the temperature-sensitive circuit element is thermally coupled to that additional resistor.
  • the temperature-sensitive circuit element is not only heated by the electric current flowing through the temperature-sensitive circuit element itself, but it is also heated by means of the current through a starter component which is thermally coupled to the temperature-sensitive circuit element.
  • Electronic starters according to the present invention may reduce--in the case of a failing lamp--the ballast current to a harmlessly low value. This value need not be equal to zero. Owing to a suitable temperature increase of the temperature-sensitive circuit element which is present in the control circuit of the controlled semiconductor switch, it can be ensured that the controlled semiconductor switch--which then carries the ballast current--is only occasionally conductive. Then the ballast current assumes, after an initial high value, a low final value.
  • FIG. 1 shows a first electric circuit comprising a discharge lamp and an electronic starter according to the invention
  • FIG. 2 shows an electric circuit of a second electronic starter according to the invention
  • FIG. 3 shows schematically the waveform of the electric voltage between the input terminals of the starter, plotted against time, in the circuits of FIG. 1 and FIG. 2, if the discharge lamp does not immediately ignite;
  • FIG. 4 shows schematically the waveform of the electric voltage between the input terminals of the starter, plotted against time, in the circuits of FIG. 1 and FIG. 2, if a temperature-sensitive circuit element in that starter is defective;
  • FIG. 5 shows an electric circuit of a third electronic starter according to the invention
  • FIG. 6 shows an electric circuit of a fourth electronic starter according to the invention
  • FIG. 7 shows an electric circuit of a fifth electronic starter according to the invention.
  • FIG. 8 shows an electric circuit of a sixth electronic starter according to the invention.
  • FIG. 9 shows a cross-section through a portion of the electronic starter of FIG. 5.
  • FIG. 10 shows a variant of the cross-section of FIG. 9 of an electronic starter.
  • reference numerals 1 and 2 denote preheatable electrodes of a low-pressure mercury vapour discharge lamp 3.
  • the electrode 1 is connected to a terminal 4.
  • the electrode 2 is connected to a terminal 5 of an a.c. voltage supply of, for example, 220 volts, 50 Hz.
  • ballast 6 Connected to the terminal 4 there is a stabilisation ballast which is either inductive (ballast 6) or consists of a series arrangement of an electric coil and a capacitor, which series arrangement (ballast 7) is capacitive at the above-mentioned supply frequency.
  • the other end of the relevant ballast is connected to a terminal 8 which in turn is connected to a second terminal 9 of the a.c. voltage supply.
  • the two ends of the electrodes 1 and 2 of the lamp 3 remote from the supply voltage are connected to input terminals 10 and 11 respectively of an electronic starter 12.
  • the starter 12 serves for igniting the lamp 3.
  • a diode bridge 13 to 16 inclusive is connected to the terminals 10 and 11.
  • the terminals 10 and 11 are interconnected via a capacitor 17 and a temperature-sensitive auxiliary resistor 18.
  • the interconnected anodes of the diodes 14 and 16 are connected to a common conductor 19 (negative conductor).
  • a conductor 20 (positive conductor) is connected via a series arrangement of two resistors 22 and 21 to the terminal 10.
  • the resistor 21 is shunted by a resistor 23 having a negative temperature coefficient.
  • the conductor 20 is connected to the terminal 11 via a resistor 24.
  • anode of a thyristor 25 is connected to the interconnected cathodes of the diodes 13 and 15.
  • the cathode of this thyristor 25 is connected to the anode of a diode 27 whose cathode is connected to the negative conductor 19.
  • a control electrode of the thyristor 25 is also connected to the conductor 19.
  • the emitter of a pnp-transistor 28 is connected to the conductor 20 and the emitter of an npn-transistor 29 is connected to the conductor 19.
  • the base of the transistor 28 is connected to the collector of the transistor 29, and the base of the transistor 29 is connected to the collector of the transistor 28.
  • the base of the transistor 28 is connected via a resistor 30 to the conductor 20.
  • the base of the transistor 29 is connected via a resistor 31, which has a negative temperature coefficient, to the conductor 19.
  • the resistor 31 is thermally coupled to the inductance 26.
  • the cathode of a zener diode 32 is connected to the conductor 20 and its anode is connected to the base of the transistor 29.
  • a resistor 33 is connected between the conductors 20 and 19.
  • the conductor 20 is connected via a capacitor 34 to the cathode of the thyristor 25.
  • FIG. 2 shows an electric circuit of a second electronic starter 120 whose input terminals 10 and 11 are connected to electrodes 1 and 2 of a lamp 3 (not shown) in a similar manner to that shown in FIG. 1.
  • the components in FIG. 2 which are the same as in FIG. 1 have been given the same reference numerals.
  • the temperature-sensitive resistor 31 of FIG. 1 is replaced by a fixed resistor 310
  • resistor 30 is replaced by a resistor 300 having a positive temperature coefficient.
  • the resistor 300 is thermally coupled to the inductance 26.
  • the igniting pulses which are supplied by means of the starters 12 and 120 of FIGS. 1 and 2 resemble the igniting pulses which can be obtained with a starter according to the previously mentioned French Patent Application No. 2,279,302.
  • the intensity of the hold current (IH) of the thyristor 25 is increased by the provision of diode 27. Via its cathode this thyristor 25 is made conductive by negative pulses which are supplied by discharges of the capacitor 34, which capacitor is charged via the input terminals 10 and 11.
  • thyristor 25 having an (apparently) large hold current
  • inductance 26 causes the ballast circuit to be alternately conducting and interrupted at a very high frequency and hence promotes ignition of the lamp.
  • the electric asymmetry of the described starter furthermore results in a direct current component in the current through the stabilisation ballast, which is advantageous because this increases the pre-heating current of the lamp electrodes 1 and 2 owing to magnetic saturation of the inductance of the ballast. This is of course only the case during the starting procedure; not during the operating condition of the lamp.
  • the starters 12 and 120, of the FIGS. 1 and 2, operate as follows:
  • capacitor 34 is uncharged, and the semiconductor device comprising transistors 28 and 29 is cut off. If the voltage between the terminals 10 and 11 is increased, the capacitor 34 is charged until the voltage between the conductors 19 and 20 attains the threshold voltage of the zener diode 32. The diode 32 then becomes conductive and this results in a current through the base of the transistor 29, which becomes conductive as a result thereof. In its turn this renders the transistor 28 conductive.
  • the starters 12 and 120 shown in FIGS. 1 and 2 respectively are electrically arranged so that an interruption or accidental short-circuiting of the temperature-sensitive resistor 31 or 300 of these starters does not result in an excessive current through the stabilisation ballast (6 or 7).
  • PTC resistor 300 FIG. 2
  • transistor 29 will conduct to a certain extent as a result of a current through Zener diode 32, thereby counteracting the triggering of thyristor 25 so as to reduce the current through the stabilization ballast.
  • the conducting state of the thyristor 25 results in that the ballast current then comprises a direct current component which causes a reduction of the effective impedance of the inductance of the ballast.
  • the temperature of the ballast might then become higher than the temperature prescribed for safety reasons.
  • the starters 12 and 120 are arranged so that they limit heating of the ballast to a temperature which is perfectly safe.
  • NTC negative temperature coefficient
  • the increasing value of the positive temperature coefficient (PTC) resistor 300 results in that the collector current of the transistor 29, and consequently also the base current of the transistor 28, then decreases, which also results in a delay in generating a control pulse by means of the capacitor 34.
  • PTC positive temperature coefficient
  • FIG. 3 which, inter alia, shows the variation of the voltage between the electrodes of the lamp 3 in the case of an inductive ballast 6, shows the shift in the ignition instant in the positive half cycles during heating of the NTC resistor 31 or of the PTC resistor 300.
  • FIG. 3 shows that the duration of the time interval (t1-t2, t3-t4 and t5-t6) during which the thyristor 25 conducts has considerably decreased. This results in a reduction of the effective ballast current, the intensity of which stabilizes at a value which is safe for that ballast.
  • the intensity of the current received via the zener diode 32 is sufficient to keep the transistor 29 conductive, whereas in the case where the PTC resistor 300 is open the transistor 28 is also rendered conductive.
  • ballast current in the case of a failing lamp, for example, to a negligibly low value, particularly, in the case where all the lamps of a large lighting installation are replaced at substantially the same time and hence tend to fail at the same time. Otherwise the total intensity of the ballast currents of the simultaneously failing lamps would result in a considerable waste of energy.
  • the starter 121 shown in FIG. 5, which also enables a reduction in the ballast current, comprises a series arrangement of a resistor 35 and a negative temperature coefficient (NTC) resistor 36 between the interconnected cathodes of the diodes 13, 15 and the conductor 19.
  • NTC negative temperature coefficient
  • the voltage across the series arrangement 35, 36 remains high. This results in an increase in temperature of these two resistors. Owing to the thermal coupling to the negative temperature coefficient resistor 31 the ohmic value of the latter decreases considerably, so that the transistor 29 as well as the thyristor 25 become non-conducting. The strength of the current which then flows between the terminals 10 and 11 of the starter is substantially reduced to the sum of the current through the zener diode 32 and the current through the resistors 35 and 36, that is to say, as a rule, to a few milliamperes.
  • the starter 122 of FIG. 6, in which the same reference numerals are used as in FIGS. 1, 2 and 5, comprises, by way of switching arrangement, a tetrode thyristor 37, a control electrode of which is connected to the conductor 20 via a resistor 30.
  • a further control electrode of thyristor 37 is connected to a junction between the anode of the zener diode 32 and the resistor 31.
  • the thyristor 37 of FIG. 6 switches in a similar manner to the combination formed by the transistors 28 and 29 of FIGS. 1, 2 and 5.
  • a unijunction transistor 38 is used as the auxiliary switch of the starter 123.
  • a thyristor 39 is used for the same purpose.
  • the starters 123 and 124 are not suitable for the embodiment in which a resistor having a positive temperature coefficient is used owing to the fact that the auxiliary switch comprises one control electrode only. But for this restriction the starters 123 and 124 of FIG. 7 and FIG. 8 respectively are fully comparable to the starters 12, 120, 121 and 122.
  • FIGS. 9 and 10 show two embodiments for effecting the thermal coupling of the various components of the starter 121 of FIG. 5.
  • the inductance 26 of FIG. 9 and FIG. 10 consists of a double cylindrical ferrite core wound with wire.
  • An electrically insulating film 40 is present between the inductance 26 and the resistors 31, 35 and 36. The assembly thus formed is clamped together by means of an envelope 41 of a resilient synthetic resin material.
  • the diameter of the electric wire of the inductance 26 is sufficiently small to ensure rapid heating of the inductance if the lamp fails to ignite.
  • the NTC resistor 23 (see FIGS. 1, 2, 5, 6, 7 and 8) serves inter alia to prevent the thyristor 25 from becoming conductive after the ignition of the lamp 3 over the entire range of ambient temperatures in which the starter should function.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
US05/870,026 1977-01-31 1978-01-16 Electronic starter for igniting a discharge lamp Expired - Lifetime US4177403A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7702585 1977-01-31
FR7702585A FR2379226A1 (fr) 1977-01-31 1977-01-31 Starter electronique d'amorcage d'un tube a decharge

Publications (1)

Publication Number Publication Date
US4177403A true US4177403A (en) 1979-12-04

Family

ID=9186072

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/870,026 Expired - Lifetime US4177403A (en) 1977-01-31 1978-01-16 Electronic starter for igniting a discharge lamp

Country Status (11)

Country Link
US (1) US4177403A (it)
JP (1) JPS5394465A (it)
BE (1) BE863467A (it)
CA (1) CA1114889A (it)
CH (1) CH625379A5 (it)
DE (1) DE2802218A1 (it)
ES (1) ES466449A1 (it)
FR (1) FR2379226A1 (it)
GB (1) GB1569045A (it)
IT (1) IT1091999B (it)
NL (1) NL7800988A (it)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378514A (en) * 1980-10-27 1983-03-29 General Electric Company Starting and operating circuit for gaseous discharge lamps
US4437042A (en) 1981-12-10 1984-03-13 General Electric Company Starting and operating circuit for gaseous discharge lamps
EP0164774A1 (de) * 1984-05-14 1985-12-18 Philips Patentverwaltung GmbH Schaltungsanordnung zur Regelung der Brennspannung von Hochdruckgasentladungslampen
US4777410A (en) * 1987-06-22 1988-10-11 Innovative Controls, Inc. Ballast striker circuit
US5477109A (en) * 1993-10-11 1995-12-19 U.S. Philips Corporation Discharge lamp fast preheat circuit independent of type of ballast
US5583395A (en) * 1994-10-11 1996-12-10 Lu; Chao-Cheng Fluorescent device having a fluorescent starter which precisely controls heating time and absolute synchronism of fire point
US5606224A (en) * 1995-11-22 1997-02-25 Osram Sylvania Inc. Protection circuit for fluorescent lamps operating at failure mode
WO1997021327A1 (en) * 1995-12-04 1997-06-12 Shimon Vainer Improved starting device for fluorescent lamps
US5777439A (en) * 1996-03-07 1998-07-07 Osram Sylvania Inc. Detection and protection circuit for fluorescent lamps operating at failure mode
AU720661B2 (en) * 1996-04-02 2000-06-08 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Circuit arrangement for operating electrical lamps

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774996A (en) * 1980-10-29 1982-05-11 Tokyo Shibaura Electric Co Device for firing discharge lamp
NL8103507A (nl) * 1981-07-24 1983-02-16 Philips Nv Elektrische inrichting voor het ontsteken en voeden van een lagedrukontladingslamp.
JPH07105272B2 (ja) * 1983-10-19 1995-11-13 日立照明株式会社 他励式インバータ形放電灯点灯装置
GB2194400B (en) * 1986-08-04 1991-04-17 Transtar Ltd Starter and discharge lamp including it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875459A (en) * 1972-05-09 1975-04-01 Philips Corp Arrangement for igniting and supplying a discharge lamp
FR2255777A1 (en) * 1973-12-21 1975-07-18 Radiotechnique Compelec Firing system for discharge tubes - has common point of RC network connected to preheated electrode by resistor
FR2285780A1 (fr) * 1974-09-18 1976-04-16 Radiotechnique Compelec Dispositif destine a amorcer un tube a decharge
US3978369A (en) * 1974-01-21 1976-08-31 Hitachi, Ltd. Solid state starter apparatus for a discharge lamp
US3978368A (en) * 1973-02-21 1976-08-31 Hitachi, Ltd. Discharge lamp control circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2279302A1 (fr) * 1974-07-16 1976-02-13 Radiotechnique Compelec Dispositif electronique d'amorcage de tubes a decharge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875459A (en) * 1972-05-09 1975-04-01 Philips Corp Arrangement for igniting and supplying a discharge lamp
US3978368A (en) * 1973-02-21 1976-08-31 Hitachi, Ltd. Discharge lamp control circuit
FR2255777A1 (en) * 1973-12-21 1975-07-18 Radiotechnique Compelec Firing system for discharge tubes - has common point of RC network connected to preheated electrode by resistor
US3978369A (en) * 1974-01-21 1976-08-31 Hitachi, Ltd. Solid state starter apparatus for a discharge lamp
FR2285780A1 (fr) * 1974-09-18 1976-04-16 Radiotechnique Compelec Dispositif destine a amorcer un tube a decharge

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378514A (en) * 1980-10-27 1983-03-29 General Electric Company Starting and operating circuit for gaseous discharge lamps
US4437042A (en) 1981-12-10 1984-03-13 General Electric Company Starting and operating circuit for gaseous discharge lamps
EP0164774A1 (de) * 1984-05-14 1985-12-18 Philips Patentverwaltung GmbH Schaltungsanordnung zur Regelung der Brennspannung von Hochdruckgasentladungslampen
US4777410A (en) * 1987-06-22 1988-10-11 Innovative Controls, Inc. Ballast striker circuit
US5477109A (en) * 1993-10-11 1995-12-19 U.S. Philips Corporation Discharge lamp fast preheat circuit independent of type of ballast
US5583395A (en) * 1994-10-11 1996-12-10 Lu; Chao-Cheng Fluorescent device having a fluorescent starter which precisely controls heating time and absolute synchronism of fire point
US5606224A (en) * 1995-11-22 1997-02-25 Osram Sylvania Inc. Protection circuit for fluorescent lamps operating at failure mode
WO1997021327A1 (en) * 1995-12-04 1997-06-12 Shimon Vainer Improved starting device for fluorescent lamps
US5777439A (en) * 1996-03-07 1998-07-07 Osram Sylvania Inc. Detection and protection circuit for fluorescent lamps operating at failure mode
AU720661B2 (en) * 1996-04-02 2000-06-08 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Circuit arrangement for operating electrical lamps

Also Published As

Publication number Publication date
CH625379A5 (it) 1981-09-15
BE863467A (fr) 1978-07-31
JPS5394465A (en) 1978-08-18
DE2802218A1 (de) 1978-08-03
FR2379226B1 (it) 1980-11-21
NL7800988A (nl) 1978-08-02
IT1091999B (it) 1985-07-06
ES466449A1 (es) 1978-10-16
IT7819731A0 (it) 1978-01-27
GB1569045A (en) 1980-06-11
FR2379226A1 (fr) 1978-08-25
CA1114889A (en) 1981-12-22

Similar Documents

Publication Publication Date Title
US4447759A (en) Starter for igniting an electric discharge tube
US4763044A (en) Start, hot restart and operating lamp circuit
US5047694A (en) Lamp starting circuit
US4177403A (en) Electronic starter for igniting a discharge lamp
US5019751A (en) End-of-life lamp starter disabling circuit
US3919590A (en) Arrangement for igniting a gas and/or vapour discharge lamp provided with preheatable electrodes
JPS5815918B2 (ja) ホウマ゛ントウテンコキユウデンソウチ
US4588924A (en) High efficiency converter for discharge lamps
US4464607A (en) Lighting unit
US4398130A (en) Arc lamp lighting unit with low and high light levels
US4087723A (en) Arrangement for starting and operating a discharge lamp
US5208515A (en) Protection circuit for stabilizer for discharge apparatus
US4380719A (en) Electronic device for the starting and a.c. voltage operation of a gas and/or vapor discharge lamp
US4103209A (en) Add-on instant restrike device for an hid lamp
US4134043A (en) Lighting circuits
US3659150A (en) Electronic gas discharge tube igniter
US3383558A (en) Non-resonant starting circuit for high pressure double jacketed mercury lamps
US5420479A (en) High pressure vapor discharge lamp with a built-in igniter
US4749909A (en) Compact igniter for discharge lamps
CA2389192A1 (en) Hot restrike protection circuit for self-oscillating lamp ballast
US4236100A (en) Lighting circuits
US4714862A (en) Circuit arrangement for igniting and operating gas discharge lamps
US4023066A (en) Operating circuit for a gas and/or vapour discharge lamp
JP2001155878A (ja) 低コストの精密電子式始動器
US4658184A (en) Method of triggering a high pressure sodium vapor lamp and sodium vapor lamp with improved triggering