US3929595A - Electrolytic burnished gold bath with higher rate of deposition - Google Patents

Electrolytic burnished gold bath with higher rate of deposition Download PDF

Info

Publication number
US3929595A
US3929595A US520844A US52084474A US3929595A US 3929595 A US3929595 A US 3929595A US 520844 A US520844 A US 520844A US 52084474 A US52084474 A US 52084474A US 3929595 A US3929595 A US 3929595A
Authority
US
United States
Prior art keywords
bath
sulfonic acid
acid
article
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US520844A
Inventor
Peter Biberbach
Werner Dietschmann
Hans-Joachim Lubke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Application granted granted Critical
Publication of US3929595A publication Critical patent/US3929595A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold

Definitions

  • ABSTRACT There is provided an electrolytic gold bath for the deposition of thicker, bright gold coatings at high rates of deposition.
  • the bath contains a heterocyclic azohydrocarbon sulfonic acid or salt thereof, e.g. pyridine sulfonic acid.
  • the invention is directed to an electrolytic gold bath for the deposition of thick, bright gold coatings at higher rates of deposition which contain sulfonic acids of heterocyclic nitrogen containing hydrocarbons, i.e. heterocyclic azohydrocarbons.
  • N-heterocyclic hydrocarbon sulfonic acids i.e., the compounds consist of carbon, hydrogen, the hetero-N-atom and the sulfonic acid group
  • salts of such N-heterocyclic sulfonic acids i.e., the compounds consist of carbon, hydrogen, the hetero-N-atom and the sulfonic acid group
  • pyridine sulfonic acid e.g. pyridine-3-sulfonic acid, pyridine-4-sulfonic acid and pyridine-2-sulfonic acid and/or their salts, e.g. water solubles such as salts with alkali metals or ammonium, e.g. the sodium or potassium salts, e.g. the sodium salt of pyridine-3-sulfonic acid and the potassium salt of pyridine-3-sulfonic'acid and/or their simple ring alkyl derivatives, as for example the picoline sulfonic acids, e.g. 2-methylpyridine-3-sulfonic acid, 2-methylpyridine-4-sulfonic acid, 3-methylpyridine-2-sulfonic acid, 3-methylpyridine-4-sulfonic acid and 4-methylpyridine-3-sulfonic acid.
  • picoline sulfonic acids e.g. 2-methylpyridine-3-sulfonic acid, 2-methylpyridine-4-sulf
  • the sulfonic acid derivatives of nitrogen containing heterocyclic also considerably increases the rate of deposition of the gold layer since the baths can be operated at higher current yields at higher current densities.
  • the current density can range from 0.5 to 12 A/dm preferably from 2 to 6 Aldm
  • pyridine sulfonic acids and picoline sulfonic acid there can also be added the sulfonic acids of other substituted nitrogen containing heterocyclics, as for example quinoline sulfonic acid, e.g. quinoline sulfonic acids such as quinoline-5 -sulfonic acid and quinoline-8- sulfonic acid.
  • quinoline sulfonic acid e.g. quinoline sulfonic acids such as quinoline-5 -sulfonic acid and quinoline-8- sulfonic acid.
  • pyridine sulfonic acids, especially pyridine-3-sulfonic acid has proven best.
  • the pyridine sulfonic acid or salt and/or derivative is employed in weakly acid gold baths, e.g., pH 3 to 5.5.
  • weakly acid gold baths e.g., pH 3 to 5.5.
  • gold baths according to the invention for example, have the following composition.
  • alkali gold cyanide e.g. sodium gold cyanide or potassium gold cyanide or ammonium gold cyanide.
  • a weak organic acid preferably citric acid or tartaric acid
  • hydroxide e.g. sodium hydroxide or potassium hydroxide or ammonium hydroxide to adjust the pH to between 3.5 and 5.0 or 5.5.
  • Additional suitable weak organic acids include formic acid, lactic acid, kojic acid, itaconic acid, citraconic acid, gluconic acid, glutaric acid, glycolic acid, acetic acid and propionic acid.
  • pyridine sulfonic acid 1-20 g/l of pyridine sulfonic acid, preferably 1-10 g/l.
  • the buffering action of the weak organic acids added can also be produced by addition of or the use of only other buffers known to be usable in the named pH range as for example phosphates and borates, e.g. dipotassium hydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, sodium metaborate and potassium metaborate.
  • buffers known to be usable in the named pH range as for example phosphates and borates, e.g. dipotassium hydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, sodium metaborate and potassium metaborate.
  • the bright range of the burnished gold baths of the invention in regard to working parameters such as concentration, temperature, pH-value or current density can be widened considerably by small additions of non-noble metals such as iron, cobalt, nickel, chromium, cadmium, copper, zinc, tin, indium and/or antimony in an amount of 3 to mg/l, preferably 10 to 50 mg/l.
  • non-noble metals such as iron, cobalt, nickel, chromium, cadmium, copper, zinc, tin, indium and/or antimony in an amount of 3 to mg/l, preferably 10 to 50 mg/l.
  • non-noble metals are normally added in the form of soluble salts, e.g. as salts of the acids set forth above such as citric acid and tartaric acid for example.
  • the amounts of foreign metals used in the baths of the invention are considerably below the amounts necessary to produce brightness in the known baths.
  • compositions can comprise, consist of'or consist essentially of the materials set forth.
  • potassium gold cyanide employed was potassium gold (I) cyanide (potassium cyanoaurite).
  • potassium gold (I) cyanide potassium gold (I) cyanide
  • sodium cyanoaurite potassium gold (I) cyanide
  • alkali gold cyanides such as sodium gold (I) cyanide
  • bathtemperatures of 45C were used in the working examples, this can be varied as is conventional in the art, e.g. 30 to 50C.
  • EXAMPLE 3 acid resulted only in dirty brown coatings. An improvement also was not produced by variation of the current density, pH-value and temperature which showed the decisive influence of the pyridine sulfonic acid in the baths of the invention.
  • EXAMPLE 5 The bath composition and temperature were the same as in Example 4 but at an article motion of 25 cm/sec.
  • EXAMPLE 6 The bath composition and temperature were the same as in Example 4 but at an article motion of 25 cm/sec. and simultaneous vibration movement of the bath.
  • an aqueous, acidic alkali gold cyanide bath suitable for the electrolytic deposition of gold comprising including in the bath a heterocyclic sulfonic acid selected from the group consisting of pyridine sulfonic acid, picoline sulfonic acid and quinoline sulfonic acid or a water soluble salt of such heterocyclic sulfonic acid in an amount sufficient to provide improved bright gold deposition from the bath.
  • a heterocyclic sulfonic acid selected from the group consisting of pyridine sulfonic acid, picoline sulfonic acid and quinoline sulfonic acid or a water soluble salt of such heterocyclic sulfonic acid in an amount sufficient to provide improved bright gold deposition from the bath.
  • heterocyclic sulfonic acid is pyridine sulfonic acid or quinoline sulfonic acid.
  • a bath according to claim 2 wherein the heterocyclic sulfonic acid is pyridine sulfonic acid.
  • a bath according to claim 4 containing 2-15 g/l gold as alkali gold cyanide, 30-200 g/l of a weak organic acid and 1-20 g/l of a pyridine sulfonic acid, said bath having a pH of 3.5 to 5.5.
  • a bath according to claim 5 including a buffer capable of maintaining the pH within the range 3.5 to 5.5.
  • a bath according to claim 5 also including 5-100 mg/l of iron, cobalt, nickel, chromium, cadmium, copper, zinc, tin, indium or antimony in the form ofa water soluble salt thereof.
  • a bath according to claim 7 containing 10-50 mg/l of iron.
  • a bath according to claim 5 wherein the weak organic acid is an alka'noic acid or a hydroxyalkanoic acid.
  • a bath according to claim 10 wherein the acid is a hydroxyalkanoic acid.
  • a bath according to claim 11 wherein the acid is citric acid or tartaric acid.
  • a bath according to claim 1 containing 1 to 20 g/l of the heterocyclic sulfonic acid.
  • a process of electrolytically depositing a glossy gold coating on an article comprising placing the article in the bath of claim 1 and passing a current therethrough at a current density of 0.5 to 12 A/dm 15.
  • a process of electrolytically depositing a glossy gold coating on an article comprising placing the article in the bath of claim 1 and passing a current therethrough at a current density of 2 to 6 A/dm 16.
  • a process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 5 and passing a current therethrough at a current density of 0.5 to 12 A/dm 17.
  • a process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 5 and passing a current therethrough at a current density of 2 to 6 Aldm 18.
  • a process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 7 and passing a current therethrough at a current density of 0.5 to 12 A/dm.
  • a process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 7 and passing a current therethrough at a current density of 2 to 6 A/dm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

There is provided an electrolytic gold bath for the deposition of thicker, bright gold coatings at high rates of deposition. The bath contains a heterocyclic azohydrocarbon sulfonic acid or salt thereof, e.g. pyridine sulfonic acid.

Description

United States Patent Biberbach et al.
[451 Dec. 30, 1975 [73] Assignee: Deutsche Goldund Silber-Scheideanstalt vormals Roessler, Germany [22] Filed: Nov. 4, 1974 [21] Appl. No.1 520,844
[30] Foreign Application Priority Data Nov. 7, 1973 Germany 2355581 [52] U.S. Cl 204/44; 204/46 G [5 l] Int. Cl. C25D 3/48; C25D 3/62 [58] Field of Search 204/46 G, 43 G, 44, 109, 204/123 [5 6] References Cited UNITED STATES PATENTS 2,905,601 9/1959 Rinker et al. 204/43 G 2,967,135 1/1961 Ostrow et al. 204/43 G 2,986,498 5/1961 Strauss et al 204/46 G 3,023,150 2/1962 Willmund et al. 1 204/44 3,149,058 9/1964 Parker et al. 204/46 G Primary ExaminerG. L. Kaplan Attorney, Agent, or Firm-Cushman, Darby & Cushman [57] ABSTRACT There is provided an electrolytic gold bath for the deposition of thicker, bright gold coatings at high rates of deposition. The bath contains a heterocyclic azohydrocarbon sulfonic acid or salt thereof, e.g. pyridine sulfonic acid.
21 Claims, No Drawings ELECTROLYTIC BURNISIIED GOLD BATH WITH HIGHER RATE-OF DEPOSITION The invention is directed to an electrolytic gold bath for the deposition of thick, bright gold coatings at higher rates of deposition which contain sulfonic acids of heterocyclic nitrogen containing hydrocarbons, i.e. heterocyclic azohydrocarbons.
It is known to deposit bright (burnished) gold coatings from weakly acidic electrolytic baths (German Pat. No. 1,111,397, and corresponding Rinker US. Pat. No. 2,905,601, and German Pat. No. 1,213,697, and corresponding Parker U.S. Pat. No. 3,149,057). By coprecipitation of at least 0.2% of a non-noble metal as for example nickel or cobalt these coatings become bright, hard and abrasion resistant by adding to the baths largeamounts of the named metals. The addition of the non-noble metal normally amounts to more than 1 gram/liter although baths are also known which contain the non-noble metal in an amount down to 100 mg/l. These baths, however, no longer give satisfactory coatings, especially if the non-noble content in the bath lies below 100 mg/l.
These known baths have the disadvantage that the attainable current density and rate of deposition are relatively small. Thus the rate of deposition for example is 0.5 m per minute and the current density 0.5-1.5 A/dm A further disadvantage is that organic polymeric compounds become coprecipitated in such baths (Munier, Plating (1969), pages 1151-1157, Antler, Plating (1973), pages 468-73, and Holt, Plating (1973), pages 918-921) which polymers are formed from the cyanides contained in the bath under the catalytic action of the added non-noble metals such as, for example, nickel or cobalt. This coprecipitation of Organic polymer compounds increases with increasing non-noble metal concentrations in the bath and very strongly impairs the-soldering properties of the separated gold layers (NASA TM X-229O (1971)).
It is further known to bind the non-noble metals by addition' of strong complex builders, as for example ethylenediamine tetraacetic acid, and thereby to reduce the polymer formation (Werkstoffe und Korrosion Vol. 23 (1972), page 643). The addition of such complex builders is limited, however, because of industrial waste water grounds.
It was therefore the problem of the present invention to find an electrolytic bright gold bath which produced the deposition of thick, bright gold layers practically without non-noble metal additions and without use of additional strong complex builders and which possesses a good solderability.
This problem was solved by the invention by adding to known electrolytic gold baths chemical compounds which are N-heterocyclic hydrocarbon sulfonic acids (i.e., the compounds consist of carbon, hydrogen, the hetero-N-atom and the sulfonic acid group), or salts of such N-heterocyclic sulfonic acids.
Especially desirable are the addition of pyridine sulfonic acid, e.g. pyridine-3-sulfonic acid, pyridine-4-sulfonic acid and pyridine-2-sulfonic acid and/or their salts, e.g. water solubles such as salts with alkali metals or ammonium, e.g. the sodium or potassium salts, e.g. the sodium salt of pyridine-3-sulfonic acid and the potassium salt of pyridine-3-sulfonic'acid and/or their simple ring alkyl derivatives, as for example the picoline sulfonic acids, e.g. 2-methylpyridine-3-sulfonic acid, 2-methylpyridine-4-sulfonic acid, 3-methylpyridine-2-sulfonic acid, 3-methylpyridine-4-sulfonic acid and 4-methylpyridine-3-sulfonic acid.
Surprisingly it has been found that this addition of the sulfonic acid derivatives of nitrogen containing heterocyclic also considerably increases the rate of deposition of the gold layer since the baths can be operated at higher current yields at higher current densities. Thus the current density can range from 0.5 to 12 A/dm preferably from 2 to 6 Aldm Besides pyridine sulfonic acids and picoline sulfonic acid there can also be added the sulfonic acids of other substituted nitrogen containing heterocyclics, as for example quinoline sulfonic acid, e.g. quinoline sulfonic acids such as quinoline-5 -sulfonic acid and quinoline-8- sulfonic acid. However pyridine sulfonic acids, especially pyridine-3-sulfonic acid, has proven best.
Preferably the pyridine sulfonic acid or salt and/or derivative is employed in weakly acid gold baths, e.g., pH 3 to 5.5. Such gold baths according to the invention, for example, have the following composition.
2-15 g/l gold as alkali gold cyanide, e.g. sodium gold cyanide or potassium gold cyanide or ammonium gold cyanide.
30-200 g/l of a weak organic acid, preferably citric acid or tartaric acid; hydroxide, e.g. sodium hydroxide or potassium hydroxide or ammonium hydroxide to adjust the pH to between 3.5 and 5.0 or 5.5. Additional suitable weak organic acids include formic acid, lactic acid, kojic acid, itaconic acid, citraconic acid, gluconic acid, glutaric acid, glycolic acid, acetic acid and propionic acid.
1-20 g/l of pyridine sulfonic acid, preferably 1-10 g/l.
The buffering action of the weak organic acids added can also be produced by addition of or the use of only other buffers known to be usable in the named pH range as for example phosphates and borates, e.g. dipotassium hydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, sodium metaborate and potassium metaborate.
The bright range of the burnished gold baths of the invention in regard to working parameters such as concentration, temperature, pH-value or current density can be widened considerably by small additions of non-noble metals such as iron, cobalt, nickel, chromium, cadmium, copper, zinc, tin, indium and/or antimony in an amount of 3 to mg/l, preferably 10 to 50 mg/l. These non-noble metals are normally added in the form of soluble salts, e.g. as salts of the acids set forth above such as citric acid and tartaric acid for example.
Although a coprecipitation of the foreign metal takes place in only a very small amount the overcoats deposited from these baths possess outstanding properties in regard to hardness, abrasion resistance and low porosity.
The amounts of foreign metals used in the baths of the invention are considerably below the amounts necessary to produce brightness in the known baths.
Above all there have proven good the addition of cobalt in amounts of 10 to 30 mg/l and iron in amounts of 10 to 50 mg/l. The addition of iron has the further advantage that in the operation of such a bath according to the invention there can be used as anode material fine steel and therethrough there can be eliminated the deliberate addition of iron content to the bath since the small amounts of iron will come from the anode.
deposited gold layer in a wide working range of the baths.
By a high current density up to A/dm there is a deposition rate of the gold layers of l um in 0.75 to 1.5 minutes, depending on the current density and agitation of the bath. The baths possess an outstanding throwing power.
Through a substantially reduced addition of nonnoble metals in comparison to the known baths there is obtained a higher current efficiency and therewith an again higher rate of deposition of the gold layers with negligible amounts of non-noble metal or organic polymer compounds codepositing.
Unless otherwise indicated all parts and percentages are by weight.
The compositions can comprise, consist of'or consist essentially of the materials set forth.
In the examples the potassium gold cyanide employed was potassium gold (I) cyanide (potassium cyanoaurite). There can also be used, however, other alkali gold cyanides such as sodium gold (I) cyanide,
potassium gold (In) cyanide and sodium gold (lll) cyanide or ammonium gold (I) cyanide,
Also while bathtemperatures of 45C were used in the working examples, this can be varied as is conventional in the art, e.g. 30 to 50C.
The following examples further explain the method of operation and the advantages of the baths of the invention. All of the baths were aqueous baths.
EXAMPLE 1 Bath composition l0 g/l Au as potassium gold (I) cyanide 60 g/l citric acid 80 g/l KH P0 4 g/l pyridine-3-sulfonic acid Potassium hydroxide was added until a pH of 4.5 was established.
At a current density of 2 A/dm bath temperature of 45C, bath and articles motion of 4 cm/sec. there were obtained excellent bright gold coats of more than um thickness with a 60 percent current efficiency.
The deposition of a 1 pm layer took place in 1.25 minutes. At a pH of 4.0 and a current density of 4 A/dm the bath also supplies bright coats, which in spite of the high current density have a very low porosity. The overcoats deposited from this type of bath are free of foreign metals and have a Vickers hardness of about 150 kp/mm EXAMPLE 2 Bath composition 8 g/l Au as potassium gold (I) cyanide 60 g/l citric acid 5 g/l pyridine-3-sulfonic acid Potassium hydroxide was added until a pH of 4.0 was established. mg/l iron as ferric citrate.
Working temperature 45C, articles motion 4 cm/sec. Current density 2 A/dm There was obtained an outstandingly bright coat having an iron content of 0.2 weight percent. In 10 minutes there was deposited at 7 urn Au layer.
In the same bath composition but without the pyridine sulfonic acid the overcoats were dull brown and dirty. Nearly glossy, but still haze exhibiting coatings were first produced at a minimum iron content of 100 mg/l. The coatings then contained 0.75 percent iron and were correspondingly brittle.
EXAMPLE 3 acid resulted only in dirty brown coatings. An improvement also was not produced by variation of the current density, pH-value and temperature which showed the decisive influence of the pyridine sulfonic acid in the baths of the invention.
EXAMPLE 4 Bath composition 11 g/l Au as potassium gold (I) cyanide g/l citric acid 5 g/l pyridine-3-sulfonic acid Potassium hydroxide was added until a pH of 4.2 was established.
50 mg/l iron as ferric citrate Working temperature 45C, article motion 4 cm/sec.; current density 3 Aldm There was obtained a high glossed coating having 0.4 weight percent iron at a rate of deposition that provided a 8 pm thick coating in 10 minutes.
An advantageous use of the baths consists in the use of fine steel anodes. On account of the continuous resulting small dissolution of iron from the anodes the bath could be operated in a continuous experiment with 10 times the gold deposition without the addition of iron. I
EXAMPLE 5 The bath composition and temperature were the same as in Example 4 but at an article motion of 25 cm/sec.
At 4 A/dm density there was deposited 1 pm thick very bright gold in 48 seconds (current efficiency 55percent).
EXAMPLE 6 The bath composition and temperature were the same as in Example 4 but at an article motion of 25 cm/sec. and simultaneous vibration movement of the bath.
At 5 A/dm current density there was deposited a l um'thick very bright gold coating in 36 seconds (current efficiency 52 percent).
The coatings in Examples 5 and 6 were pore free. Both of these examples show that by increasing the movement of the bath the rate of deposition of the gold layers can be increased considerably.
- We claim:
1. In an aqueous, acidic alkali gold cyanide bath suitable for the electrolytic deposition of gold the improvement comprising including in the bath a heterocyclic sulfonic acid selected from the group consisting of pyridine sulfonic acid, picoline sulfonic acid and quinoline sulfonic acid or a water soluble salt of such heterocyclic sulfonic acid in an amount sufficient to provide improved bright gold deposition from the bath.
2. A bath according to claim 1 wherein the heterocyclic sulfonic acid is pyridine sulfonic acid or quinoline sulfonic acid.
3. A bath according to claim 2 wherein the pH is 3.5 to 5.5.
4. A bath according to claim 2 wherein the heterocyclic sulfonic acid is pyridine sulfonic acid.
5. A bath according to claim 4 containing 2-15 g/l gold as alkali gold cyanide, 30-200 g/l of a weak organic acid and 1-20 g/l of a pyridine sulfonic acid, said bath having a pH of 3.5 to 5.5.
6. A bath according to claim 5 including a buffer capable of maintaining the pH within the range 3.5 to 5.5.
7. A bath according to claim 5 also including 5-100 mg/l of iron, cobalt, nickel, chromium, cadmium, copper, zinc, tin, indium or antimony in the form ofa water soluble salt thereof.
8. A bath according to claim 7 containing 10-30 mg/l of cobalt.
9. A bath according to claim 7 containing 10-50 mg/l of iron.
10. A bath according to claim 5 wherein the weak organic acid is an alka'noic acid or a hydroxyalkanoic acid.
11. A bath according to claim 10 wherein the acid is a hydroxyalkanoic acid.
12. A bath according to claim 11 wherein the acid is citric acid or tartaric acid.
13. A bath according to claim 1 containing 1 to 20 g/l of the heterocyclic sulfonic acid.
14. A process of electrolytically depositing a glossy gold coating on an article comprising placing the article in the bath of claim 1 and passing a current therethrough at a current density of 0.5 to 12 A/dm 15. A process of electrolytically depositing a glossy gold coating on an article comprising placing the article in the bath of claim 1 and passing a current therethrough at a current density of 2 to 6 A/dm 16. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 5 and passing a current therethrough at a current density of 0.5 to 12 A/dm 17. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 5 and passing a current therethrough at a current density of 2 to 6 Aldm 18. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 7 and passing a current therethrough at a current density of 0.5 to 12 A/dm.
19. A process according to claim 18 wherein the bath contains 10-30 mg/l of cobalt.
20. A process according to claim 18 wherein the bath contains 10-50 mg/l of iron.
21. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 7 and passing a current therethrough at a current density of 2 to 6 A/dm

Claims (21)

1. IN AN AQUEOUS, ACIDIC ALKALI GOLD CYANIDE BATH SUITABLE FOR THE ELECTROLYTIC DEPOSITION OF GOLD THE IMPROVEMENT COMPRISING INCLUDING IN THE BATH A HETEROCYCLIC SULFONIC ACID SELECTED FROM THE GROUP CONSISTING OF PYRIDINE SULFONIC ACID, PICOLINE SULFONIC ACID AND QUINOLINE SULFONIC ACID OR A WATER SOLUBLE SALT OF SUCH HETEROCYCLIC SULFONIC ACID IN AN AMOUNT SUFFICIENT OT PROVIDE IMPROVED BRIGHT GOLD DEPOSITION FROM THE BATH.
2. A bath according to claim 1 wherein the heterocyclic sulfonic acid is pyridine sulfonic acid or quinoline sulfonic acid.
3. A bath according to claim 2 wherein the pH is 3.5 to 5.5.
4. A bath according to claim 2 wherein the heterocyclic sulfonic acid is pyridine sulfonic acid.
5. A bath according to claim 4 containing 2-15 g/l gold as alkali gold cyanide, 30-200 g/l of a weak organic acid and 1-20 g/l of a pyridine sulfonic acid, said bath having a pH of 3.5 to 5.5.
6. A bath according to claim 5 including a buffer capable of maintaining the pH within the range 3.5 to 5.5.
7. A bath according to claim 5 also including 5-100 mg/l of iron, cobalt, nickel, chromium, cadmium, copper, zinc, tin, indium or antimony in the form of a water soluble salt thereof.
8. A bath according to claim 7 containing 10-30 mg/l of cobalt.
9. A bath according to claim 7 containing 10-50 mg/l of iron.
10. A bath according to claim 5 wherein the weak organic acid is an alkanoic acid or a hydroxyalkanoic acid.
11. A bath according to claim 10 wherein the acid is a hydroxyalkanoic acid.
12. A bath according to claim 11 wherein the acid is citric acid or tartaric acid.
13. A bath according to claim 1 containing 1 to 20 g/l of the heterocyclic sulfonic acid.
14. A process of electrolytically depositing a glossy gold coating on an aRticle comprising placing the article in the bath of claim 1 and passing a current therethrough at a current density of 0.5 to 12 A/dm2.
15. A process of electrolytically depositing a glossy gold coating on an article comprising placing the article in the bath of claim 1 and passing a current therethrough at a current density of 2 to 6 A/dm2.
16. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 5 and passing a current therethrough at a current density of 0.5 to 12 A/dm2.
17. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 5 and passing a current therethrough at a current density of 2 to 6 A/dm2.
18. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 7 and passing a current therethrough at a current density of 0.5 to 12 A/dm2.
19. A process according to claim 18 wherein the bath contains 10-30 mg/l of cobalt.
20. A process according to claim 18 wherein the bath contains 10-50 mg/l of iron.
21. A process of electrolytically depositing a bright gold coating on an article comprising placing the article in the bath of claim 7 and passing a current therethrough at a current density of 2 to 6 A/dm2.
US520844A 1973-11-07 1974-11-04 Electrolytic burnished gold bath with higher rate of deposition Expired - Lifetime US3929595A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2355581A DE2355581C3 (en) 1973-11-07 1973-11-07 Galvanic bright gold bath with high deposition rate

Publications (1)

Publication Number Publication Date
US3929595A true US3929595A (en) 1975-12-30

Family

ID=5897412

Family Applications (1)

Application Number Title Priority Date Filing Date
US520844A Expired - Lifetime US3929595A (en) 1973-11-07 1974-11-04 Electrolytic burnished gold bath with higher rate of deposition

Country Status (12)

Country Link
US (1) US3929595A (en)
JP (1) JPS5615472B2 (en)
BE (1) BE821923A (en)
BR (1) BR7409243A (en)
CH (1) CH603825A5 (en)
DE (1) DE2355581C3 (en)
ES (1) ES430054A1 (en)
FR (1) FR2249979B1 (en)
GB (1) GB1426849A (en)
IT (1) IT1020940B (en)
NL (1) NL186825C (en)
SE (1) SE7413961L (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0150439A1 (en) * 1983-12-22 1985-08-07 LeaRonal (UK) plc An acid bath for electrodeposition of gold or gold alloys, an electroplating method and the use of said bath
US4670107A (en) * 1986-03-05 1987-06-02 Vanguard Research Associates, Inc. Electrolyte solution and process for high speed gold plating
US4744871A (en) * 1986-09-25 1988-05-17 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
US4755264A (en) * 1987-05-29 1988-07-05 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
US4767507A (en) * 1986-05-21 1988-08-30 Engelhard Corporation Gold electroplating bath
DE4040526A1 (en) * 1989-12-19 1991-06-20 H E Finishing Sa Electrocoating bath for gold alloys - using auric cyanide complex and alloy salt of alkyl:sulphonic or hydroxy:alkyl:sulphonic acid
DE4105272A1 (en) * 1990-02-20 1991-08-22 Enthone Omi Inc COMPOSITION AND METHOD FOR PRODUCING A GALVANIC COVER
US6165342A (en) * 1996-07-23 2000-12-26 Degussa Huls Aktiengesellschaft Cyanide-free electroplating bath for the deposition of gold and gold alloys
US6336962B1 (en) * 1997-10-08 2002-01-08 Atotech Deutschland Gmbh Method and solution for producing gold coating
US6576114B1 (en) 1995-11-03 2003-06-10 Enthone Inc. Electroplating composition bath
EP1403401A2 (en) * 2002-09-24 2004-03-31 Northrop Grumman Corporation Precious alloyed metal solder plating process
US6814850B1 (en) 1999-06-17 2004-11-09 Umicore Galvanotechnik Gmbh Acid bath for electrodeposition of glossy gold and gold alloy layers and a gloss additive for same
US20050205425A1 (en) * 2002-06-25 2005-09-22 Integran Technologies Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
CN103397356A (en) * 2013-07-15 2013-11-20 苏州苏凯路化学科技有限公司 Non-toxic gold salt for gold plating and synthetic method thereof
US10570525B2 (en) * 2015-01-16 2020-02-25 Hutchinson Technology Incorporated Gold electroplating solution and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8501245D0 (en) * 1985-01-18 1985-02-20 Engelhard Corp Gold electroplating bath
JPS61276992A (en) * 1985-05-30 1986-12-06 Shinko Electric Ind Co Ltd Gold electroplating solution
JPS61276990A (en) * 1985-05-30 1986-12-06 Shinko Electric Ind Co Ltd Gold electroplating solution
JPS637390A (en) * 1986-06-26 1988-01-13 Nippon Engeruharudo Kk Gold-cobalt alloy plating liquid
GB9522591D0 (en) * 1995-11-03 1996-01-03 Enthone Omi Suisse S A Electroplating processes compositions and deposits
JP2011122192A (en) * 2009-12-09 2011-06-23 Ne Chemcat Corp Electrolytic hard gold plating liquid and plating method using the same
DE102011114931B4 (en) 2011-10-06 2013-09-05 Umicore Galvanotechnik Gmbh Process for more selective electrolytic deposition of gold or a gold alloy
DE102012004348B4 (en) 2012-03-07 2014-01-09 Umicore Galvanotechnik Gmbh Use of organic thiourea compounds to increase the galvanic deposition rate of gold and gold alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905601A (en) * 1957-08-13 1959-09-22 Sel Rex Corp Electroplating bright gold
US2967135A (en) * 1960-06-08 1961-01-03 Barnet D Ostrow Electroplating baths for hard bright gold deposits
US2986498A (en) * 1954-03-13 1961-05-30 Dehydag Gmbh Process for the production of metal electrodeposits
US3023150A (en) * 1954-03-22 1962-02-27 Dehydag Gmbh Bath for the production of metal electroplates
US3149058A (en) * 1959-12-31 1964-09-15 Technic Bright gold plating process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL273924A (en) * 1961-01-24
US3373094A (en) * 1964-08-26 1968-03-12 Sel Rex Corp Gold and gold alloy electroplating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986498A (en) * 1954-03-13 1961-05-30 Dehydag Gmbh Process for the production of metal electrodeposits
US3023150A (en) * 1954-03-22 1962-02-27 Dehydag Gmbh Bath for the production of metal electroplates
US2905601A (en) * 1957-08-13 1959-09-22 Sel Rex Corp Electroplating bright gold
US3149058A (en) * 1959-12-31 1964-09-15 Technic Bright gold plating process
US2967135A (en) * 1960-06-08 1961-01-03 Barnet D Ostrow Electroplating baths for hard bright gold deposits

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0150439A1 (en) * 1983-12-22 1985-08-07 LeaRonal (UK) plc An acid bath for electrodeposition of gold or gold alloys, an electroplating method and the use of said bath
US4591415A (en) * 1983-12-22 1986-05-27 Learonal, Inc. Plating baths and methods for electro-deposition of gold or gold alloys
US4670107A (en) * 1986-03-05 1987-06-02 Vanguard Research Associates, Inc. Electrolyte solution and process for high speed gold plating
US4767507A (en) * 1986-05-21 1988-08-30 Engelhard Corporation Gold electroplating bath
US4744871A (en) * 1986-09-25 1988-05-17 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
US4755264A (en) * 1987-05-29 1988-07-05 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
WO1988009401A1 (en) * 1987-05-29 1988-12-01 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
WO1988009834A1 (en) * 1987-06-01 1988-12-15 Vanguard Research Associates, Inc. Electrolyte solution and process for gold electroplating
DE4040526A1 (en) * 1989-12-19 1991-06-20 H E Finishing Sa Electrocoating bath for gold alloys - using auric cyanide complex and alloy salt of alkyl:sulphonic or hydroxy:alkyl:sulphonic acid
DE4040526C3 (en) * 1989-12-19 1998-05-20 H E Finishing Sa Bath for the galvanic deposition of gold alloys
US5169514A (en) * 1990-02-20 1992-12-08 Enthone-Omi, Inc. Plating compositions and processes
DE4105272A1 (en) * 1990-02-20 1991-08-22 Enthone Omi Inc COMPOSITION AND METHOD FOR PRODUCING A GALVANIC COVER
US6576114B1 (en) 1995-11-03 2003-06-10 Enthone Inc. Electroplating composition bath
US6165342A (en) * 1996-07-23 2000-12-26 Degussa Huls Aktiengesellschaft Cyanide-free electroplating bath for the deposition of gold and gold alloys
US6336962B1 (en) * 1997-10-08 2002-01-08 Atotech Deutschland Gmbh Method and solution for producing gold coating
US6814850B1 (en) 1999-06-17 2004-11-09 Umicore Galvanotechnik Gmbh Acid bath for electrodeposition of glossy gold and gold alloy layers and a gloss additive for same
US20050205425A1 (en) * 2002-06-25 2005-09-22 Integran Technologies Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
EP1403401A2 (en) * 2002-09-24 2004-03-31 Northrop Grumman Corporation Precious alloyed metal solder plating process
EP1403401A3 (en) * 2002-09-24 2005-09-28 Northrop Grumman Corporation Precious alloyed metal solder plating process
CN103397356A (en) * 2013-07-15 2013-11-20 苏州苏凯路化学科技有限公司 Non-toxic gold salt for gold plating and synthetic method thereof
CN103397356B (en) * 2013-07-15 2017-04-19 苏州苏凯路化学科技有限公司 Non-toxic gold salt for gold plating and synthetic method thereof
US10570525B2 (en) * 2015-01-16 2020-02-25 Hutchinson Technology Incorporated Gold electroplating solution and method

Also Published As

Publication number Publication date
GB1426849A (en) 1976-03-03
BR7409243A (en) 1976-05-18
SE7413961L (en) 1975-05-09
IT1020940B (en) 1977-12-30
BE821923A (en) 1975-05-06
NL7413010A (en) 1975-05-12
JPS5615472B2 (en) 1981-04-10
DE2355581C3 (en) 1979-07-12
NL186825C (en) 1991-03-01
FR2249979B1 (en) 1976-10-22
CH603825A5 (en) 1978-08-31
DE2355581B2 (en) 1978-11-16
ES430054A1 (en) 1976-10-16
FR2249979A1 (en) 1975-05-30
DE2355581A1 (en) 1975-05-28
JPS5075531A (en) 1975-06-20

Similar Documents

Publication Publication Date Title
US3929595A (en) Electrolytic burnished gold bath with higher rate of deposition
US4388160A (en) Zinc-nickel alloy electroplating process
US2580773A (en) Method and composition for coating aluminum with zinc
EP0358375B1 (en) Platinum or platinum alloy plating bath
CN102037162B (en) Pd and Pd-Ni electrolyte baths
US4833041A (en) Corrosion/wear-resistant metal alloy coating compositions
US3032436A (en) Method and composition for plating by chemical reduction
JPH0338351B2 (en)
US4242180A (en) Ammonia free palladium electroplating bath using aminoacetic acid
CA1048964A (en) Gold plating solutions and method
US5019163A (en) Corrosion/wear-resistant metal alloy coating compositions
JPS60169588A (en) Acidic zinc plating bath, acidic zinc alloy plating bath and process
US5534129A (en) Cyanidic-alkaline baths for the galvanic deposition of copper-tin alloy coatings, uses thereof, and metallic bases coated with said copper-tin alloy coating
US20040091385A1 (en) Ternary tin zinc alloy, electroplating solutions and galvanic method for producing ternary tin zinc alloy coatings
CA1195645A (en) High-rate chromium alloy plating
US2774688A (en) Nickel plating by chemical reduction
US3111464A (en) Electrodeposition of chromium and chromium alloys
GB2077764A (en) Electrodepositing cobalt-zinc alloys stimulating a chromium plating
US6576114B1 (en) Electroplating composition bath
US4565611A (en) Aqueous electrolytes and method for electrodepositing nickel-cobalt alloys
US3056733A (en) Process for electrolytic deposition of gold-copper-cadmium alloys
US4470886A (en) Gold alloy electroplating bath and process
Agladze et al. Comparision of Physico-chemical Properties of Cr, Ni-P, Ni-Mo, Ni'W'-P and Mn-Zn Alloys Coatings
CA1050471A (en) Electroplating of rhodium-ruthenium alloys
US3890210A (en) Method and electrolyte for electroplating rhodium-rhenium alloys