US3659150A - Electronic gas discharge tube igniter - Google Patents

Electronic gas discharge tube igniter Download PDF

Info

Publication number
US3659150A
US3659150A US867833A US3659150DA US3659150A US 3659150 A US3659150 A US 3659150A US 867833 A US867833 A US 867833A US 3659150D A US3659150D A US 3659150DA US 3659150 A US3659150 A US 3659150A
Authority
US
United States
Prior art keywords
capacitor
series
resistor
tube
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US867833A
Inventor
Robert Ronald Laupman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUCO NV
Original Assignee
AUCO NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUCO NV filed Critical AUCO NV
Application granted granted Critical
Publication of US3659150A publication Critical patent/US3659150A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • H05B41/044Starting switches using semiconductor devices for lamp provided with pre-heating electrodes
    • H05B41/046Starting switches using semiconductor devices for lamp provided with pre-heating electrodes using controlled semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/02High frequency starting operation for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp

Definitions

  • ABSTRACT Foreign Apphcanon Pnomy Data In an electronic gas discharge tube igniter comprising a Oct. 21, 1968 Netherlands ..68/l5032 semiconductor switch element, a Separate Control Signal minal of said element is connected through a semiconductor [52] U.S. Cl ..315/l06, 3l5/DIG 2, 3l5/DIG. 5 A.C. diode with the tap of a voltage divider.
  • the circuit ele- [51] Int. Cl.
  • the device is Field of Search 307/252, 315/93, 101, preferably used ,in combination with a circuit arrangement in- 2, 1316- 5, eluding a suppressing capacitor.
  • This invention relates to a device for electronically igniting gas discharge tubes, such as luminescent lamps.
  • a much used embodiment of such a starter comprises a neon tube capable of operating a bimetallic switch contact.
  • the ignition process takes some time, and is moreover accompanied with annoying flashing.
  • FIG. 1 is a circuit diagram illustrating an arrangement ac cording to the prior art
  • FIG. 2 is a circuit diagram illustrating an embodiment of the present invention
  • FIG. 3 is a circuit diagram similar to FIG. 2 but showing a modified form of the invention
  • FIG. 4 is a circuit diagram similar to FIG. 3 but showing a further modification of the invention.
  • FIG. 5A is a waveform showing the voltage characteristics while the tube is ignited
  • FIG. 5B is a voltage waveform showing the effect created when the igniter 5 conducts every other half cycle
  • FIG. 5C is a voltage waveform associated with the embodiment of FIG. 2;
  • FIG. 5D is a voltage waveform associated with the embodiment of FIG. 4;
  • FIG. 6 is a diagram similar to FIG. I but illustrating the capacitor 8 on the supply line side of the tube 1;
  • FIG. 7 is a circuit diagram similar to FIG. 2 but showing a modification thereof.
  • FIG. 8 is a voltage-current waveform associated with the circuit of FIG. 7.
  • FIG. 2 A first embodiment of an igniter according to the invention is shown diagrammatically in FIG. 2.
  • connectors A and B correspond with connectors A and B as shown in FIG. 1.
  • the circuit arrangement of FIG. 2 is substituted for the block 5 of FIG. I.
  • the circuit arrangement shown in FIG. 2 comprises a triode semiconductor A.C. switch element 10, such as a triac, connected between the nodes A and B.
  • the gate of the triode switch semiconductor A.C. element 10 is connected through a diode semiconductor A.C. switch element 11, such as a diac, with the node of capacitor 12 and a capacitor 14.
  • These capacitors constitute together with a resistor 13 a series circuit which is connected in parallel with the switch element 10.
  • the functions of the capacitor 8 and the choke coil 9 will be described in detail hereinafter; these elements need not influence the switching action proper.
  • the ignition moment of the switch element can be fixed at choice in dependence upon the values selected for the circuit elements 12, 13 and 14.
  • capacitor 14 is essential to ensure reliable ignition without introducing spurious side-effects.
  • the igniter tends to begin re-starting time and again even after the gas discharge tube has been ignited, which is a serious drawback.
  • the resistor 13 should be directly connected with the capacitor 12 and the switch element 11, i.e. without the capacitor 14 being interconnected, the capacitor 12 will be charged through resistor 13 until the voltage generated across it has reached the ignition voltage value of the switch element 11.
  • the switch element 10 After the switch element 11 has thus become conductive, the switch element 10 will begin to conduct current, as a result of which the voltage across the igniter is decreased abruptly (step function). When, upon the next zero crossing of the current flowing through the switch element 10 the latter becomes non-conductive again, such a high voltage is generated across the gas discharge tube connected with terminals A and B that the tube may be ignited. Once ignited, the burning voltage is established across the tube.
  • the moment at which the switch element 10 becomes conductive is of great importance, since the time required for heating the filaments 2 and 3 of the gas discharge tube to the extent that the wires can ignite the tube is determined by the period during which the switch element 10 is conductive.
  • the resulting current flowing through the filaments is required for the resulting current flowing through the filaments to have a value in excess of a given minimum value. It is found that the dimensioning of the capacitor 12 and the resistor 13 selected in view of this requirement is such that even when the burning voltage has been established across the gas discharge tube the switch element 10 becomes conductive again, the result of which is that the gas discharge tube is extinguished. It appears from the above that in the situation as outlined the gas discharge tube can again be extinguished after being ignited, so that the igniter keeps repeating the starting procedure.
  • the capacitors l2 and 14 actually form a capacitive voltage divider, the magnitude of capacitor 12 being substantially determined by the energy pulse to be supplied to the gate of the switch element 10 to make the later conductive.
  • Capacitor 14 is so dimensioned that when the burning voltage has been generated across the gas discharge tube the ignition voltage of the switch element 11 is just not reached. In other words, once the gas discharge tube has been ignited, the igniter will remain at rest, i.e. the ignition procedure is not repeated.
  • the capacitor 8 connected between connectors A and B is a suppressing capacitor, which reduces the spurious effect of the lighted tube to a tolerable minimum.
  • the switch element 10 becomes conductive, the capacitor 8 will be short-circuited, so that a strong peak current can be generated. Such a peak current is limited by incorporating a choke coil 9 in the discharge circuit of the capacitor 8. If so desired, the choke coil can be replaced by the resistor, which, however, involves heat wastage.
  • the suppressing capacitor 8 is disposed at the mains side as indicated in FIG. 6.
  • the choke coil 9 in igniter 5 can be omitted.
  • igniter can be used with gas discharge tubes included in an inductive circuit and capacitively compensated.
  • FIG. 3 Another embodiment of the igniter, for use in case the gas discharge tube is'connected in a circuit which, as shown in dash lines in FIGS. 1 and 6, comprises a series capacitor 6, is shown diagrammatically in FIG. 3.
  • a parallel circuit constituted by a capacitor 15 and a resistor 16 is connected in series with the series circuit constituted by resistor 13 and capacitor 14. It has been found to be possible for the circuit elements of such a circuit arrangement to be so dimensioned as to result in a starting procedure in which, after a relatively short waiting time, the filaments reach the required emission temperature, and the tube lights up gradually until eventually the lighting intensity is reached.
  • This circuit arrangement may be successfully used, for example, in those cases where it is even undesirable directly to switch on incandescent lamps by reason of the sudden variations in light intensity caused thereby.
  • the tubes it is sometimes desired for the tubes to be used under widely varying conditions, involving, for example, great differences in mains voltage and temperature. This makes great demands on the igniter. Of importance is a sufficiently high filament current and a properly timed application of the ignition voltage,
  • switch element 10 When switch element 10 is substantially permanently conductive, a voltage configuration will be formed across it as shown in FIG. 5A.
  • the filament current is then determined by the choke coil 4 and the resistance of the filaments 2 and 3.
  • the effective current will be about 0.5 A (40 W tube).
  • the switch element I When the switch element I is conductive for a half cycle (FIG. 5B) the effective filament current will be about 1.5 A, which is mainly due to the fact that the choke coil 4 is now unidirectionally driven to saturation, and consequently provides a lower impedance and so permits a higher current.
  • FIG. 5C A situation as may occur in the circuit arrangement of FIG. 2 is shown in FIG. 5C.
  • the filament current will now be broken in each half cycle. It is clear that the resulting filament current in that case will be less than 0.5 A.
  • FIG. 4 An embodiment suitable for this purpose is shown in FIG. 4. Leaving the resistor 18 out of consideration for the time being, the resistor 13 is partly bridged by a diode 17. This causes the ignition moments of the switch element to be different in each half cycle, as shown, by way of example, in FIG. 5D.
  • the choke coil 4 is loaded asymmetrically, in the sense that it is unidirectionally driven to saturation, and consequently provides a lower impedance and allows a higher filament current.
  • phaseshifting between current and voltage will begin to vary. Therefore, the moments when the switch element is non-conductive will begin to shift in each half cycle. This means that the ignition voltage across the tube will also be shifting as viewed in the cycles. 7
  • FIG. 7 illustrates a circuit arranged which in an alternative manner causes the choke coil 4 to be assymmetrically excited.
  • the triode A.C. semiconductor element 10 is in this instance replaced by the series connection of two parallel-circuits, one of which comprises a triode semiconductor switch element 18, such as a thyristor with a diode connected in parallel therewith, the direction of conductivity of which is opposite to that of the switch element 18.
  • the other parallel-circult is constituted by a capacitor and a diode 21, the direction of conductivity of which is opposite to diode 19.
  • the igniter of the switch element 18 again includes components 22, 23 and 24.
  • Resistor 22 is series-connected with capacitor 14, the. other end of 22 being connected through resistor 23 with terminal B, on the one hand, and through resistor 24 with the node of the two parallel-circuits, on the other.
  • capacitor 20 When capacitor 20 has just been discharged, its current will have the maximum value. This current is then taken over by the diode 21 and is further only determined by choke coil 4 and the filament resistance.
  • the formation present at the node of the two parallel-circuits is required to level out the difierences in phase-shifting between the two fundamentally different auxiliary devices.
  • An igniter device for use with a gas discharge tube having filament means which must be brought up to operating temperature before the tube may conduct current, a source of alternating current driving said tube, and means for controlling current through said tube once same is ignited, the igniter device comprising, in combination:
  • gate-controlled semiconductor switching means for effecting heating of the filament means to initiate current conductionby the tube and thereafter to remain in non-conductive state
  • said switching means having a gate electrode and having a current-conducting path adapted to connect the filament means in series with the source whereby said switching means is self-extinguishing at every zero crossing of the source; and I control means connected to said gate electrode for causing theswitching means to conduct during half cycles of the source until the tube is ignited and thereafter to be ineffective to cause conduction of said switching means during current conduction by the tube
  • said control means comprising a semiconductor switching diode, and a voltage divider .circuit connected in parallel with said switching means, said voltage dividing circuit including first capacitor means for causing conduction of said switching diode when the tube is not conducting and second capacitor means in series with said first capacitor means for maintaining the juncture between said first and second capacitor means below that value of voltage effective to cause conduction of said switching diode when the tube is conducting, said switching diode being connected between said junc
  • one branch of the voltage divider comprises a first impedance formed by a resistor (l3) and a capacitor (14), series-connected therewith, and a second impedance, constituted by a resistor (16) and a capacitor (15), parallel-connected therewith, said second impedance being series-connected with said first impedance, and the other branch exclusively comprises a capacitor (12).
  • one branch of the voltage divider comprises a series-circuit constituted by a resistor (l3) and a capacitor (14), and the other branch exclusively comprises a capacitor (12).
  • one branch of the voltage divider comprises a first impedance formed by a resistor (13) and a capacitor (14), series-connected therewith, and a second impedance, constituted by a resistor (16) and a capacitor (15), parallel-connected therewith, said second impedance being series-connected with said first impedance, and the other branch exclusively comprises a capacitor (12).
  • one branch of the voltage divider comprises a resistor (13), part of which is bridged by a diode (17), said resistor (13) being series-connected with a capacitor (14), the other branch exclusively comprising a capacitor (12).
  • a device wherein a resistor (18) is parallel-connected with said capacitor (14).
  • said semiconductor switching means is constituted by a thyristor and a diode parallel-connected therewith, said diode being so connected that its direction of conductivity is opposite to that of the thyristor, and an impedance, series-connected therewith and constituted by a diode, the direction of conductivity of which is the same as that of said thyristor, and a capacitor parallelconnected therewith.
  • a device wherein a resistor (24) is connected between the node of said impedance and the parallel-connected diode and thyristor, on the one hand, and a tap of said resistor (13), on the other.
  • a gas discharge tube including one of a series coil per se, a series coil and a series capacitor. and a series coil and a parallel capacitor.

Abstract

In an electronic gas discharge tube igniter comprising a semiconductor switch element, a separate control signal terminal of said element is connected through a semiconductor A.C. diode with the tap of a voltage divider. The circuit elements are so dimensioned as to avoid reignition. The device is preferably used in combination with a circuit arrangement including a suppressing capacitor.

Description

United States Patent Laupman 1 Apr. 25, 1972 [541 ELECTRONIC GAS DISCHARGE TUBE [56] References Cited IGNITER UNITED STATES PATENTS [72] Inventor: Robert Ronald Laupman, Wijchen,
Netherlands 3,482,142 12/1969 Cluett et al. ..3 15/159 X [73] Assignee: N. V. Auco, Wijchen, Netherlands Primary E mminer Roy Lake 22 Filed; Oct 19 9 AssistantExaminer-Darwin R. l-lostetter Attorney-Diner, Brown, Ramik & Holt [21] Appl. No.2 867,833
[57] ABSTRACT Foreign Apphcanon Pnomy Data In an electronic gas discharge tube igniter comprising a Oct. 21, 1968 Netherlands ..68/l5032 semiconductor switch element, a Separate Control Signal minal of said element is connected through a semiconductor [52] U.S. Cl ..315/l06, 3l5/DIG 2, 3l5/DIG. 5 A.C. diode with the tap of a voltage divider. The circuit ele- [51] Int. Cl. ..H05b 41/36 nts ar dimensioned as to avoid reignition, The device is Field of Search 307/252, 315/93, 101, preferably used ,in combination with a circuit arrangement in- 2, 1316- 5, eluding a suppressing capacitor.
DIG. 7
9 Claims, 11 Drawing Figures I I IO 8 9 cQlLQ/ Patented April 25, 1972 3,659,150
2 Sheets-Shut 2 iUU ULJ- A DISCHARGE OF 20 CONDUCTION OF 21 IGNITION MOMENT OF 18 INVENTOR.
ELECTRONIC GAS DISCHARGE TUBE IGNITER This invention relates to a device for electronically igniting gas discharge tubes, such as luminescent lamps.
It is generally known to include such a device in a circuit with the gas discharge tube 1 to be ignited or started, as shown diagrammatically in FIG. 1. In this arrangement, the igniter or starter is connected between the connectors A and B, and hence across the gas discharge tube 1 to be ignited.
A much used embodiment of such a starter, the so-called neon starter, comprises a neon tube capable of operating a bimetallic switch contact. In addition to the fact that the service life of such a neon starter is relatively short, the ignition process takes some time, and is moreover accompanied with annoying flashing.
According to other proposals, such a starter operates fully electronically, which lengthens the starters service life, since there are no mechanical switch contacts. This arrangement, however, has the drawback that it tends to shorten the service life of the gas discharge tube operated by the starter.
It is an object of the invention to remove the drawbacks outlined above and to provide an igniter which makes it possible to ignite a gas discharge tube in a relatively short time and without annoying flashes, thereby to ensure an extremely long service life of both the gas discharge tube and the igniter proper.
It is a further object of the invention to provide a simple and compact igniter which, if so desired, can be accommodated in a removable housing as commonly used for the above-mentioned neon starters, or in the fitting of the gas discharge tube itself.
FIG. 1 is a circuit diagram illustrating an arrangement ac cording to the prior art;
FIG. 2 is a circuit diagram illustrating an embodiment of the present invention;
FIG. 3 is a circuit diagram similar to FIG. 2 but showing a modified form of the invention;
FIG. 4 is a circuit diagram similar to FIG. 3 but showing a further modification of the invention;
FIG. 5A is a waveform showing the voltage characteristics while the tube is ignited;
FIG. 5B is a voltage waveform showing the effect created when the igniter 5 conducts every other half cycle;
FIG. 5C is a voltage waveform associated with the embodiment of FIG. 2;
FIG. 5D is a voltage waveform associated with the embodiment of FIG. 4;
FIG. 6 is a diagram similar to FIG. I but illustrating the capacitor 8 on the supply line side of the tube 1;
FIG. 7 is a circuit diagram similar to FIG. 2 but showing a modification thereof; and
FIG. 8 is a voltage-current waveform associated with the circuit of FIG. 7.
A first embodiment of an igniter according to the invention is shown diagrammatically in FIG. 2. In it, connectors A and B correspond with connectors A and B as shown in FIG. 1. In other words, the circuit arrangement of FIG. 2 is substituted for the block 5 of FIG. I.
The circuit arrangement shown in FIG. 2 comprises a triode semiconductor A.C. switch element 10, such as a triac, connected between the nodes A and B. The gate of the triode switch semiconductor A.C. element 10 is connected through a diode semiconductor A.C. switch element 11, such as a diac, with the node of capacitor 12 and a capacitor 14. These capacitors constitute together with a resistor 13 a series circuit which is connected in parallel with the switch element 10. The functions of the capacitor 8 and the choke coil 9 will be described in detail hereinafter; these elements need not influence the switching action proper. The ignition moment of the switch element can be fixed at choice in dependence upon the values selected for the circuit elements 12, 13 and 14. The moments at which the switch element reaches its non-conductive state correspond with the zero crossings of the current; in other words, these moments cannot be influenced by selection of the circuit element 12, 13 or 14. As will beexplained in greater detail hereinafter, the provision of capacitor 14 is essential to ensure reliable ignition without introducing spurious side-effects. As a matter of fact, without the capacitor 14, the igniter tends to begin re-starting time and again even after the gas discharge tube has been ignited, which is a serious drawback. In fact, if the resistor 13 should be directly connected with the capacitor 12 and the switch element 11, i.e. without the capacitor 14 being interconnected, the capacitor 12 will be charged through resistor 13 until the voltage generated across it has reached the ignition voltage value of the switch element 11.
After the switch element 11 has thus become conductive, the switch element 10 will begin to conduct current, as a result of which the voltage across the igniter is decreased abruptly (step function). When, upon the next zero crossing of the current flowing through the switch element 10 the latter becomes non-conductive again, such a high voltage is generated across the gas discharge tube connected with terminals A and B that the tube may be ignited. Once ignited, the burning voltage is established across the tube. In this connection it should be noted that the moment at which the switch element 10 becomes conductive is of great importance, since the time required for heating the filaments 2 and 3 of the gas discharge tube to the extent that the wires can ignite the tube is determined by the period during which the switch element 10 is conductive. For reliably igniting the gas discharge tube as rapidly as possible, it is required for the resulting current flowing through the filaments to have a value in excess of a given minimum value. It is found that the dimensioning of the capacitor 12 and the resistor 13 selected in view of this requirement is such that even when the burning voltage has been established across the gas discharge tube the switch element 10 becomes conductive again, the result of which is that the gas discharge tube is extinguished. It appears from the above that in the situation as outlined the gas discharge tube can again be extinguished after being ignited, so that the igniter keeps repeating the starting procedure.
An extremely simple and reliable solution is obtained according to the present invention by connecting the capacitor 14 in series with the resistor 13 as shown in FIG. 2.
The capacitors l2 and 14 actually form a capacitive voltage divider, the magnitude of capacitor 12 being substantially determined by the energy pulse to be supplied to the gate of the switch element 10 to make the later conductive. Capacitor 14 is so dimensioned that when the burning voltage has been generated across the gas discharge tube the ignition voltage of the switch element 11 is just not reached. In other words, once the gas discharge tube has been ignited, the igniter will remain at rest, i.e. the ignition procedure is not repeated. The capacitor 8 connected between connectors A and B is a suppressing capacitor, which reduces the spurious effect of the lighted tube to a tolerable minimum. When the switch element 10 becomes conductive, the capacitor 8 will be short-circuited, so that a strong peak current can be generated. Such a peak current is limited by incorporating a choke coil 9 in the discharge circuit of the capacitor 8. If so desired, the choke coil can be replaced by the resistor, which, however, involves heat wastage.
For realizing an embodiment of an igniter suitable for incorporation within a limited volume, it is recommendable for the suppressing capacitor 8 to be disposed at the mains side as indicated in FIG. 6. In such an arrangement, the choke coil 9 in igniter 5 can be omitted.
The above-described embodiments of the igniter can be used with gas discharge tubes included in an inductive circuit and capacitively compensated.
Another embodiment of the igniter, for use in case the gas discharge tube is'connected in a circuit which, as shown in dash lines in FIGS. 1 and 6, comprises a series capacitor 6, is shown diagrammatically in FIG. 3. In it, a parallel circuit, constituted by a capacitor 15 and a resistor 16, is connected in series with the series circuit constituted by resistor 13 and capacitor 14. It has been found to be possible for the circuit elements of such a circuit arrangement to be so dimensioned as to result in a starting procedure in which, after a relatively short waiting time, the filaments reach the required emission temperature, and the tube lights up gradually until eventually the lighting intensity is reached.
This circuit arrangement may be successfully used, for example, in those cases where it is even undesirable directly to switch on incandescent lamps by reason of the sudden variations in light intensity caused thereby.
It is sometimes desired for the tubes to be used under widely varying conditions, involving, for example, great differences in mains voltage and temperature. This makes great demands on the igniter. Of importance is a sufficiently high filament current and a properly timed application of the ignition voltage,
which moreover must be sufficiently high. When switch element 10 is substantially permanently conductive, a voltage configuration will be formed across it as shown in FIG. 5A. The filament current is then determined by the choke coil 4 and the resistance of the filaments 2 and 3. The effective current will be about 0.5 A (40 W tube). When the switch element I is conductive for a half cycle (FIG. 5B) the effective filament current will be about 1.5 A, which is mainly due to the fact that the choke coil 4 is now unidirectionally driven to saturation, and consequently provides a lower impedance and so permits a higher current. A situation as may occur in the circuit arrangement of FIG. 2 is shown in FIG. 5C. The filament current will now be broken in each half cycle. It is clear that the resulting filament current in that case will be less than 0.5 A.
According to another aspect of the invention, however, it is possible to increase the filament current at choice. An embodiment suitable for this purpose is shown in FIG. 4. Leaving the resistor 18 out of consideration for the time being, the resistor 13 is partly bridged by a diode 17. This causes the ignition moments of the switch element to be different in each half cycle, as shown, by way of example, in FIG. 5D. As a result, the choke coil 4 is loaded asymmetrically, in the sense that it is unidirectionally driven to saturation, and consequently provides a lower impedance and allows a higher filament current. Moreover, due to the lower impedance, phaseshifting between current and voltage will begin to vary. Therefore, the moments when the switch element is non-conductive will begin to shift in each half cycle. This means that the ignition voltage across the tube will also be shifting as viewed in the cycles. 7
It is thus possible to realize an igniter which, at a substantial filament current causes an ignition voltage to be generated across the tube and to be varied in width and place. Important in the selection of the dimensions of the components is the difference in attenuation between positive and negative sine halves. For the attenuation is accomplished by the resistorcapacitor combinations which are parallel to the switch element 10 and hence parallel to the tube. This asymmetry is beneficial for the ignition of the tube.
By providing a resistor 18, parallel to the capacitor 14, it is achieved that the light intensity of the tube is periodically (e.g. each second) decreased for a short time. For this purpose the resistor must have high resistance values (in excess of l M O. The embodiment is then excellently suitable for advertising objects. FIG. 7 illustrates a circuit arranged which in an alternative manner causes the choke coil 4 to be assymmetrically excited. The triode A.C. semiconductor element 10 is in this instance replaced by the series connection of two parallel-circuits, one of which comprises a triode semiconductor switch element 18, such as a thyristor with a diode connected in parallel therewith, the direction of conductivity of which is opposite to that of the switch element 18. The other parallel-circult is constituted by a capacitor and a diode 21, the direction of conductivity of which is opposite to diode 19. The igniter of the switch element 18 again includes components 22, 23 and 24. Resistor 22 is series-connected with capacitor 14, the. other end of 22 being connected through resistor 23 with terminal B, on the one hand, and through resistor 24 with the node of the two parallel-circuits, on the other.
Supposing that there is no resistor 24, the following occurs when an inductive auxiliary device is included, i.e. just employing choke coil 4 or capacitive compensation by means of a parallel capacitor 7. Diode 19 will in the first instance charge capacitor 20 (see FIG. 8). Switch element 18 can now be triggered in the same manner as switch element 10 in FIG. 2.
When capacitor 20 has just been discharged, its current will have the maximum value. This current is then taken over by the diode 21 and is further only determined by choke coil 4 and the filament resistance.
It will be clear that this makes it possible to select filament currents ranging between about 0.5 and 1.5 amps. The ignition of the tube is effected in a similar manner to the arrangement of FIG. 2. Here again, the remarkable feature is the difference in attenuation between the two halves of the voltage. In order that the starter may also be used for tubes provided with series capacitor compensation, the resistor 24 is provided.
The formation present at the node of the two parallel-circuits is required to level out the difierences in phase-shifting between the two fundamentally different auxiliary devices.
By suitably selecting resistors 22, 23 and 24, there is provided a starter which is suitable for inductive and capacitive auxiliary devices.
I claim 1. An igniter device for use with a gas discharge tube having filament means which must be brought up to operating temperature before the tube may conduct current, a source of alternating current driving said tube, and means for controlling current through said tube once same is ignited, the igniter device comprising, in combination:
gate-controlled semiconductor switching means for effecting heating of the filament means to initiate current conductionby the tube and thereafter to remain in non-conductive state, said switching means having a gate electrode and having a current-conducting path adapted to connect the filament means in series with the source whereby said switching means is self-extinguishing at every zero crossing of the source; and I control means connected to said gate electrode for causing theswitching means to conduct during half cycles of the source until the tube is ignited and thereafter to be ineffective to cause conduction of said switching means during current conduction by the tube, said control means comprising a semiconductor switching diode, and a voltage divider .circuit connected in parallel with said switching means, said voltage dividing circuit including first capacitor means for causing conduction of said switching diode when the tube is not conducting and second capacitor means in series with said first capacitor means for maintaining the juncture between said first and second capacitor means below that value of voltage effective to cause conduction of said switching diode when the tube is conducting, said switching diode being connected between said juncture and said gate electrode.
2. A device according to claim 1, wherein one branch of the voltage divider comprises a first impedance formed by a resistor (l3) and a capacitor (14), series-connected therewith, and a second impedance, constituted by a resistor (16) and a capacitor (15), parallel-connected therewith, said second impedance being series-connected with said first impedance, and the other branch exclusively comprises a capacitor (12).
3. A device according to claim 1, wherein one branch of the voltage divider comprises a series-circuit constituted by a resistor (l3) and a capacitor (14), and the other branch exclusively comprises a capacitor (12).
4. A device according to claim 1, wherein one branch of the voltage divider comprises a first impedance formed by a resistor (13) and a capacitor (14), series-connected therewith, anda second impedance, constituted by a resistor (16) and a capacitor (15), parallel-connected therewith, said second impedance being series-connected with said first impedance, and the other branch exclusively comprises a capacitor (12).
5. A device according to claim 1, wherein one branch of the voltage divider comprises a resistor (13), part of which is bridged by a diode (17), said resistor (13) being series-connected with a capacitor (14), the other branch exclusively comprising a capacitor (12).
6. A device according to claim 5, wherein a resistor (18) is parallel-connected with said capacitor (14).
7. A device according to claim 4, in which said semiconductor switching means is constituted by a thyristor and a diode parallel-connected therewith, said diode being so connected that its direction of conductivity is opposite to that of the thyristor, and an impedance, series-connected therewith and constituted by a diode, the direction of conductivity of which is the same as that of said thyristor, and a capacitor parallelconnected therewith.
8. A device according to claim 7, wherein a resistor (24) is connected between the node of said impedance and the parallel-connected diode and thyristor, on the one hand, and a tap of said resistor (13), on the other.
9. In a device according to claim 1, a gas discharge tube including one of a series coil per se, a series coil and a series capacitor. and a series coil and a parallel capacitor.

Claims (9)

1. An igniter device for use with a gas discharge tube having filament means which must be brought up to operating temperature before the tube may conduct current, a source of alternating current driving said tube, and means for controlling current through said tube once same is ignited, the igniter device comprising, in combination: gate-controlled semiconductor switching means for effecting heating of the filament means to initiate current conduction by the tube and thereafter to remain in non-conductive state, said switching means having a gate electrode and having a currentconducting path adapted to connect the filament means in series with the source whereby said switching means is selfextinguishing at every zero crossing of the source; and control means connected to said gate electrode for causing the switching means to conduct during half cycles of the source until the tube is ignited and thereafter to be ineffective to cause conduction of said swiTching means during current conduction by the tube, said control means comprising a semiconductor switching diode, and a voltage divider circuit connected in parallel with said switching means, said voltage dividing circuit including first capacitor means for causing conduction of said switching diode when the tube is not conducting and second capacitor means in series with said first capacitor means for maintaining the juncture between said first and second capacitor means below that value of voltage effective to cause conduction of said switching diode when the tube is conducting, said switching diode being connected between said juncture and said gate electrode.
2. A device according to claim 1, wherein one branch of the voltage divider comprises a first impedance formed by a resistor (13) and a capacitor (14), series-connected therewith, and a second impedance, constituted by a resistor (16) and a capacitor (15), parallel-connected therewith, said second impedance being series-connected with said first impedance, and the other branch exclusively comprises a capacitor (12).
3. A device according to claim 1, wherein one branch of the voltage divider comprises a series-circuit constituted by a resistor (13) and a capacitor (14), and the other branch exclusively comprises a capacitor (12).
4. A device according to claim 1, wherein one branch of the voltage divider comprises a first impedance formed by a resistor (13) and a capacitor (14), series-connected therewith, and a second impedance, constituted by a resistor (16) and a capacitor (15), parallel-connected therewith, said second impedance being series-connected with said first impedance, and the other branch exclusively comprises a capacitor (12).
5. A device according to claim 1, wherein one branch of the voltage divider comprises a resistor (13), part of which is bridged by a diode (17), said resistor (13) being series-connected with a capacitor (14), the other branch exclusively comprising a capacitor (12).
6. A device according to claim 5, wherein a resistor (18) is parallel-connected with said capacitor (14).
7. A device according to claim 4, in which said semiconductor switching means is constituted by a thyristor and a diode parallel-connected therewith, said diode being so connected that its direction of conductivity is opposite to that of the thyristor, and an impedance, series-connected therewith and constituted by a diode, the direction of conductivity of which is the same as that of said thyristor, and a capacitor parallel-connected therewith.
8. A device according to claim 7, wherein a resistor (24) is connected between the node of said impedance and the parallel-connected diode and thyristor, on the one hand, and a tap of said resistor (13), on the other.
9. In a device according to claim 1, a gas discharge tube including one of a series coil per se, a series coil and a series capacitor. and a series coil and a parallel capacitor.
US867833A 1968-10-21 1969-10-20 Electronic gas discharge tube igniter Expired - Lifetime US3659150A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL6815032A NL6815032A (en) 1968-10-21 1968-10-21

Publications (1)

Publication Number Publication Date
US3659150A true US3659150A (en) 1972-04-25

Family

ID=19804971

Family Applications (1)

Application Number Title Priority Date Filing Date
US867833A Expired - Lifetime US3659150A (en) 1968-10-21 1969-10-20 Electronic gas discharge tube igniter

Country Status (6)

Country Link
US (1) US3659150A (en)
BE (1) BE740515A (en)
DE (1) DE1952697B2 (en)
FR (1) FR2030059A1 (en)
GB (1) GB1285206A (en)
NL (1) NL6815032A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896336A (en) * 1973-12-20 1975-07-22 Texas Instruments Inc Solid state fluorescent lamp ballast system
US3978368A (en) * 1973-02-21 1976-08-31 Hitachi, Ltd. Discharge lamp control circuit
US4023066A (en) * 1973-05-21 1977-05-10 U.S. Philips Corporation Operating circuit for a gas and/or vapour discharge lamp
US4181872A (en) * 1976-12-01 1980-01-01 U.S. Philips Corporation Starter for igniting a gas and/or vapor discharge lamp
US4777410A (en) * 1987-06-22 1988-10-11 Innovative Controls, Inc. Ballast striker circuit
US5023521A (en) * 1989-12-18 1991-06-11 Radionic Industries, Inc. Lamp ballast system
US5387849A (en) * 1992-12-14 1995-02-07 Radionic Technology Incorporated Lamp ballast system characterized by a power factor correction of greater than or equal to 90%
US20120145136A1 (en) * 2010-12-14 2012-06-14 John Antony Burrows Multi-event corona discharge ignition assembly and method of control and operation
US20140184064A1 (en) * 2012-12-27 2014-07-03 Chang Gung University Gas discharge tubes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3047289A1 (en) * 1980-12-16 1982-07-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München IGNITION DEVICE FOR A LOW-PRESSURE DISCHARGE LAMP
DE19508851A1 (en) * 1995-03-11 1996-09-12 Fichtel & Sachs Ag Car shock absorber with piston rod and piston

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482142A (en) * 1967-12-29 1969-12-02 Sylvania Electric Prod Regulating system for arc discharge devices having means to compensate for supply voltage and load variations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482142A (en) * 1967-12-29 1969-12-02 Sylvania Electric Prod Regulating system for arc discharge devices having means to compensate for supply voltage and load variations

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978368A (en) * 1973-02-21 1976-08-31 Hitachi, Ltd. Discharge lamp control circuit
US4023066A (en) * 1973-05-21 1977-05-10 U.S. Philips Corporation Operating circuit for a gas and/or vapour discharge lamp
US3896336A (en) * 1973-12-20 1975-07-22 Texas Instruments Inc Solid state fluorescent lamp ballast system
US4181872A (en) * 1976-12-01 1980-01-01 U.S. Philips Corporation Starter for igniting a gas and/or vapor discharge lamp
US4777410A (en) * 1987-06-22 1988-10-11 Innovative Controls, Inc. Ballast striker circuit
US5023521A (en) * 1989-12-18 1991-06-11 Radionic Industries, Inc. Lamp ballast system
US5387849A (en) * 1992-12-14 1995-02-07 Radionic Technology Incorporated Lamp ballast system characterized by a power factor correction of greater than or equal to 90%
US20120145136A1 (en) * 2010-12-14 2012-06-14 John Antony Burrows Multi-event corona discharge ignition assembly and method of control and operation
US20140184064A1 (en) * 2012-12-27 2014-07-03 Chang Gung University Gas discharge tubes
US9299527B2 (en) * 2012-12-27 2016-03-29 Chang Gung University Gas discharge tubes for surcharge suppression

Also Published As

Publication number Publication date
DE1952697B2 (en) 1972-07-20
FR2030059A1 (en) 1970-10-30
BE740515A (en) 1970-04-01
GB1285206A (en) 1972-08-16
NL6815032A (en) 1970-04-23
DE1952697A1 (en) 1970-05-06

Similar Documents

Publication Publication Date Title
US3643127A (en) Electronic gas discharge tube starter having a semiconductor switch element controlled by a capacitive voltage divider
US3919590A (en) Arrangement for igniting a gas and/or vapour discharge lamp provided with preheatable electrodes
US3659150A (en) Electronic gas discharge tube igniter
JPS5815918B2 (en) HOMEMAN TENKOKIYUDENSOCHI
US3476976A (en) Starting device for discharge lamp
US4010399A (en) Switching circuit for a fluorescent lamp with heated filaments
US5059870A (en) Electronic solid state starter for fluorescent lamps
US4398130A (en) Arc lamp lighting unit with low and high light levels
US4177403A (en) Electronic starter for igniting a discharge lamp
US3976910A (en) Operating circuit for discharge lamps with voltage starting circuit and auxiliary lighting means therefor
US4210850A (en) Circuits for operating electric discharge lamps
US3836817A (en) Two-pole electronic starter for fluorescent lamps
US5208515A (en) Protection circuit for stabilizer for discharge apparatus
US2858478A (en) Apparatus for flashing fluorescent lamps
US4358710A (en) Fluorescent light unit with dimmable light level
US3909666A (en) Ballast circuit for gaseous discharge lamps
US5572093A (en) Regulation of hot restrike pulse intensity and repetition
US4539513A (en) Circuit arrangement for starting and operating a high-pressure gas discharge lamp
US4749909A (en) Compact igniter for discharge lamps
US4520295A (en) Step-wise dimmer control circuit for a discharge lamp
US3760224A (en) Discharge lamp igniting circuit
US3308342A (en) Power supply for negative-resistance arc-discharge lamps
KR100364335B1 (en) Circuit for turning on and off the discharge lamp
US4023066A (en) Operating circuit for a gas and/or vapour discharge lamp
US4642521A (en) Compact igniter for discharge lamps