US3923566A - Method of fabricating an apertured mask for a cathode-ray tube - Google Patents
Method of fabricating an apertured mask for a cathode-ray tube Download PDFInfo
- Publication number
- US3923566A US3923566A US264833A US26483372A US3923566A US 3923566 A US3923566 A US 3923566A US 264833 A US264833 A US 264833A US 26483372 A US26483372 A US 26483372A US 3923566 A US3923566 A US 3923566A
- Authority
- US
- United States
- Prior art keywords
- depressions
- regions
- metal sheet
- mask
- relief pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 70
- 239000002184 metal Substances 0.000 claims abstract description 70
- 238000004049 embossing Methods 0.000 claims abstract description 58
- 238000005530 etching Methods 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 39
- 238000007493 shaping process Methods 0.000 claims description 16
- 230000000881 depressing effect Effects 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims description 2
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000010894 electron beam technology Methods 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000004922 lacquer Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000001803 electron scattering Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102220491117 Putative postmeiotic segregation increased 2-like protein 1_C23F_mutation Human genes 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 239000004833 fish glue Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
- C23F1/04—Chemical milling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/06—Screens for shielding; Masks interposed in the electron stream
- H01J29/07—Shadow masks for colour television tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/14—Manufacture of electrodes or electrode systems of non-emitting electrodes
- H01J9/142—Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4981—Utilizing transitory attached element or associated separate material
- Y10T29/49812—Temporary protective coating, impregnation, or cast layer
Definitions
- ABSTRACT A metal sheet is embossed by a special embossing tool to provide regions in the sheet of minimum thickness at the intended aperture locations thereon. Following embossing. the sheet is shaped into a desired mask contour and the embossed side of the sheet is coated with a stop-off substance to prevent subsequent removal of material from that side, The regions of minimum thickness are then removed. such as by etching the uncoated side of the sheet. to provide the apertures.
- This invention relates to apertured mask-type cathode-ray tubes. More particularly, it relates to a method of fabricating an apertured mask fora cathode-ray tube.
- Cathode-ray tubes for use in color television usually include a screen of red, green and blue emitting phosphor lines or dots, electron gun means for exciting the screen, and an apertured mask interposed between the gun means and the screen.
- the apertured mask is a thin metal sheet precisely disposed adjacent to the screen so that the mask apertures are systematically related to the phosphor lines or dots.
- a tube employing a slit mask is much more vulnerable to contrast degradation caused by poor edges that is a tube having a mask with round apertures. Therefore, to minimize electron scattering and thereby increase contrast in tubes having slit masks, it is important to utilize a mask fabrication method that provides apertures having sharp knife edges and highly accurate dimensions.
- the slits In a slit mask, the slits usually are oriented longitudi nally and are disposed in rows or columns. Longitudinally adjacent slits are separated by laterally extending cross ties that hold the mask together. In order to attain the maximum benefit possible with a slit mask, it is nec essary to minimize the area of these cross ties so that the percentage of the electron beams intercepted by the cross ties is reduced.
- the cross ties need only be strong enough to make the mask self-supporting.
- the thick cross ties of 2 the prior art significantly affected tube brightness and caused visible shadows on the viewing screen.
- the present invention provides a method of fabricating an apertured mask for a cathode-ray tube.
- a metal sheet is embossed to provide regions of reduced thickness at intended aperture locations. These regions are then removed to provide the apertures.
- FIG. 1 is a side view of a color television picture tube.
- FIG. 2 is a cross-sectional view taken on line 22 of FIGURE 1 showing, partly broken away, an apertured mask assembly.
- FIGS. 3 through 9 are cross-sectional views illustrating the step-by-step fabrication of an apertured mask in accordance with the instant invention.
- FIG. 10 is an enlarged partial vertical view of a first embossing tool.
- FIG. 11 is a front view of the tool of FIG. 10.
- FIG. 12 is an enlarged partial vertical view of an apertured mask formed with the tool of FIGS. 10 and 11.
- FIG. 13 is a front view of the mask of FIG. 12.
- FIG. 14 is an enlarged vertical view of a second embossing tool.
- FIG. 15 is a front view of the tool of FIG. 14.
- FIG. 16 is an enlarged partial vertical view of an apertured mask formed with the: tool of FIGS. 14 and 15.
- FIG. 17 is a front view of the mask of FIG. 16.
- FIG. 18 is an enlarged partial view of a third embossing tool.
- FIG. 19 is a front view of the tool of FIG. 18.
- FIG. 20 is an enlarged partial view of an apertured mask formed with the tool of FIGS. 18 and 19.
- FIG. 21 is a front view of the mask of FIG. 20.
- FIG. 22 is an enlarged partial view of a fourth embossing tool.
- FIG. 23 is a front view of the tool of FIG. 22.
- FIG. 24 is an enlarged partial view of an apertured mask formed with the tool of FIGS. 22 and 23.
- FIG. 25 is a front view of the mask of FIG. 24.
- FIG. 26 is an enlarged partial view of a fifth embossing tool.
- FIG. 27 is a front view of the tool of FIG. 26.
- FIG 28 is an enlarged partial view of an apertured mask formed with the tool of FIGS. 26 and 27.
- FIG. 29 is a front view of the mask of FIG. 28.
- FIG. 30 is an exploded perspective view of a metal sheet used in mask fabrication.
- FIG. 31 is a perspective view of the sheet of FIG. 30 assembled.
- FIGS. 32 and 33 are side and front views of the metal sheet of FIGS. 30 and 31 during embossing.
- FIG. 34 is an enlarged vertical view of an apertured mask formed from the metal sheet of FIGS. 30 and 31.
- FIGS. 35 through 39 are cross-sectional views illustrating the step-by-step fabrication of an apertured mask.
- FIG. 40 is a perspective view of the mask fabricated as illustrated in FIGS. 35 through 39.
- FIGS. 41 through 46 are enlarged partial surface and side views illustrating the step-by-step fabrication of an embossing tool.
- FIGS. 47 through 51 are enlarged partial surface and side views illustrating an alternate step-by-step fabrication of an embossing tool.
- FIG. 1 depicts a color television cathode-ray picture tube 40.
- the tube 40 is comprised of an evacuated envclope 42 having three sections: a funnel portion 44, a neck portion 46 and an end cap 48.
- the end cap 48 includes a viewing faceplate 50 that is interiorly coated with a color phosphor screen 52.
- An electron gun 54 positioned within the neck portion 46, is adapted to project at least one. but preferably three. electron beams through a magnetic deflection yoke 56 toward the screen 52. When suitably energized, the yoke 56 causes the beams to scan the screen 52 in a rectangular raster.
- the screen 52 is composed of a plurality of parallel phosphor strips or lines 58. These lines 58 can comprise cylically successive strips of red-emitting. green-emitting and blueemitting phosphors. Although the preferred embodiments of the present invention are described with respect to this line screen. it should be noted that the scope of the present invention also includes embodiments that use dot-like screens.
- an apertured mask 60 is mounted within the end cap 48 adjacent to the screen 52 and is thereby interposed in the path of the electron beams from the gun 54. Only the portions of the electron beams that pass through the apertures of the mask 60 strike the screen 52. Dashed lines 62 outline the maximum vertical deflection of the electron beams for the 90v. rectangular tube of FIG. 1.
- the apertured mask 60 is constructed by embossing a metal sheet with a relief pattern to provide regions of reduced or minimum thickness therein at intended aperture locations. Thereafter the metal sheet is treated. such as by etching. to remove portions of the sheet including the regions of minimum thickness thus forming apertures in the sheet.
- One of the advantages of the foregoing method is that the metal sheet can be bent or shaped into a contoured mask configuration prior to removal of the portions of the metal sheet that include the regions of minimum thickness. This is possible because shaping of the mask prior to removal of the regions of minimum thickness utilizes these regions of minimum thickness to provide mechanical strength during shaping. Because the cross ties are not subjected to the entire shaping forces. the cross ties can be formed with reduced thickness thereby permitting maximum tube brightness.
- a thin metal sheet 70 is positioned on the flat surface 72 of an anvil 74.
- An embossing tool 76 is shown directly above the metal sheet 70.
- the embossing tool 76 has a plurality of raised portions 78 at the intended locations of apertures.
- the areas 80 between the raised portion 78 are grooved to minimize compression of the metal sheet 70 in these areas and to permit flow of the sheet metal from the regions compressed by the portion 78.
- Each raised portion 78 is separated longitudinally from adjacent portions by small grooves 81. These grooves 81 provide for formation of cross ties in the mask that make the mask self supporting.
- FIG. 4 illustrates the embossing step wherein the embossing tool 76 has moved downward to impress its pattern into the metal sheet 70.
- the tool 76 is raised and the embossed 4 metal sheet is removed.
- each raised portion 78 of the embossing tool 76 forms a depression 82 in the metal sheet 70. Beneath these depressions 82 are regions 84 of minimum thickness in the sheet 70.
- the embossed sheet is then trimmed to leave a border around the pattern and the metal sheet 70 is curved into the desired apertured mask configuration as shown in FIG. 6. Once the sheet 70 has been curved. the embossed side of the sheet can be completely coated with a material.
- a layer 86 of a stop-off lacquer. a properly treated fish glue as shown in FIG. 7. to protect it during subsequent etching steps.
- the uncoated side 88 of the sheet 70 is uniformly etched until the regions 84 of minimum thickness 84 are completely removed. as shown in FIG. 8. Thereafter, the coating or stop-off lacquer 86 is removed thereby leaving the completed apertured mask 70' wherein the depressions 82 have become the apertures of the mask separated longitudinally by cross ties 83.
- FIGS. 10 and 11 show a bottom and a side view, respectively, of a portion of one type of embossing tool 90.
- the embossing tool pattern looks something like a chopped sawtooth wave.
- the flat wave crests are raised portions 92 which form the depressions or grooves that become apertures.
- At intervals along each raised portion 92 are slots 94 that provide areas in the embossing pattern that provide for the cross ties.
- the mask contains apertures 98 which are formed at locations corresponding to the locations of the raised portions 92 of the embossing tool 90, and webs or cross ties 100 which are formed by the slots 94.
- FIGS. 14 and 15 Another embossing tool 102 is shown in FIGS. 14 and 15.
- the raised portions 104 that are used to form the aperture grooves are positioned on pedestals 106 that provide shoulders 108 about the raised portions 104.
- the apertured mask 110 formed with this tool 102 is shown in FIGS. 16 and 17.
- the shoulders 108 of the embossing tool form a thin section 112 of material around the apertures 114 in the shadow mask 110.
- the apertures are formed with straight vertical sides. Therefore, ethcing time for this mask 110 is much less critical than for the mask 96 of FIGS. 12 and 13 since aperture width in the mask 110 remains constant for a certain etching period after the apertures 114 are opened.
- FIGS. 18 and 19 A modification of the embossing tool of FIGS. 14 and 15 is shown in FIGS. 18 and 19.
- the embossing tool 116 of FIGS. 18 and 19 includes pedestals 118 having two steps or shoulders 120 and 124.
- This tool pattern is especially applicable to the known type of color tube fabrication technique in which a partially completed mask having a first or small width slit is used to define and print the screen of the tube, and upon completion of the screen, a second, larger width slit is provided for the mask which is incorporated in the finished cathode ray tube.
- FIGS. 20 and 21 show the apertured mask 128 produced by the embossing tool 116 of FIGS. 18 and 19. The A side of FIGS.
- 20 and 21 depicts the apertured mask 128 after a first etching step to form the narrowslits 130 that are used in fabricating the cathode-ray tube screen, and the side B depicts the same mask after a second etching step to form the slits 132 that are used in the mask used in the operational tube.
- the first etch uniformly removes the metal from the uncoated side of the mask and can be terminated at any time after opening of the narrow slits 130 but before the grooves that are to form the wide slits 132 are reached.
- the stop-off lacquer is then removed from the mask and the mask is inserted in a cathode-ray tube face plate. Thereafter, utilizing known lighthouse exposure techniques, the phosphor screen of the cathoderay tube is defined.
- the embossed side of the mask is again coated with a stop-off lacquer and the mask is subjected to a second etch.
- the second etch can be terminated at any time after the wide slits 132 have been reached but before the etch reaches the slit shoulders. preferably, for maximum mask strength, the second etch should be terminated shortly after the wide slits are opened.
- FIGS. 22 and 23 Another embossing tool 134 is illustrated in the bot tom and side views of FIGS. 22 and 23, respectively.
- This tool 134 provides a mask having polygonal shaped apertures for use in a cathode-ray tube having a dot screen.
- the pattern of tool 134 has a plurality of hexagonal pedestals 136 each having a hexagonal raised portion 138 thereon.
- the mask 140 formed with the embossing tool 134 is shown in FIGS. 24 and 25. Side A of FIGS.
- FIG. 24 and 25 depicts the apertured mask after a first etching step to form the apertures 142 that are used in forming the cathode-ray tube screen, and side B depicts the same mask after a second etching step to form the apertures 144 that are used in the operational tube.
- FIGS. 26-29 An embodiment of the invention for use with cathode-ray tubes having screens with round phosphor dots is illustrated in FIGS. 26-29.
- the pattern of tool 145 has a plurality of cylindrical pedestals 146 with each pedestal having a smaller raised cylindrical portion 147 thereon.
- the mask 148 formed with the embossing tool 145 is shown in FIGS. 28 and 29.
- Side A of FIGS. 28 and 29 depicts the apertured mask after a first etching step to form small apertures 149.
- the mask in the small aperture configuration is then inserted into a faceplate of a cathode-ray tube and is used in establishing a dot screen.
- the mask is removed from the faceplate and is etched a second time to form the large apertures 149a depicted at side B in FIGS. 28 and 29.
- the mask in its large aperture configuration is then reinserted into the faceplate and is used in the operational cathode-ray tube.
- FIGS. 30-34 Another embodiment of the invention is illustrated in FIGS. 30-34.
- the fabricated panel 150 is next embossed by a tool 158 having a pattern of raised elongated portions 160 thereon separated by grooves 161. Each of these portions 160 forms a groove in the panel 150 that eventually becomes a slit in the resultant mask.
- FIG. 31 shows the embossing tool 158 in a raised position above the panel 150 and FIGS. 32 and 33 show two views of the tool 158 and panel 150 during the embossing step.
- Each raised elongated portion 160 is intersected by 6 cut-outs or grooves 159 that prevent distortion of the embedded wires during embossing.
- the raised portions 160 of tool 158 press against the metal between wires 156.
- a portion of the metal directly beneath the raised portions 160 is compressed and the remaining metal is forced to flow into the recessed longitudinal areas 161 of the tool.
- the panel 150 has a plurality of elongated portions of reduced thickness, each por tion separated longitudinally lby wires 156. Laterally, the rows or columns of reduced thickness portions are separated by longitudinally extending strips that are to form the body of the mask.
- the entire panel is shaped and etched until the regions of minimum thickness in the panel formed during the embossing step are removed.
- the material of the wires 156 is such as not to be affected by the etchant used.
- the completed mask 162 is shown in FIG. 34.
- the mask consists of parallel strips of metal 164 held together by the parallel cross tie wires 156..
- the cross tie wires 156 can be significantly thinner than the cross ties provided in the previously described embodiments if the wire 156 consists of a suitably strong material.
- FIG. 35 depicts a metal sheet which has been embossed to include a plurality of triangular shaped elongated portions 174 that are connected together by regions 176 of reduced sheet thickness.
- the sheet 170 is then shaped, i.e., arched, into a mask configuration, as shown in FIG. 36', and a plurality of wires 178 are welded to the apex of each triangular shaped portion 174, as shown in FIG. 37.
- a stop-off material 180 is coated over the wires 178 and the embossed side of the sheet 170, as depicted in FIG. 38, and the sheet regions 176 of minimum thickness are etched away, as shown in FIG. 39.
- the resulting mask 182, shown in FIG. 40 comprises a plurality of parallel triangular strips 184 held together by a plurality of wires 178 welded to each strip 184.
- embossing tool which can be in the form of any embossing roll used in opposition with a smooth roll on a rolling mill.
- FIGS. 41 through 46 A preferred method for forming the embossing tool 102 of FIGS. 14 and 15 is illustrated in FIGS. 41 through 46.
- FIGS. 41 and 42 show top and side views, respectively, of a steel plate having a plurality of parallel photoresist strips 192 thereon. The center of each strip 192 is positioned so as to coincide with the intended location of a raised portion of the tool. The regions 194 between the photoresist strips 192 are then etched away, as shown in FIG. 43, to form a plurality of parallel ridges 196. The photoresist pattern 192 is removed and another pattern of photoresist strips 198 (FIGS. 44 and 45) is printed on top of the ridges 196.
- each of the photoresist strips 198 covers only a central portion of the ridges, and each strip 198 has a series of gaps 199 therein.
- a second etch of the plate 190 produces the embossing contour shown by the dashed lines in FIG. 46.
- the tool 102 is now completed by removing the photoresist pattern 198.
- FIGS. 47 through 51 Another method for forming the embossing tool 102 of FIGS. 14 and 15 is illustrated in FIGS. 47 through 51. This method is simply the reverse process of the previously described preferred method.
- FIGS. 47 and 48 show a top and side view, respectively, of a steel plate 200 having a first photoresist pattern 202 thereon.
- the pattern 202 covers those portions 104 of the steel plate that are to become the ridges 104 of the embossing tool 102.
- the surface of the plate 200 is lightly etched to form a plurality of pedestals 204 and shallow recesses 206 as shown in FIG. 49.
- the first photoresist pattern 202 is removed and the surface of the plate 200 is covered with a plurality of parallel photoresist strips 208. Each strip 208 completely covers a pedestal 204 and extends slightly beyond the sides thereof. Thereafter, the surface of the plate 200 is subjected to a second etch to form a plurality of grooves 210 between the pedestals 204. This second method for forming the embossing tool 102 is then completed by removing the second photoresist pattern of strips 208.
- the photoresist be completely free of defects.
- a pinhole in the resist can result in the tool being etched at undesirable locations. Repair of such damage caused by pinholes is difficult and it is probable that the repaired area will not stand up under use nearly as well as the original steel used to construct the tool. This problem of repair durability is particularly bad if a pinhole is located at the edge of a pedestal. Therefore, an additional step to check the soundness of the resist pattern is preferably used.
- the soundness of the resist pattern can be tested by attempting to plate a metal of contrasting color, such as copper, onto the workpiece covered with the resist. If any pinholes through the resist are present, thus exposing areas of the underlying metal, the contrasting color metal will plate onto these exposed areas, thereby providing a visual indicator for locating the pinholes. The pinholes so located can be then repaired prior to further processing.
- the embossing tools of the present invention can also be made by highly accurate machining techniques.
- Each tool can be either in the form of a flat, uniform thickness plate or a cylindrical roll.
- a first mask fabrication process is begun by pressing a sheet of metal, e.g., 6 mil thick, etc., between a smooth roll ofa rolling mill and a special embossing roll having a relief pattern thereon.
- the relief pattern can be that shown in FIGS. 18 and 19, thereby resulting in the sheet being embossed with a pattern of longitudinal grooves.
- the bottom of the grooves are quite thin, about 1.5 mils thick, as a result of flow of metal in the embossing operation.
- the embossed sheet is then annealed, and the annealed sheet is shaped into a spherical configuration.
- a minimal amount of annealing just sufficient to prevent tearing of the sheet during the shaping operation, is done.
- the entire embossed side of the sheet is covered with a coating of stop-off lacquer and the uncoated side of the sheet is uniformly etched with a suitable etchant such as ferric chloride. At least 1.5 mils of this uncoated side is removed to completely remove the thinned regions of the steel sheet.
- the stop-offlacquer is removed, as by peeling or washing with a suitable solvent, thereby 8 leaving the finished mask. Further operations, such as blackening of the mask and welding the mask to a frame, can then be done in accordance with known techniques.
- the mask is recoated with stop-offlacquer on the convex embossed side of the mask after the mask has been used, etc., and a second etching step is performed.
- This second etching step is preferably performed with the mask attached to the frame in order to ensure proper alignment between the mask and screen.
- EXAMPLE II In a second mask fabrication process, a plurality of wires are disposed between two sheets of metal, e.g., 3 mils thick, and the two sheets are laminated together by a rolling operation to establish a good bond.
- the wires can be as small as from 2 to 4 mils in diameter and are of a material resistant to the etchant used in subsequent processing steps. Wires formed from titanium or titanium alloys are preferable when an etchant such as ferric chloride is used.
- the laminated sheets are then embossed with an embossing tool such as that shown in FIGS. 28 and 29 to form grooves perpendicular to the embedded wires.
- the embossed sheets are shaped to a spherical form and then annealed. Thereafter, the formed embossed sheets are etched with a suitable etchant such as ferric chloride to produce the final mask.
- apertures are formed having knife edges and accurate dimensions.
- the cross ties that are formed are of uniform area and can be made as thin as possible consistent with operational strength requirements. Since aperture location is established in the embossing step, the mask may be shaped to its final configuration prior to removal of the regions of minimum thickness, when the embossed metal sheet is its strongest, thereby permitting much thinner cross ties than when the cross ties are subjected to the entire formation stress.
- the foregoing apertured mask embodiments have other advantages in addition to increased transmission factors and reduced electron scattering. For example, minimization of cross tie thickness also aids in reducing moir. Moire appears on a viewing screen as alternating light and dark bands, often resembling a wood grain. This phenomenon is caused by the variations in the amount of the electron beams intercepted by the mask as the scan line spacing and phase changes. Minimizing the thickness of the horizontal portions or cross ties of a mask, therefore, minimizes the visible moir pattern.
- the portions of the masks located between rows of apertures are recessed or sloped away from the edges of the apertures. This ensures that at any angle of deflection, the electron beams will not deflect off the mask after they have passed through the mask apertures.
- a method of fabricating an apertured mask for a cathode-ray tube comprising:
- embossing a relief pattern on one side of a flat metal sheet with an embossing tool, said relief pattern providing regions of minimum thickness relative to the remaining regions thereof at intended aperture location and straight vertical sides perpendicular to the flat dimension of said sheet surrounding the intended aperture locations;
- said relief pattern comprises an array of substantially round depressions forming said regions of minimum thickness.
- said relief pattern comprises an array of polygonal depressions forming said regions of minimum thickness.
- said relief pattern comprises an array of parallel elongated depressions forming said regions of minimum thickness.
- said relief pattern comprises an array of elongated depressions disposed in parallel rows, each depression being elongated in the direction of said rows and separated from adjacent depressions in each row by raised web portions of said relief pattern, said depressing forming said regions of minimum reduced thickness.
- said relief pattern includes shoulders parallel with and adjacent to each elongated side of each depression, said shoulders being substantially level with said raised web portions.
- said relief pattern comprises:
- first array of depressions forming said regions of minimum thickness, said first array including paral lel rows of said first depressions, each of said first depressions being elongated in the direction of said rows,
- a second array of elongated second depressions superimposed on said first depressions said second depressions being of substantially identical length as said first depressions and having greater width than said first depressions, said second depressions forming regions of intermediate thickness in said metal sheet, said first depressions and said second depressions being separated from adjacent depres- 10 sions in each row by common raised web portions of said metal sheet.
- said relief pattern includes shoulders parallel with and adjacent to each elongated side of each second depression, said shoulders being substantially level with said raised web portions.
- a method of fabricating an apertured mask for a cathode-ray tube comprising;
- embossing a relief pattern on one side of a metal sheet comprising two laminated metal layers having a plurality of spaced parallel wires therebetween, said relief pattern providing regions of minimum thickness relative to the remaining regions thereof at intended aperture locations;
- said relief pattern comprises an array of elongated depressions forming said regions of minimum thickness, said array including parallel rows of said depressions, each depression being elongated in the direction of said rows perpendicular to said wires and separated from adjacent depressions in each row by web portions of said metal sheet including said wires.
- a method of fabricating an apertured mask for a cathode-ray tube comprising:
- embossing a relief pattern on one side of a metal sheet said relief pattern comprising an array of parallel elongated depressions forming regions of minimum thickness relative to the remaining regions thereof at intended aperture locations shaping said metal sheet into a desired mask contour; and attaching a plurality of wires to a pattern side of said metal sheet perpendicular to the direction of said elongated depressions;
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
- ing And Chemical Polishing (AREA)
- Physical Vapour Deposition (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US264833A US3923566A (en) | 1972-06-21 | 1972-06-21 | Method of fabricating an apertured mask for a cathode-ray tube |
IT23276/73A IT984035B (it) | 1972-06-21 | 1973-04-20 | Metodo per la fabbricazione di una maschera forata per un tubo a raggi catodici |
CA172,856A CA979967A (en) | 1972-06-21 | 1973-05-31 | Method of fabricating an apertured mask for a cathode-ray tube |
AU56782/73A AU480236B2 (en) | 1972-06-21 | 1973-06-12 | Method of fabricating an apertured mask fora cathode-ray tube |
AR248589A AR196135A1 (es) | 1972-06-21 | 1973-06-14 | Un metodo para fabricar una mascara perforada para un tubo de rayos catodicos |
ES415914A ES415914A1 (es) | 1972-06-21 | 1973-06-14 | Un metodo de fabricar una mascara perforada para un tubo de rayos catodicos. |
FR7322046A FR2189861B1 (enrdf_load_stackoverflow) | 1972-06-21 | 1973-06-18 | |
BE132464A BE801147A (fr) | 1972-06-21 | 1973-06-19 | Procede de fabrication d'un masque perfore pour tube a rayons cathodiques |
DE2331535A DE2331535A1 (de) | 1972-06-21 | 1973-06-20 | Verfahren zur herstellung einer schattenmaske fuer eine kathodenstrahlroehre |
JP48069684A JPS4958747A (enrdf_load_stackoverflow) | 1972-06-21 | 1973-06-20 | |
NL7308567A NL7308567A (enrdf_load_stackoverflow) | 1972-06-21 | 1973-06-20 | |
BR4582/73A BR7304582D0 (pt) | 1972-06-21 | 1973-06-20 | Um processo de fabricar uma mascara de sombra para um tubo de raios catodicos |
GB2955673A GB1419010A (en) | 1972-06-21 | 1973-06-21 | Method of fabricating an apertured mask for a cathode-ray tube |
ES1974200005U ES200005Y (es) | 1972-06-21 | 1974-01-30 | Una mascara perforadapara un tubo de rayos catodicos. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US264833A US3923566A (en) | 1972-06-21 | 1972-06-21 | Method of fabricating an apertured mask for a cathode-ray tube |
Publications (2)
Publication Number | Publication Date |
---|---|
USB264833I5 USB264833I5 (enrdf_load_stackoverflow) | 1975-01-28 |
US3923566A true US3923566A (en) | 1975-12-02 |
Family
ID=23007808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US264833A Expired - Lifetime US3923566A (en) | 1972-06-21 | 1972-06-21 | Method of fabricating an apertured mask for a cathode-ray tube |
Country Status (12)
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4035226A (en) * | 1975-04-14 | 1977-07-12 | Rca Corporation | Method of preparing portions of a semiconductor wafer surface for further processing |
US4072876A (en) * | 1976-10-04 | 1978-02-07 | Rca Corporation | Corrugated shadow mask assembly for a cathode ray tube |
US4122368A (en) * | 1977-07-08 | 1978-10-24 | Rca Corporation | Cathode ray tube with a corrugated mask having a corrugated skirt |
US4160311A (en) * | 1976-01-16 | 1979-07-10 | U.S. Philips Corporation | Method of manufacturing a cathode ray tube for displaying colored pictures |
US4173729A (en) * | 1977-06-24 | 1979-11-06 | Rca Corporation | Cathode-ray tube having a stepped shadow mask |
US4269653A (en) * | 1978-11-06 | 1981-05-26 | Vlsi Technology Research Association | Aperture stop |
DE3047846A1 (de) * | 1979-12-18 | 1981-09-17 | RCA Corp., 10020 New York, N.Y. | "farbbildroehre mit verbesserter schlitzmaske und verfahren zu ihrer herstellung" |
EP0092001A1 (en) * | 1982-04-19 | 1983-10-26 | Lovejoy Industries, Inc. | Method for shaping and finishing a workpiece |
US4443499A (en) * | 1981-01-26 | 1984-04-17 | Rca Corporation | Method of making a focusing color-selection structure for a CRT |
US4731155A (en) * | 1987-04-15 | 1988-03-15 | General Electric Company | Process for forming a lithographic mask |
US4740266A (en) * | 1985-07-01 | 1988-04-26 | Wu Jiun Tsong | Method of making memory devices |
US4781789A (en) * | 1985-07-01 | 1988-11-01 | Wu Jiun Tsong | Method of making memory devices |
US4781790A (en) * | 1985-07-01 | 1988-11-01 | Wu Jiun Tsong | Method of making memory devices |
US4783236A (en) * | 1985-07-01 | 1988-11-08 | Wu Jiun Tsong | Method of making memory devices |
US4795528A (en) * | 1985-07-01 | 1989-01-03 | Wu Jiun Tsong | Method of making memory devices |
US4957601A (en) * | 1984-09-04 | 1990-09-18 | Texas Instruments Incorporated | Method of forming an array of apertures in an aluminum foil |
US4992138A (en) * | 1989-07-31 | 1991-02-12 | Texas Instruments Incorporated | Method and apparatus for constructing a foil matrix for a solar cell |
US5004521A (en) * | 1988-11-21 | 1991-04-02 | Yamaha Corporation | Method of making a lead frame by embossing, grinding and etching |
EP0841679A1 (en) * | 1996-11-11 | 1998-05-13 | Kabushiki Kaisha Toshiba | Shadow mask and method of manufacturing the same |
US6083837A (en) * | 1996-12-13 | 2000-07-04 | Tessera, Inc. | Fabrication of components by coining |
US6202304B1 (en) * | 1994-11-02 | 2001-03-20 | Solomon Shatz | Method of making a perforated metal sheet |
US6294863B1 (en) * | 1997-12-18 | 2001-09-25 | Kabushiki Kaisha Toshiba | Color cathode ray tube having a shadow mask with a plurality of strip shaped reinforcing beads |
WO2002093258A1 (de) * | 2001-05-14 | 2002-11-21 | Elmicron Ag | Verfahren zur herstellung von prägewerkzeugen |
US20040137734A1 (en) * | 1995-11-15 | 2004-07-15 | Princeton University | Compositions and processes for nanoimprinting |
US20040156108A1 (en) * | 2001-10-29 | 2004-08-12 | Chou Stephen Y. | Articles comprising nanoscale patterns with reduced edge roughness and methods of making same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3916243A (en) * | 1974-09-20 | 1975-10-28 | Buckbee Mears Co | Channeled shadow mask |
NL7600417A (nl) * | 1976-01-16 | 1977-07-19 | Philips Nv | Werkwijze voor het vervaardigen van een kathode- straalbuis voor het weergeven van gekleurde beel- den. |
FR2731647B1 (fr) * | 1995-03-15 | 1997-04-30 | Corning Inc | Procede de fabrication d'un moule constitue d'un reseau d'alveoles pour la fabrication de reseaux de microlentilles optiques |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB598994A (en) * | 1945-08-29 | 1948-03-02 | Herbert Edward Holman | Improvements in or relating to the manufacture of metal screens and electron discharge devices comprising such screens |
US2565623A (en) * | 1949-03-30 | 1951-08-28 | Rca Corp | Method of making grid structures |
US3148098A (en) * | 1960-11-03 | 1964-09-08 | Day Company | Method of producing electrical components |
US3666462A (en) * | 1969-03-28 | 1972-05-30 | Zenith Radio Corp | Process of screening a shadow mask color tube |
US3666579A (en) * | 1970-06-15 | 1972-05-30 | Zenith Radio Corp | Etching electrodes |
US3679500A (en) * | 1970-08-07 | 1972-07-25 | Dainippon Screen Mfg | Method for forming perforations in metal sheets by etching |
-
1972
- 1972-06-21 US US264833A patent/US3923566A/en not_active Expired - Lifetime
-
1973
- 1973-04-20 IT IT23276/73A patent/IT984035B/it active
- 1973-05-31 CA CA172,856A patent/CA979967A/en not_active Expired
- 1973-06-14 ES ES415914A patent/ES415914A1/es not_active Expired
- 1973-06-14 AR AR248589A patent/AR196135A1/es active
- 1973-06-18 FR FR7322046A patent/FR2189861B1/fr not_active Expired
- 1973-06-19 BE BE132464A patent/BE801147A/xx unknown
- 1973-06-20 JP JP48069684A patent/JPS4958747A/ja active Pending
- 1973-06-20 BR BR4582/73A patent/BR7304582D0/pt unknown
- 1973-06-20 DE DE2331535A patent/DE2331535A1/de active Pending
- 1973-06-20 NL NL7308567A patent/NL7308567A/xx unknown
- 1973-06-21 GB GB2955673A patent/GB1419010A/en not_active Expired
-
1974
- 1974-01-30 ES ES1974200005U patent/ES200005Y/es not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB598994A (en) * | 1945-08-29 | 1948-03-02 | Herbert Edward Holman | Improvements in or relating to the manufacture of metal screens and electron discharge devices comprising such screens |
US2565623A (en) * | 1949-03-30 | 1951-08-28 | Rca Corp | Method of making grid structures |
US3148098A (en) * | 1960-11-03 | 1964-09-08 | Day Company | Method of producing electrical components |
US3666462A (en) * | 1969-03-28 | 1972-05-30 | Zenith Radio Corp | Process of screening a shadow mask color tube |
US3666579A (en) * | 1970-06-15 | 1972-05-30 | Zenith Radio Corp | Etching electrodes |
US3679500A (en) * | 1970-08-07 | 1972-07-25 | Dainippon Screen Mfg | Method for forming perforations in metal sheets by etching |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4035226A (en) * | 1975-04-14 | 1977-07-12 | Rca Corporation | Method of preparing portions of a semiconductor wafer surface for further processing |
US4160311A (en) * | 1976-01-16 | 1979-07-10 | U.S. Philips Corporation | Method of manufacturing a cathode ray tube for displaying colored pictures |
US4072876A (en) * | 1976-10-04 | 1978-02-07 | Rca Corporation | Corrugated shadow mask assembly for a cathode ray tube |
US4173729A (en) * | 1977-06-24 | 1979-11-06 | Rca Corporation | Cathode-ray tube having a stepped shadow mask |
US4122368A (en) * | 1977-07-08 | 1978-10-24 | Rca Corporation | Cathode ray tube with a corrugated mask having a corrugated skirt |
US4269653A (en) * | 1978-11-06 | 1981-05-26 | Vlsi Technology Research Association | Aperture stop |
DE3047846A1 (de) * | 1979-12-18 | 1981-09-17 | RCA Corp., 10020 New York, N.Y. | "farbbildroehre mit verbesserter schlitzmaske und verfahren zu ihrer herstellung" |
US4443499A (en) * | 1981-01-26 | 1984-04-17 | Rca Corporation | Method of making a focusing color-selection structure for a CRT |
EP0092001A1 (en) * | 1982-04-19 | 1983-10-26 | Lovejoy Industries, Inc. | Method for shaping and finishing a workpiece |
US4957601A (en) * | 1984-09-04 | 1990-09-18 | Texas Instruments Incorporated | Method of forming an array of apertures in an aluminum foil |
US4795528A (en) * | 1985-07-01 | 1989-01-03 | Wu Jiun Tsong | Method of making memory devices |
US4781790A (en) * | 1985-07-01 | 1988-11-01 | Wu Jiun Tsong | Method of making memory devices |
US4783236A (en) * | 1985-07-01 | 1988-11-08 | Wu Jiun Tsong | Method of making memory devices |
US4740266A (en) * | 1985-07-01 | 1988-04-26 | Wu Jiun Tsong | Method of making memory devices |
US4781789A (en) * | 1985-07-01 | 1988-11-01 | Wu Jiun Tsong | Method of making memory devices |
US4731155A (en) * | 1987-04-15 | 1988-03-15 | General Electric Company | Process for forming a lithographic mask |
US5004521A (en) * | 1988-11-21 | 1991-04-02 | Yamaha Corporation | Method of making a lead frame by embossing, grinding and etching |
US4992138A (en) * | 1989-07-31 | 1991-02-12 | Texas Instruments Incorporated | Method and apparatus for constructing a foil matrix for a solar cell |
US6202304B1 (en) * | 1994-11-02 | 2001-03-20 | Solomon Shatz | Method of making a perforated metal sheet |
US20080230947A1 (en) * | 1995-11-15 | 2008-09-25 | Princeton University | Articles Comprising Nanoscale Patterns With Reduced Edge Roughness and Methods of Making Same |
US20040137734A1 (en) * | 1995-11-15 | 2004-07-15 | Princeton University | Compositions and processes for nanoimprinting |
US6043595A (en) * | 1996-11-11 | 2000-03-28 | Kabushiki Kaisha Toshiba | Shadow mask having a curved surface with compressed, strengthening dents |
CN1091938C (zh) * | 1996-11-11 | 2002-10-02 | 东芝株式会社 | 荫罩及其制造方法 |
EP0841679A1 (en) * | 1996-11-11 | 1998-05-13 | Kabushiki Kaisha Toshiba | Shadow mask and method of manufacturing the same |
US6184140B1 (en) | 1996-12-13 | 2001-02-06 | Tessera, Inc. | Methods of making microelectronic packages utilizing coining |
US6083837A (en) * | 1996-12-13 | 2000-07-04 | Tessera, Inc. | Fabrication of components by coining |
US6294863B1 (en) * | 1997-12-18 | 2001-09-25 | Kabushiki Kaisha Toshiba | Color cathode ray tube having a shadow mask with a plurality of strip shaped reinforcing beads |
WO2002093258A1 (de) * | 2001-05-14 | 2002-11-21 | Elmicron Ag | Verfahren zur herstellung von prägewerkzeugen |
US20040156108A1 (en) * | 2001-10-29 | 2004-08-12 | Chou Stephen Y. | Articles comprising nanoscale patterns with reduced edge roughness and methods of making same |
US7758794B2 (en) | 2001-10-29 | 2010-07-20 | Princeton University | Method of making an article comprising nanoscale patterns with reduced edge roughness |
Also Published As
Publication number | Publication date |
---|---|
IT984035B (it) | 1974-11-20 |
AU5678273A (en) | 1974-12-12 |
AR196135A1 (es) | 1973-11-30 |
ES200005Y (es) | 1976-02-01 |
ES200005U (es) | 1975-10-01 |
GB1419010A (en) | 1975-12-24 |
FR2189861A1 (enrdf_load_stackoverflow) | 1974-01-25 |
JPS4958747A (enrdf_load_stackoverflow) | 1974-06-07 |
ES415914A1 (es) | 1976-02-01 |
FR2189861B1 (enrdf_load_stackoverflow) | 1978-04-14 |
BE801147A (fr) | 1973-10-15 |
USB264833I5 (enrdf_load_stackoverflow) | 1975-01-28 |
CA979967A (en) | 1975-12-16 |
DE2331535A1 (de) | 1974-01-17 |
BR7304582D0 (pt) | 1974-08-22 |
NL7308567A (enrdf_load_stackoverflow) | 1973-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3923566A (en) | Method of fabricating an apertured mask for a cathode-ray tube | |
US3809945A (en) | Shadow mask for color cathode ray tube and method of manufacture thereof | |
JPH04104425A (ja) | シャドウマスクの製造方法及びシャドウマスク板材 | |
US5730887A (en) | Display apparatus having enhanced resolution shadow mask and method of making same | |
US3929532A (en) | Method for etching apertured work piece | |
US3666462A (en) | Process of screening a shadow mask color tube | |
EP0073654B1 (en) | Shadow mask arrangement and method of manufacture | |
US5086250A (en) | Color cathode ray tube having shadow mask with some long, narrow apertures | |
US3707640A (en) | Shadow mask having double-sized apertures | |
US4429028A (en) | Color picture tube having improved slit type shadow mask and method of making same | |
US3808071A (en) | Etch-back process | |
EP0257659B1 (en) | Apparatus for forming a shadow mask | |
US5189334A (en) | Cathode ray tube having shadow mask | |
US3631576A (en) | Method of producing a color kinescope | |
US6541903B1 (en) | Cathode ray tube and method for punched electrode profile with predetermined angular range | |
JP2002197989A (ja) | カラー受像管 | |
US20020145375A1 (en) | Method and apparatus for maintaining mask strand spatial uniformity | |
US6455993B1 (en) | Shadow mask type color cathode ray tube having variable aperture diameter | |
PL126028B1 (en) | Picture tube with luminescent stripted screen | |
JP3058670B2 (ja) | 陰極線管用電子銃電極 | |
US3604081A (en) | Screening a color cathode-ray tube | |
JPH0896726A (ja) | カラー受像管 | |
KR100300324B1 (ko) | 음극선관용 섀도우 마스크의 제조방법 | |
US7227298B2 (en) | Color picture tube and method for manufacturing the same | |
GB2238423A (en) | Shadow mask for a cathode-ray tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, P Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RCA CORPORATION, A CORP. OF DE;REEL/FRAME:004993/0131 Effective date: 19871208 |