US3918839A - Wind turbine - Google Patents
Wind turbine Download PDFInfo
- Publication number
- US3918839A US3918839A US508016A US50801674A US3918839A US 3918839 A US3918839 A US 3918839A US 508016 A US508016 A US 508016A US 50801674 A US50801674 A US 50801674A US 3918839 A US3918839 A US 3918839A
- Authority
- US
- United States
- Prior art keywords
- turbine
- blade
- rotor
- shaft
- curved portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007858 starting material Substances 0.000 claims description 18
- 239000006260 foam Substances 0.000 claims description 11
- 238000005452 bending Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UJCHIZDEQZMODR-BYPYZUCNSA-N (2r)-2-acetamido-3-sulfanylpropanamide Chemical compound CC(=O)N[C@@H](CS)C(N)=O UJCHIZDEQZMODR-BYPYZUCNSA-N 0.000 description 1
- 241001669680 Dormitator maculatus Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000012443 analytical study Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/062—Rotors characterised by their construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/061—Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
- F05B2240/212—Rotors for wind turbines with vertical axis of the Darrieus type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
- F05B2240/213—Rotors for wind turbines with vertical axis of the Savonius type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Definitions
- a wind turbine rotatable about a shaft may include a drive rotor with one or more elongated blades each having a central outwardly curved portion of airfoil shape which produces rotary motion when the blade rotates in wind at a blade tip velocity to wind velocity ratio greater than about three or four, additional wind rotor means disposed at both ends of the curved portions of the elongated blade for rotatably accelerating the drive rotor to the desired velocity ratio, and means coupled to said rotors for utilizing the rotation thereof.
- Wind was one of the first natural energy sources to be harnessed by man with the use of various windmill driven apparatus.
- the use of windmills declined drastically after the development of the steam engine, internal combustion engine, and other fossil fueled energy conversion machines.
- interest is again being directed to the use of wind as a competitive source of energy.
- This invention relates to a wind turbine having a driverotor including an outwardly curved, airfoil shaped blade extending between end portions of amtatable shaft; and additional rotor means disposed at both end portions of the shaft and out of registry with torque producing portions of the drive rotor to bring the entire rotor assembly up to a speed at which the drive rotor may maintain a rotary driving force to the shaft and which thereafter continues to contribute a driving force thereto at the higher speeds.
- FIG. 1 is a somewhat simplified perspective view of the wind turbine assembly of this invention showing the relative positions of the rotor elements
- FIG. 2 shows diagrammatically the preferred shape of the blades in the main drive rotor of the wind turbine
- FIG. 3 shows diagrammatically a comparison of the blade shape of this invention with other possible blade curvatures
- FIG. 4 is a cross-sectional view of the airfoil portion of the blade shown in FIG. 2;
- FIG. 5 is a graph of efficiency versus velocity ratios for the respective rotor portions of the present wind turbine. I I
- FIG. 6a and FIG. 6b illustrate by cross section various shapes that the straight segments may have 'for the blades shown in FIGS. 1 and 2;
- FIG. 7 illustrates diagrammatically in a top section view the positions of the vanes of the starter rotor utilized in the wind turbine assembly of FIG. 1; 7
- FIG. 8 is a perspective view of another starter rotor arrangement which may be used with the turbine of FIG. .1;
- FIG. 9 shows diagrammatically a modification driverotor blade and blade shape
- FIGS. 10a and 10b illustrate further modifications of the drive rotor blade to effectively increase the aspect ratio of the rotor blade
- FIG. 11 illustrates a mofified version of the wind turto the him which utilizes a vertical stacking of drive rotors
- the wind turbine of this invention includes a wind driven main power or drive rotor and a pair of wind driven starter rotors 14 and 16 coupled to a rotatable shaft 12, as indicated in FIG. 1. It is preferred that the wind tubine be supported in a vertical position as shown, so that any wind, regardless of direction, will always cause rotation of the wind turbine rotors without adjustment of the turbine axis.
- Each of the rotors l0, l4 and 16 are fixed to the shaft 12 so as to rotate together about fixed platform or tower 18 with the shaft 12 maintained in the desired vertical position.
- Shaft 12 may be rotatably mounted on platform 18 by appropriate rotary bearings, and the like and may be stabilized by appropriate guys or other supports 19 from upper portions of the shaft, if such is desirable, depending on the size of the wind turbine and the wind velocities in which it is to be operated.
- shaft 12, and consequently rotors 10, 14 and 16 may be coupled directly or via an appropriate drive system, such as represented by gears 20 and 22, to a suitable utilization means 24 which may convert or otherwise utilize the energy produced by the rotation of shaft 12.
- Utilization means 24 may be an appropriate apparatus or mechanism which may convert the rotary motion of the wind turbine into electricity or some other form of energy, for example an alternator or generator, or which may provide some other operation or function, for example pumping of a fluid from a well or operating another apparatus or mechanism.
- the main drive or power rotor 10 may include one or more generally vertically disposed elongated blades, such as the three blades 26a, 26b and 260 shown, which are fastened or coupled to shaft 12 at their extremities through an appropriate collar or other support.
- the blade or blades may be positioned around shaft 12 so as to balance each other or may be provided with appropriate counterweights, or the like to provide this balance.
- Each blade, as indicated by blade 26a, may include a central outwardly curved, arcuate portion 28 connected through straight segment 30 to an upper portion of shaft 12 and through another straight segment 32 to a lower portion of shaft 12.
- the shaft 12 may be a single solid or hollow rod, concentric rods rotatable with respect to each other, or a lattice or truss-like structure, depending on its proposed strength and size and the apparatus used to support the same.
- the troposkien shape can be approximated by a circular arc 34a, at the outermost portion of the troposkien shape, and a pair of straight segments 34b and 340 coupled between the ends of the circular are 340 and the rotation axis.
- the cable is still subjected to essentially tensile stresses with only negligible bending stresses.
- This approximation is utilized as the desired shape for the power rotor 10 blades illustrated in FIG. 1.
- FIG. 3 illustrates the differences between a troposkien-shaped curve 34 and that of a circular are 36 and a catenary-shaped curve 38.
- the catenary-shaped curve 38 approximates the shape assumed by a perfectly flexible cable of uniform density and cross section hanging freely from two fixed points. A rotated blade having either of the shapes 36 or 38 will produce greater bend ing stresses than the shape 34 or its approximation.
- the troposkien-shaped curve 34 minimizes the bending stresses produced in the vertical blade when subjected to rotary motion, while the approximation of a troposkien shape, as illustrated by the circular arc segment 34a and the straight segment sections 34b and 340 in FIG.
- the blade configuration shown may be selected to provide a close approximation of the troposkien shape to minimize bending stresses by minimizing the maximum separation distance between curve 34 and the approximation segments 34a, 34b and 340, or by otherwise adjusting the approximation shape.
- the straight segments 30 and 32 of the rotor 10 blades can be formed as structural members with little or no aerodynamic lift or torque producing effects.
- the use of the curved portion 28 as the principal or only drive section makes more effective use of wind energy as other portions of the blade, namely the straight segments, inherently produce lower torque levels from equal wind energy.
- the curved portion 28 of the blades 26a, 26b and 26c are provided with an airfoil shape or cross section transverse to the blade curvature and facing the direction of rotation of rotor 10 so as to provide a lift force when the rotor 10 turns in a wind.
- a typical cross section is shown in FIG. 4 which is selected to provide an optimum Lift-to-Drag ratio, thus increasing power producing performance.
- each blade curved airfoil section 28 will experience both positive and negative angles of attack during a revolution so that there is no apparent advantage in using a nonsymmetrieal airfoil.
- the lift for airfoils increases with increasing angle of attack up to the point where the flow separates from the airfoil, which condition may cause a stall and is generally to be avoided, the maximum lift being higher for increasing aspect ratios (the ratio of airfoil length to airfoil chord length).
- the wind felt on curved portion 28 is not simply the absolute wind speed or velocity but rather the absolute wind velocity minus vectorially the absolute blade velocity.
- the angle of attack is the angle between the relative wind speed (that is the apparent wind direction) and the chord line of the airfoil blade, the angle of attack being dependent on wind velocity, rotational blade velocity and the blade position with respect to the turbine.
- the angle of attack decreases with increasing blade velocity to wind velocity ratio. Therefore, for a sufficiently high ratio, the airfoil may never stall during a revolution while at low ratios the airfoil may be stalled over an appreciable portion of the blade revolution. At high ratios, the angle of attack decreases consequently decreasing the chord-wise component of lift.
- a symmetical airfoil shape which has a large lift-todrag ratio may be the NACA 0012 airfoil (National Advisory Committee for Aeronautics).
- Such an airfoil or similar airfoil may be formed, as shown in FIG. 4, with a high-strength backbone or tensile stress element 42 surrounded by a rigid foam core 44.
- the stress element 42 may be a steel, aluminum or fiber composite leaf or strap which is roll or otherwise formed in the desired arcuate curvature shown in FIG. 2 by curve 34a so as to act as the supporting element for the curved portion 28 and as the strength member to withstand the tensile forces produced in the blade from the rotation of rotor 10.
- the rigid foam core 44 may be formed from light-weight polyurethane or the like foam bodies, as described below. Suitable fasteners or attachments, such as hinges or pins (not shown), may be affixed to the ends of element 42 at this time for convenience in connecting the curved portion 28 of the blade to the straight segments 30 and 32.
- the rigid core 44 may be shaped in the desired airfoil configuration and suitably adhered to the stress element 42, such as by forming the core 44 by machining or the like two separate rigid foam body halves from suitable foam blades into the desired complementary shapes or sections 44a and 44b and then attaching the sections on either side of the curved stress element 42.
- the outer surface of the core 44 may then be appropriately coated, such as with a fiberglass resin skin 46 in either mat, cloth or sprayed form, to provide a smooth and erosion resistant surface around the core 44 which will protect the same from impacts by objects carried by the wind and from rain, hail, or the like.
- the skin 46 may be smoothed and polished and further coated to minimize friction and other aerodynamic losses and to provide the desired final shaping and balancing of the airfoil.
- the straight segments 30 and 32 of the blades 26a, 26b and 26c may be formed of any convenient shape which provides minimal wind resistance and which has sufficient tensile strength to support the curved portion 28 under maximum stress conditions and are attached in appropriate manner to the fasteners connected to curved portion 28.
- the straight segments may be formed with an airfoil shape to aid in providing a drive force or to minimize drag resistance to rotor 10 by bending a sheet into an airfoil shape and welding the trailing edges of the sheet, as shown by the straight segment cross section 50a in FIG. 6a.
- the straight segments may contribute very little drive force due to their position with respect to the rotors l4 and 16 and with respect to shaft 12, economy may dictate the use of a simple circular hollow or solid rod or other shape as indicated by the cross section 50b in FIG. 6b.
- the straight segments are generally made of rigid materials to support the blades when the turbine is at rest and may include suitable supports (not shown) from shaft 12 to aid in this support.
- suitable supports not shown
- rotor 10 must be driven to a blade tip speed to wind velocity ratio of about 3 before the rotor 10 blades begin to exert or provide a significant driving force sufficient to offset drag, inertia, and other losses and to accelerate the turbine to peak operating levels.
- starter rotors l4 and 16 are appropriately supported at upper and lower portions of rotor 10 coupled to the common-shaft l2 and out of registry with curved portions 28 of the drive rotor 10.
- a particularly effective starter rotor is illustrated in FIG.
- the ratio of the diameter of rotor 10 to rotors l4 and 16 should thus be sized to be from about 5 to 6 to 1, so that both the starting and drive rotors are operating at their peak performance at about the same rotational velocities. It has also been found that the starter rotors l4 and 16 may be provided with a height which is approximately the same as their diameter to minimize blocking of the most effective portion, that is the curved portion 28 of rotor 10 as indicated in FIG. 1, or they may extend from said curved portion 28 to beyond the ends of the drive rotor 10 blades.
- the vanes 52 and 54 of the starter rotors may be made in the form shown or with varible thickness in an airfoil shape to provide increased efficiency.
- the vanes 52 and 54 are preferably formed from sheet metal with the vane chamber or hollow portion forming a segment of an are having constant radius.
- the vanes of the upper starter rotor 14 should be positioned, as shown in FIG. 2, so as to be out of phase with the vanesof the lower starter rotor 16, that is, interdigitated or perpendicular one with respect to the other, so that the wind turbine is self-starting from wind coming from any direction and so as to smooth out the starting torque produced by the starting rotors.
- Other types of starter rotors. such as certain drag-type rotors may be utilized but with lower over all efficiencies and drive power. such as the type shown in FIG. 8 utilizing three buckets 62a, 62b and 620 appropriately connected to shaft 12.
- the respective rotors l0, l4 and 16 connected to the common shaft 12 may be rotated in a wind to a velocity of from 3 to 4 times that of the wind by the proper proportioning of the size and radius of the starter rotors and the power rotor, as described above.
- the starter rotors will self-start without any external application of power (other than wind) and will automatically regulate the correct airfoil starting velocity as a function of any wind velocity within the operating range and limitations of the turbine.
- the starter rotor may continue to produce driving power even at the operating velocity of the power rotor without degrading the latter operation.
- the utilization means 24 may then be operated to provide whatever power, energy or operation desired from the rotation of the wind turbine in a highly efficient, simple and low cost system.
- the blades of rotor may be modified by positioning appropriate mass or weight members at the junction between the straight segments and the curved portion of the blade, such as shown by weight members 64 and 66 in FIG. 9.
- These masses will tend to straighten out and change the arc of the curved portion of the blades of the previous troposkien description into a new are shape or curved portion 28a which increases the swept area of the rotor 10 blades.
- the airfoil portion of the blades are more vertical and thus provide a greater average radius from the rotor shaft to the drive portion of the power blade and a greater area of blade sweep. Since the blade curved portion is still in the form of an ace, the stresses within the curved portion will still be tensile but may require a higher strength joint or junction between the curve portion 28a and the straight segments of the blade.
- the blades of rotor 10 may be further modified by installing tip plates of larger dimension than the blade cross section at the junction between the curved portion 28 and the straight segments 30 and 32 of the power blades of rotor 10. These tip plates are most effective when the angles of attack are high to increase the effective aspect ratio (ratio of blade length to blade chord length) of the blade airfoil by preventing the higher pressure air inside the airfoil from spilling around the end of the airfoil into the low pressure side.
- the tip plates may be installed perpendicular to the blade as shown in FIG. 10a by tip 68a or perpendicular to the vertical axis or shaft 12 of the turbine as indicated by tip 68b in FIG. 10b. In the latter configuration, the tip plate 68b would minimize interference with the air flow over the blade itself and would not have to rotate against the air stream at the rotational velocity or rotor 10.
- a wind turbine of the type described above may increase substantially as the size of the wind turbine is increased and since wind velocities often increase with distance above ground level, it may be desirable to stack wind turbines one above the other on a common shaft 72, as indicated in FIG. II by turbines a and 70h. Because of this increase in wind velocity with height, it may also be desirable that the upper wind turbine 70b be provided with a diameter greater than lower turbines to provide a more efficient utilization of the wind energy.
- the turbines 70a and 70b (and additional stacked turbines) and their common shaft 72 may be appropriately supported at the ground and with suitable guy and collar arrangements 74a and 74b at intermediate and upper positions of the turbines. The turbines can thus be positioned so as to occupy a limited area of ground without any wind interference between turbines. It will be un derstood that these turbines may be provided with one or more similar starter rotors as described above.
- the turbines may be provided with demountable or foldable junctions or fasteners at the connection between the curved portions and straight segments of the blades and between the blades and shaft 12 so that the blades may be folded or collapsed to a much smaller diameter which will have significantly lower wind resistance and which may be suitably covered, if desired.
- the blades of rotor 10 are provided, as shown in FIG.
- a wind turbine comprising a rotatable shaft; a drive rotor having an elongated blade with a central curved portion of airfoil shape transverse to said curvature, and means for supporting said blade on said shaft with said airfoil shape directed along the path of movement of said blade for exerting significant driving force on said shaft when said curved blade portion attains a linear velocity to wind velocity ratio greater than about three; starter rotor means disposed on said shaft having vanes out of registry with the curved portion of said drive rotor for rotatably accelerating said shaft to said velocity ratio; and means coupled to said shaft for utilizing the rotation of said shaft.
- said blade supporting means includes substantially straight blade segments connecting and supporting between them said curved portion of airfoil shape.
- the turbine of claim 4 including means for separating the ends of said curved portion of said blade from said blade segments.
- the turbine of claim 4 including tip plate spoilers at each end of said curved portion of said blade.
- the turbine of claim 4 including weight members positioned at each end of said curved portion of said blade.
- said curved portion of said blade includes a high strength. elongated strap disposed at the center of said curved portion, a foam core disposed about said strap in said airfoil shape, and an outer substantially impervious skin thereover.
- said strap is bent into an arcuate shape
- said foam comprises inner and outer airfoil shape segments adhered to each other and to said strap on both sides of said strap, and the outer surface of said foam segments is coated with said impervious skin.
- said starter rotor means include a first self-starting rotor disposed above said curved portion and a second self-starting rotor disposed below said curved portion; each of said self-starting rotors including a plurality of hollow-shaped vanes facing in oppositc directions with respect to each other, and means for supporting said vanes on said shaft partially overlapping each other in a generally S-shaped fashion for directing wind caught by the hollow portion of one vane into the hollow portion of at least another vane in each rotor.
- the turbine of claim 1 including a plurality of said drive rotors supported one above the other on said shaft, each succeding drive rotor having a diameter greater than the next adjacent lower rotor.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US508016A US3918839A (en) | 1974-09-20 | 1974-09-20 | Wind turbine |
CA230,279A CA1042347A (en) | 1974-09-20 | 1975-06-26 | Wind turbine |
NL7508723A NL7508723A (nl) | 1974-09-20 | 1975-07-22 | Windmolen. |
ES439834A ES439834A1 (es) | 1974-09-20 | 1975-07-30 | Turbina de viento. |
SE7509005A SE7509005L (sv) | 1974-09-20 | 1975-08-11 | Vindturbin |
JP10130175A JPS5166951A (xx) | 1974-09-20 | 1975-08-22 | |
NO753023A NO753023L (xx) | 1974-09-20 | 1975-09-03 | |
DE19752540757 DE2540757A1 (de) | 1974-09-20 | 1975-09-12 | Windturbine |
AU85026/75A AU8502675A (en) | 1974-09-20 | 1975-09-19 | Turbine |
IT83654/75A IT1049691B (it) | 1974-09-20 | 1975-09-19 | Turbina a vento |
BE2054572A BE833581A (fr) | 1974-09-20 | 1975-09-19 | Turbine verticale d'eolienne |
FR7528845A FR2285527A1 (fr) | 1974-09-20 | 1975-09-19 | Turbine verticale d'eolienne |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US508016A US3918839A (en) | 1974-09-20 | 1974-09-20 | Wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
US3918839A true US3918839A (en) | 1975-11-11 |
Family
ID=24021039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US508016A Expired - Lifetime US3918839A (en) | 1974-09-20 | 1974-09-20 | Wind turbine |
Country Status (12)
Country | Link |
---|---|
US (1) | US3918839A (xx) |
JP (1) | JPS5166951A (xx) |
AU (1) | AU8502675A (xx) |
BE (1) | BE833581A (xx) |
CA (1) | CA1042347A (xx) |
DE (1) | DE2540757A1 (xx) |
ES (1) | ES439834A1 (xx) |
FR (1) | FR2285527A1 (xx) |
IT (1) | IT1049691B (xx) |
NL (1) | NL7508723A (xx) |
NO (1) | NO753023L (xx) |
SE (1) | SE7509005L (xx) |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD243408S (en) * | 1975-07-02 | 1977-02-15 | Mcallister Jack G | Wind driven electric generator |
US4082479A (en) * | 1975-09-25 | 1978-04-04 | Canadian Patents And Development Limited | Overspeed spoilers for vertical axis wind turbine |
US4115032A (en) * | 1977-03-07 | 1978-09-19 | Heinz Lange | Windmill rotor |
US4130380A (en) * | 1976-05-13 | 1978-12-19 | Kaiser Heinz W | Wind powered turbine and airfoil construction |
DE2829717A1 (de) * | 1977-07-07 | 1979-02-22 | Univ Gakko Hojin Tokai | Windkraftmaschine |
EP0010078A2 (en) * | 1978-10-06 | 1980-04-16 | Olle Ljungström | Wind turbine of cross-flow type |
EP0021790A1 (en) * | 1979-06-19 | 1981-01-07 | Frederick Charles Evans | Vertical-axis windmills and turbines |
US4274809A (en) * | 1978-10-11 | 1981-06-23 | P.I. Specialist Engineers Limited | Vertical axis wind turbines |
US4281965A (en) * | 1979-05-07 | 1981-08-04 | Stjernholm Dale T | Cantilever mounted wind turbine |
US4329116A (en) * | 1978-10-06 | 1982-05-11 | Olle Ljungstrom | Wind turbine of cross-flow type |
US4421458A (en) * | 1980-10-07 | 1983-12-20 | Sir Robert Mcalpine & Sons (Trade Investments) Limited | Wind powered turbine |
US4422825A (en) * | 1980-04-29 | 1983-12-27 | Boswell Fred A | Controlled wind motor |
US4457669A (en) * | 1978-10-24 | 1984-07-03 | Corry William R | Jibe mill |
US4483657A (en) * | 1982-09-29 | 1984-11-20 | Kaiser Heinz W | Wind turbine rotor assembly |
US4500257A (en) * | 1983-02-24 | 1985-02-19 | The United States Of America As Represented By The United States Department Of Energy | Wind turbine spoiler |
US4543042A (en) * | 1984-10-29 | 1985-09-24 | Heinz Lange | Windmill rotor |
US4575311A (en) * | 1981-12-21 | 1986-03-11 | Indal Technologies Inc. | Gear box assembly-upper head assembly |
US4624624A (en) * | 1984-03-26 | 1986-11-25 | Yum Nak I | Collapsible vertical wind mill |
US4718821A (en) * | 1986-06-04 | 1988-01-12 | Clancy Brian D | Windmill blade |
WO1990007647A1 (en) * | 1988-12-23 | 1990-07-12 | Lewis Feldman | Vertical axis sail bladed wind turbine |
US5101237A (en) * | 1991-03-22 | 1992-03-31 | International Business Machines Corporation | Toner metering apparatus with pressure equalization |
GB2249143A (en) * | 1990-09-27 | 1992-04-29 | Sutton Vane Vane | Vertical axis wind turbines |
US5171127A (en) * | 1988-12-23 | 1992-12-15 | Alexander Feldman | Vertical axis sail bladed wind turbine |
US5176501A (en) * | 1990-12-17 | 1993-01-05 | The University Of British Columbia | Propeller with an elastic sleeve |
US5252029A (en) * | 1991-09-13 | 1993-10-12 | Barnes Robert J | Vertical axis wind turbine |
US5405246A (en) * | 1992-03-19 | 1995-04-11 | Goldberg; Steven B. | Vertical-axis wind turbine with a twisted blade configuration |
US6023105A (en) * | 1997-03-24 | 2000-02-08 | Youssef; Wasfi | Hybrid wind-hydro power plant |
WO2003062636A1 (en) * | 2002-01-24 | 2003-07-31 | Dermond Inc. | Vertical axis windmill and self-erecting structure therefor |
KR20030065747A (ko) * | 2002-01-30 | 2003-08-09 | 원인호 | 수풍회전력의 집력화 장치 |
EP1335130A1 (en) * | 2002-02-07 | 2003-08-13 | FIORINI, Vittorio | Darrieus wind turbine |
US20030209912A1 (en) * | 2002-05-07 | 2003-11-13 | Randall Badger | Wind power electrical generating system |
US20040042895A1 (en) * | 2001-11-09 | 2004-03-04 | Kazuichi Seki | Integrated wind and water turbine and method of manufacturing the wheel |
US20040061337A1 (en) * | 2002-07-31 | 2004-04-01 | Becker William S. | Wind turbine device |
WO2004063564A1 (en) * | 2003-01-15 | 2004-07-29 | Aerolift Patent B.V. | A wind energy conversion apparatus |
US20040169375A1 (en) * | 2001-05-03 | 2004-09-02 | Aloys Wobben | Supporting construction for the stator of a ring generator of a wind turbine |
US20040206554A1 (en) * | 2000-11-22 | 2004-10-21 | Mccabe Francis J | Windmill apparatuses and methods of mounting blades to enhance their performance |
DE19835958B4 (de) * | 1998-08-08 | 2004-12-02 | Morrigan Gmbh | Durch Windkraft antreibbarer Rotor |
WO2005061173A1 (en) * | 2003-11-20 | 2005-07-07 | Gck Technology, Inc. | Multi-piece complex twisted blades and method |
US20050151376A1 (en) * | 2002-01-10 | 2005-07-14 | Hans Bernhoff | Wind power plant with vertical axix turbine |
FR2865777A1 (fr) * | 2004-02-04 | 2005-08-05 | Inst Nat Polytech Grenoble | Turbomachine hydraulique |
DE19859865B4 (de) * | 1998-12-23 | 2006-11-09 | Renate Lange | Windkonverter |
US20070018464A1 (en) * | 2003-07-29 | 2007-01-25 | Becker William S | Wind turbine device |
US20070077145A1 (en) * | 2005-09-30 | 2007-04-05 | California Energy & Power | Omni directional baffled wind energy power converter apparatus and method |
US20070104582A1 (en) * | 2005-11-04 | 2007-05-10 | Rahai Hamid R | Vertical axis wind turbine with optimized blade profile |
WO2007133538A2 (en) * | 2006-05-10 | 2007-11-22 | Viryd Technologies Inc. | Fluid energy converter |
US20080008575A1 (en) * | 2006-05-30 | 2008-01-10 | El-Sayed Mohamed E | Vertical axis wind system |
US20080085179A1 (en) * | 2006-10-06 | 2008-04-10 | California Energy & Power | Wind power converting apparatus and method |
US20080191487A1 (en) * | 2007-02-13 | 2008-08-14 | New Earth, Llc | Wind-driven electricity generation device with savonius rotor |
US20080217925A1 (en) * | 2007-03-07 | 2008-09-11 | Boone Daniel N | Vertical axis wind turbine with angled braces |
US20080267777A1 (en) * | 2007-04-27 | 2008-10-30 | Glenn Raymond Lux | Modified Darrieus Vertical Axis Turbine |
EP2028367A1 (de) * | 2007-08-03 | 2009-02-25 | HEOS Energy GmbH | Windkraftmaschine |
US20090066090A1 (en) * | 2007-03-07 | 2009-03-12 | Daniel Boone | Wind turbine based energy storage system and method using heavy weighted devices |
FR2926611A1 (fr) * | 2008-01-22 | 2009-07-24 | Expansion Dev Sarl | Aerogenerateur et systeme d'eclairage tel que l'eclairage urbain ou analogue comportant un tel aerogenerateur |
FR2926623A1 (fr) * | 2008-01-22 | 2009-07-24 | Expansion Dev Sarl | Systeme d'eclairage |
WO2009092928A1 (fr) * | 2008-01-22 | 2009-07-30 | Expansion Et Developpement | Systeme d'eclairage comprenant un aerogenerateur |
US7600963B2 (en) | 2005-08-22 | 2009-10-13 | Viryd Technologies Inc. | Fluid energy converter |
US20090261595A1 (en) * | 2008-04-17 | 2009-10-22 | Hao-Wei Poo | Apparatus for generating electric power using wind energy |
US20100054910A1 (en) * | 2008-09-04 | 2010-03-04 | California Energy & Power | Fluid turbine systems |
US20100086406A1 (en) * | 2006-09-21 | 2010-04-08 | Econcern N.V. | Vertical-axis wind turbine and method for the production thereof |
US20100124506A1 (en) * | 2008-11-14 | 2010-05-20 | Great Wind Enterprises, Inc. | Vertical axis wind turbine blade |
US20100158697A1 (en) * | 2008-12-19 | 2010-06-24 | Higher Dimension Materials, Inc. | Multi-rotor vertical axis wind turbine |
FR2944834A1 (fr) * | 2009-04-24 | 2010-10-29 | Emmanuel Robert Lucien Porcher | Eolienne hybride a axe vertical |
US20100322770A1 (en) * | 2007-12-04 | 2010-12-23 | Coriolis-Wind Inc. | Turbine blade constructions particular useful in vertical-axis wind turbines |
US7872366B2 (en) | 2009-02-09 | 2011-01-18 | Gray R O'neal | System and method for generating electricity |
US20110025071A1 (en) * | 2009-07-28 | 2011-02-03 | Windesign S.R.L. | Hybrid type vertical shaft turbine for wind power generating devices |
US20110027084A1 (en) * | 2009-07-31 | 2011-02-03 | Andrew Rekret | Novel turbine and blades |
US20110049894A1 (en) * | 2006-10-06 | 2011-03-03 | Green William M | Electricity Generating Assembly |
WO2011045820A1 (en) * | 2009-10-13 | 2011-04-21 | Roberto Bolelli | Energy conversion assembly |
US20110101694A1 (en) * | 2009-10-30 | 2011-05-05 | Cowap Stephen F | Self orienting vertical axis wind turbine |
US20110176919A1 (en) * | 2010-01-14 | 2011-07-21 | Coffey Daniel P | Wind Energy Conversion Devices |
US20110280708A1 (en) * | 2003-07-24 | 2011-11-17 | Richard Cochrane | Vertical axis wind turbins |
WO2011083345A3 (en) * | 2010-01-08 | 2012-01-05 | Myron Nouris | Wind generator of vertical axle with inhibition overspeed flaps |
CN102322396A (zh) * | 2011-06-03 | 2012-01-18 | 江重华 | 一种磁悬浮风力发电机 |
US20120039712A1 (en) * | 2009-05-08 | 2012-02-16 | Yasuo Ueno | Vertical axis wind turbine device |
WO2011150171A3 (en) * | 2010-05-27 | 2012-04-05 | Windstrip, Llc | Rotor blade for vertical axis wind turbine |
US20120119502A1 (en) * | 2010-11-15 | 2012-05-17 | Tzu-Yao Huang | Vertical wind power generator with automatically unstretchable blades |
WO2012073124A1 (es) * | 2010-12-02 | 2012-06-07 | Ecopetrol S.A. | Sistema para la generacion de energia electrica a partir de energia eolica de baja velocidad con dos sistemas de ala impulsora |
CN102493914A (zh) * | 2011-11-30 | 2012-06-13 | 上海大学 | 升力型垂直轴风力发电机的辅助风机 |
WO2012123968A3 (en) * | 2011-03-14 | 2012-11-22 | Valagam Rajagopal Raghunathan | System and method of nacelle mounting enabling stacking/cascading of airfoil blade(s) in wind turbine |
WO2012176048A3 (en) * | 2011-06-20 | 2013-05-02 | En-Eco S.P.A. | Improved vertical-axis aerogenerator |
US20130168967A1 (en) * | 2011-07-22 | 2013-07-04 | Industrias Technoflex, S.A. | Vertical axis wind turbine |
US20130216379A1 (en) * | 2012-02-21 | 2013-08-22 | Clean Green Energy LLC | Fluid driven vertical axis turbine |
EP2587051A3 (en) * | 2005-05-13 | 2013-09-18 | The Regents of the University of California | Vertical axis wind turbines |
US8678768B2 (en) * | 2009-05-04 | 2014-03-25 | Seab Energy Ltd. | Vertical axis turbine |
US8864440B2 (en) | 2010-11-15 | 2014-10-21 | Sauer Energy, Incc. | Wind sail turbine |
US8905704B2 (en) | 2010-11-15 | 2014-12-09 | Sauer Energy, Inc. | Wind sail turbine |
US20140367972A1 (en) * | 2012-02-03 | 2014-12-18 | Yeong Won Rhee | Wind energy electricity generator for low wind velocity |
US20150086366A1 (en) * | 2013-09-24 | 2015-03-26 | Robert Jeffrey Barnes | Wind turbine blade and blade hub |
US20150118053A1 (en) * | 2013-10-25 | 2015-04-30 | Abundant Energy, LLC | High efficiency vertical axis wind turbine apparatus |
US9046073B2 (en) | 2009-10-26 | 2015-06-02 | Glenn Raymond Lux | Lift-type vertical axis turbine |
US9243611B2 (en) | 2009-09-18 | 2016-01-26 | Hanjun Song | Vertical axis wind turbine blade and its wind rotor |
US20160169196A1 (en) * | 2013-07-12 | 2016-06-16 | Treecube S.R.L. | Vertical axis wind turbine |
CN106121911A (zh) * | 2016-08-25 | 2016-11-16 | 中冶华天工程技术有限公司 | 一种流线型采风装置 |
US20170045034A1 (en) * | 2014-08-12 | 2017-02-16 | Occasion Renewable Resources Company Limited | Device and system for wind power generation |
US20190360458A1 (en) * | 2018-05-23 | 2019-11-28 | William Olen Fortner | Vertical axis wind turbines with v-cup shaped vanes, multi-turbine assemblies and related methods and systems |
WO2020100133A1 (en) * | 2018-11-15 | 2020-05-22 | Mark Daniel Farb | Savonius wind turbine ratios |
US20210348595A1 (en) * | 2020-05-11 | 2021-11-11 | XFlow Energy Company | Fluid turbine |
WO2021256912A1 (ru) * | 2020-06-19 | 2021-12-23 | Жандос Ескендiрұлы БАЙЖҰМА | Ветротурбина дарье с системой запуска |
US11231084B2 (en) * | 2017-12-12 | 2022-01-25 | Martin W. Stryker | Foldable flywheel mechanism to facilitate energy generation |
EP3805555A4 (en) * | 2018-06-08 | 2022-03-09 | Global Energy Co., Ltd. | WIND WHEEL WITH VERTICAL AXIS, ELONGIBLE BLADE FOR A WIND WHEEL WITH VERTICAL AXIS AND DEVICE FOR GENERATING WIND POWER |
US11313348B2 (en) | 2019-04-17 | 2022-04-26 | University Of Maryland, Baltimore County | Hybrid vertical axis turbine apparatus |
US11859716B2 (en) | 2019-04-17 | 2024-01-02 | University Of Maryland, Baltimore County | Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490542U (xx) * | 1977-12-09 | 1979-06-27 | ||
FR2452008A1 (fr) * | 1979-03-20 | 1980-10-17 | Chaillou Jean Claude | Eolienne |
JPS56143367A (en) * | 1980-04-10 | 1981-11-09 | Yoshihiro Seki | Self starting high speed windmill of vertical shaft type |
FR2488658A1 (fr) * | 1980-08-13 | 1982-02-19 | Bourriaud Michel | Centrale eolienne a turbines verticales |
FR2492005A1 (fr) * | 1980-10-15 | 1982-04-16 | Even Daniel | Aeromoteur a pales verticales profilees auto-orientables |
DE3137966A1 (de) * | 1981-09-24 | 1983-03-31 | Braun, Juan, 4710 Herbesthal | "windenergieerntevorrichtung" |
FR2583823B2 (fr) * | 1982-10-28 | 1988-11-25 | Lepoix Louis | Turbine de captation de l'energie de fluides en mouvement, en particulier de l'energie eolienne |
FR2574490B2 (fr) * | 1982-10-28 | 1988-12-30 | Lepoix Louis | Turbine de captation de l'energie de fluides en mouvement, en particulier de l'energie eolienne |
EP0188167B1 (fr) * | 1984-12-07 | 1989-12-13 | Louis L. Lepoix | Turbine de captation de l'énergie de fluides en mouvement, en particulier de l'énergie éolienne |
EP0364020B1 (de) * | 1988-10-03 | 1992-12-30 | Josef Moser | Windgetriebener Rotor |
DE9015945U1 (de) * | 1990-11-23 | 1992-04-02 | Dunker, Petra Christa Gretel, geb. Rosema, 4030 Ratingen | Windkraftmaschine |
DE4334910A1 (de) * | 1993-10-13 | 1995-04-20 | Hans Erich Gunder | Rotationsflügel mit aerodynamischem oder hydrodynamischem Antrieb und Leistungssteuerung |
DE19532880C1 (de) * | 1995-09-06 | 1996-11-07 | Rolf Hoericht | Windkraftanlage zur Erzeugung elektrischer Energie |
FR2857791B1 (fr) | 2003-07-15 | 2005-09-16 | Legrand Sa | Accessoire pour goulotte a verrouillage automatique |
KR100707132B1 (ko) * | 2006-05-26 | 2007-04-13 | 나경자 | 풍력발전기용 회전날개 |
WO2008047238A2 (en) * | 2006-08-09 | 2008-04-24 | John Sinclair Mitchell | Vertical axis wind turbine system |
CN104879272B (zh) * | 2015-05-20 | 2018-02-09 | 上海交通大学 | 具有新型可变基迭线的垂直轴风力机弯曲叶片 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1100332A (en) * | 1912-09-03 | 1914-06-16 | James B Smith | Windmill. |
US1697574A (en) * | 1924-12-12 | 1929-01-01 | Savonius Sigurd Johannes | Rotor adapted to be driven by wind or flowing water |
US1744924A (en) * | 1925-04-13 | 1930-01-28 | Charles E Sargent | Wind motor |
US1835018A (en) * | 1925-10-09 | 1931-12-08 | Leblanc Vickers Maurice Sa | Turbine having its rotating shaft transverse to the flow of the current |
US2020900A (en) * | 1934-01-18 | 1935-11-12 | Wilbur E Methvin | Stream motor |
-
1974
- 1974-09-20 US US508016A patent/US3918839A/en not_active Expired - Lifetime
-
1975
- 1975-06-26 CA CA230,279A patent/CA1042347A/en not_active Expired
- 1975-07-22 NL NL7508723A patent/NL7508723A/xx unknown
- 1975-07-30 ES ES439834A patent/ES439834A1/es not_active Expired
- 1975-08-11 SE SE7509005A patent/SE7509005L/xx not_active Application Discontinuation
- 1975-08-22 JP JP10130175A patent/JPS5166951A/ja active Pending
- 1975-09-03 NO NO753023A patent/NO753023L/no unknown
- 1975-09-12 DE DE19752540757 patent/DE2540757A1/de active Pending
- 1975-09-19 AU AU85026/75A patent/AU8502675A/en not_active Expired
- 1975-09-19 FR FR7528845A patent/FR2285527A1/fr active Granted
- 1975-09-19 BE BE2054572A patent/BE833581A/xx unknown
- 1975-09-19 IT IT83654/75A patent/IT1049691B/it active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1100332A (en) * | 1912-09-03 | 1914-06-16 | James B Smith | Windmill. |
US1697574A (en) * | 1924-12-12 | 1929-01-01 | Savonius Sigurd Johannes | Rotor adapted to be driven by wind or flowing water |
US1744924A (en) * | 1925-04-13 | 1930-01-28 | Charles E Sargent | Wind motor |
US1835018A (en) * | 1925-10-09 | 1931-12-08 | Leblanc Vickers Maurice Sa | Turbine having its rotating shaft transverse to the flow of the current |
US2020900A (en) * | 1934-01-18 | 1935-11-12 | Wilbur E Methvin | Stream motor |
Cited By (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD243408S (en) * | 1975-07-02 | 1977-02-15 | Mcallister Jack G | Wind driven electric generator |
US4082479A (en) * | 1975-09-25 | 1978-04-04 | Canadian Patents And Development Limited | Overspeed spoilers for vertical axis wind turbine |
US4130380A (en) * | 1976-05-13 | 1978-12-19 | Kaiser Heinz W | Wind powered turbine and airfoil construction |
US4115032A (en) * | 1977-03-07 | 1978-09-19 | Heinz Lange | Windmill rotor |
US4247252A (en) * | 1977-07-07 | 1981-01-27 | Gakko Hojin Tokai University | Vertical axis wind turbine |
DE2829717A1 (de) * | 1977-07-07 | 1979-02-22 | Univ Gakko Hojin Tokai | Windkraftmaschine |
EP0010078A2 (en) * | 1978-10-06 | 1980-04-16 | Olle Ljungström | Wind turbine of cross-flow type |
EP0010078A3 (en) * | 1978-10-06 | 1980-05-28 | Olle Ljungstrom | Wind turbine of cross-flow type |
US4325674A (en) * | 1978-10-06 | 1982-04-20 | Olle Ljungstrom | Wind turbine of cross-flow type |
US4329116A (en) * | 1978-10-06 | 1982-05-11 | Olle Ljungstrom | Wind turbine of cross-flow type |
US4274809A (en) * | 1978-10-11 | 1981-06-23 | P.I. Specialist Engineers Limited | Vertical axis wind turbines |
US4457669A (en) * | 1978-10-24 | 1984-07-03 | Corry William R | Jibe mill |
US4281965A (en) * | 1979-05-07 | 1981-08-04 | Stjernholm Dale T | Cantilever mounted wind turbine |
EP0021790A1 (en) * | 1979-06-19 | 1981-01-07 | Frederick Charles Evans | Vertical-axis windmills and turbines |
US4422825A (en) * | 1980-04-29 | 1983-12-27 | Boswell Fred A | Controlled wind motor |
US4421458A (en) * | 1980-10-07 | 1983-12-20 | Sir Robert Mcalpine & Sons (Trade Investments) Limited | Wind powered turbine |
US4575311A (en) * | 1981-12-21 | 1986-03-11 | Indal Technologies Inc. | Gear box assembly-upper head assembly |
US4483657A (en) * | 1982-09-29 | 1984-11-20 | Kaiser Heinz W | Wind turbine rotor assembly |
US4500257A (en) * | 1983-02-24 | 1985-02-19 | The United States Of America As Represented By The United States Department Of Energy | Wind turbine spoiler |
US4624624A (en) * | 1984-03-26 | 1986-11-25 | Yum Nak I | Collapsible vertical wind mill |
US4543042A (en) * | 1984-10-29 | 1985-09-24 | Heinz Lange | Windmill rotor |
US4718821A (en) * | 1986-06-04 | 1988-01-12 | Clancy Brian D | Windmill blade |
WO1990007647A1 (en) * | 1988-12-23 | 1990-07-12 | Lewis Feldman | Vertical axis sail bladed wind turbine |
US5171127A (en) * | 1988-12-23 | 1992-12-15 | Alexander Feldman | Vertical axis sail bladed wind turbine |
US5183386A (en) * | 1988-12-23 | 1993-02-02 | Lewis Feldman | Vertical axis sail bladed wind turbine |
GB2249143A (en) * | 1990-09-27 | 1992-04-29 | Sutton Vane Vane | Vertical axis wind turbines |
US5176501A (en) * | 1990-12-17 | 1993-01-05 | The University Of British Columbia | Propeller with an elastic sleeve |
US5101237A (en) * | 1991-03-22 | 1992-03-31 | International Business Machines Corporation | Toner metering apparatus with pressure equalization |
US5252029A (en) * | 1991-09-13 | 1993-10-12 | Barnes Robert J | Vertical axis wind turbine |
US5405246A (en) * | 1992-03-19 | 1995-04-11 | Goldberg; Steven B. | Vertical-axis wind turbine with a twisted blade configuration |
US6023105A (en) * | 1997-03-24 | 2000-02-08 | Youssef; Wasfi | Hybrid wind-hydro power plant |
DE19835958B4 (de) * | 1998-08-08 | 2004-12-02 | Morrigan Gmbh | Durch Windkraft antreibbarer Rotor |
DE19859865B4 (de) * | 1998-12-23 | 2006-11-09 | Renate Lange | Windkonverter |
US7267530B2 (en) * | 2000-11-22 | 2007-09-11 | Mccabe Francis J | Windmill apparatuses and methods of mounting blades to enhance their performance |
US20040206554A1 (en) * | 2000-11-22 | 2004-10-21 | Mccabe Francis J | Windmill apparatuses and methods of mounting blades to enhance their performance |
US7795751B2 (en) * | 2001-05-03 | 2010-09-14 | Aloys Wobben | Wind power installation |
US20040169375A1 (en) * | 2001-05-03 | 2004-09-02 | Aloys Wobben | Supporting construction for the stator of a ring generator of a wind turbine |
US6913435B2 (en) * | 2001-11-09 | 2005-07-05 | Tokai University Educational System | Integrated vane for use in wind or water and process for producing same |
US20040042895A1 (en) * | 2001-11-09 | 2004-03-04 | Kazuichi Seki | Integrated wind and water turbine and method of manufacturing the wheel |
US20050232779A1 (en) * | 2001-11-09 | 2005-10-20 | Kazuichi Seki | Integrated vane for use in wind or water and process for producing the same |
US7126235B2 (en) * | 2002-01-10 | 2006-10-24 | Swedish Vertical Wind Ab | Wind power electric device and method |
US20050151376A1 (en) * | 2002-01-10 | 2005-07-14 | Hans Bernhoff | Wind power plant with vertical axix turbine |
US6979170B2 (en) | 2002-01-24 | 2005-12-27 | Dermond Inc. | Vertical axis windmill and self-erecting structure therefor |
US20040120820A1 (en) * | 2002-01-24 | 2004-06-24 | Jacquelin Dery | Vertical axis windmill and self-erecting structure therefor |
WO2003062636A1 (en) * | 2002-01-24 | 2003-07-31 | Dermond Inc. | Vertical axis windmill and self-erecting structure therefor |
KR20030065747A (ko) * | 2002-01-30 | 2003-08-09 | 원인호 | 수풍회전력의 집력화 장치 |
EP1335130A1 (en) * | 2002-02-07 | 2003-08-13 | FIORINI, Vittorio | Darrieus wind turbine |
US20030209912A1 (en) * | 2002-05-07 | 2003-11-13 | Randall Badger | Wind power electrical generating system |
US20040061337A1 (en) * | 2002-07-31 | 2004-04-01 | Becker William S. | Wind turbine device |
US7132760B2 (en) | 2002-07-31 | 2006-11-07 | Becker William S | Wind turbine device |
US8105010B2 (en) | 2003-01-15 | 2012-01-31 | Wind En Water Technologie Holding B.V. | Wind energy conversion apparatus |
WO2004063564A1 (en) * | 2003-01-15 | 2004-07-29 | Aerolift Patent B.V. | A wind energy conversion apparatus |
US20100158692A1 (en) * | 2003-01-15 | 2010-06-24 | Wind En Water Technologie Holding B.V. | Wind energy conversion apparatus |
US20060099077A1 (en) * | 2003-01-15 | 2006-05-11 | Frederikus Van De Klippe | Wind energy conversion apparatus |
US20110280708A1 (en) * | 2003-07-24 | 2011-11-17 | Richard Cochrane | Vertical axis wind turbins |
US20070018464A1 (en) * | 2003-07-29 | 2007-01-25 | Becker William S | Wind turbine device |
US20080273974A1 (en) * | 2003-07-29 | 2008-11-06 | Becker William S | Wind turbine device |
US7362004B2 (en) | 2003-07-29 | 2008-04-22 | Becker William S | Wind turbine device |
WO2005061173A1 (en) * | 2003-11-20 | 2005-07-07 | Gck Technology, Inc. | Multi-piece complex twisted blades and method |
WO2005075819A1 (fr) * | 2004-02-04 | 2005-08-18 | Institut National Polytechnique De Grenoble | Turbomachine hydraulique |
FR2865777A1 (fr) * | 2004-02-04 | 2005-08-05 | Inst Nat Polytech Grenoble | Turbomachine hydraulique |
EP2587051A3 (en) * | 2005-05-13 | 2013-09-18 | The Regents of the University of California | Vertical axis wind turbines |
US7600963B2 (en) | 2005-08-22 | 2009-10-13 | Viryd Technologies Inc. | Fluid energy converter |
US7287954B2 (en) | 2005-09-30 | 2007-10-30 | California Energy & Power | Omni directional baffled wind energy power converter apparatus and method |
US20070077145A1 (en) * | 2005-09-30 | 2007-04-05 | California Energy & Power | Omni directional baffled wind energy power converter apparatus and method |
US7393177B2 (en) | 2005-11-04 | 2008-07-01 | Rahai Hamid R | Vertical axis wind turbine with optimized blade profile |
US20070104582A1 (en) * | 2005-11-04 | 2007-05-10 | Rahai Hamid R | Vertical axis wind turbine with optimized blade profile |
WO2007133538A2 (en) * | 2006-05-10 | 2007-11-22 | Viryd Technologies Inc. | Fluid energy converter |
WO2007133538A3 (en) * | 2006-05-10 | 2008-08-21 | Fallbrook Technologies Inc | Fluid energy converter |
US7948111B2 (en) | 2006-05-30 | 2011-05-24 | Analytical Design Service Corporation | Vertical axis wind system |
US20080008575A1 (en) * | 2006-05-30 | 2008-01-10 | El-Sayed Mohamed E | Vertical axis wind system |
US20100007144A1 (en) * | 2006-05-30 | 2010-01-14 | Analytical Design Service Corporation | Vertical axis wind system |
US8105034B2 (en) | 2006-09-21 | 2012-01-31 | Ecofys Investments B.V. | Vertical-axis wind turbine and method for the production thereof |
US20100086406A1 (en) * | 2006-09-21 | 2010-04-08 | Econcern N.V. | Vertical-axis wind turbine and method for the production thereof |
US20080085179A1 (en) * | 2006-10-06 | 2008-04-10 | California Energy & Power | Wind power converting apparatus and method |
US20110049894A1 (en) * | 2006-10-06 | 2011-03-03 | Green William M | Electricity Generating Assembly |
US8084881B2 (en) * | 2007-02-13 | 2011-12-27 | Helix Wind, Incorporated | Wind-driven electricity generation device with segmented rotor |
US8779616B2 (en) * | 2007-02-13 | 2014-07-15 | Ken Morgan | Wind-driven electricity generation device with segmented rotor |
US7948110B2 (en) * | 2007-02-13 | 2011-05-24 | Ken Morgan | Wind-driven electricity generation device with Savonius rotor |
US20080191487A1 (en) * | 2007-02-13 | 2008-08-14 | New Earth, Llc | Wind-driven electricity generation device with savonius rotor |
US20120068467A1 (en) * | 2007-02-13 | 2012-03-22 | Ken Morgan | Wind-driven electricity generation device with segmented rotor |
US20110121580A1 (en) * | 2007-02-13 | 2011-05-26 | Ken Morgan | Wind-driven electricity generation device with segmented rotor |
US20080217925A1 (en) * | 2007-03-07 | 2008-09-11 | Boone Daniel N | Vertical axis wind turbine with angled braces |
US8164210B2 (en) * | 2007-03-07 | 2012-04-24 | Boone Daniel N | Vertical axis wind turbine with angled braces |
US20090066090A1 (en) * | 2007-03-07 | 2009-03-12 | Daniel Boone | Wind turbine based energy storage system and method using heavy weighted devices |
US7944075B2 (en) * | 2007-03-07 | 2011-05-17 | Daniel Boone | Wind turbine based energy storage system and method using heavy weighted devices |
US8215913B2 (en) | 2007-04-27 | 2012-07-10 | Glenn Raymond Lux | Modified darrieus vertical axis turbine |
WO2008131519A1 (en) * | 2007-04-27 | 2008-11-06 | Glenn Raymond Lux | Modified darrieus vertical axis turbine |
US20080267777A1 (en) * | 2007-04-27 | 2008-10-30 | Glenn Raymond Lux | Modified Darrieus Vertical Axis Turbine |
EP2028367A1 (de) * | 2007-08-03 | 2009-02-25 | HEOS Energy GmbH | Windkraftmaschine |
US20100322770A1 (en) * | 2007-12-04 | 2010-12-23 | Coriolis-Wind Inc. | Turbine blade constructions particular useful in vertical-axis wind turbines |
WO2009092928A1 (fr) * | 2008-01-22 | 2009-07-30 | Expansion Et Developpement | Systeme d'eclairage comprenant un aerogenerateur |
WO2009092867A1 (fr) * | 2008-01-22 | 2009-07-30 | Expansion Et Developpement | Aerogenerateur et systeme d'eclairage tel que l'eclairage urbain ou analogue comportant un tel aerogenerateur |
FR2926611A1 (fr) * | 2008-01-22 | 2009-07-24 | Expansion Dev Sarl | Aerogenerateur et systeme d'eclairage tel que l'eclairage urbain ou analogue comportant un tel aerogenerateur |
FR2926623A1 (fr) * | 2008-01-22 | 2009-07-24 | Expansion Dev Sarl | Systeme d'eclairage |
US20090261595A1 (en) * | 2008-04-17 | 2009-10-22 | Hao-Wei Poo | Apparatus for generating electric power using wind energy |
US7744338B2 (en) | 2008-09-04 | 2010-06-29 | California Energy & Power | Fluid turbine systems |
US8297910B2 (en) | 2008-09-04 | 2012-10-30 | California Energy & Power | Fluid turbine systems |
US20100054910A1 (en) * | 2008-09-04 | 2010-03-04 | California Energy & Power | Fluid turbine systems |
US20100196153A1 (en) * | 2008-09-04 | 2010-08-05 | California Energy & Power | Fluid turbine systems |
US10669985B2 (en) | 2008-09-04 | 2020-06-02 | California Energy & Power | Fluid turbine systems |
US20100124506A1 (en) * | 2008-11-14 | 2010-05-20 | Great Wind Enterprises, Inc. | Vertical axis wind turbine blade |
US20100158697A1 (en) * | 2008-12-19 | 2010-06-24 | Higher Dimension Materials, Inc. | Multi-rotor vertical axis wind turbine |
US7875992B2 (en) | 2009-02-09 | 2011-01-25 | Gray R O'neal | System and method for generating electricity |
US7872366B2 (en) | 2009-02-09 | 2011-01-18 | Gray R O'neal | System and method for generating electricity |
US7948109B2 (en) | 2009-02-09 | 2011-05-24 | Grayhawke Applied Technologies | System and method for generating electricity |
FR2944834A1 (fr) * | 2009-04-24 | 2010-10-29 | Emmanuel Robert Lucien Porcher | Eolienne hybride a axe vertical |
US8678768B2 (en) * | 2009-05-04 | 2014-03-25 | Seab Energy Ltd. | Vertical axis turbine |
US20120039712A1 (en) * | 2009-05-08 | 2012-02-16 | Yasuo Ueno | Vertical axis wind turbine device |
US20110025071A1 (en) * | 2009-07-28 | 2011-02-03 | Windesign S.R.L. | Hybrid type vertical shaft turbine for wind power generating devices |
US20110027084A1 (en) * | 2009-07-31 | 2011-02-03 | Andrew Rekret | Novel turbine and blades |
US9243611B2 (en) | 2009-09-18 | 2016-01-26 | Hanjun Song | Vertical axis wind turbine blade and its wind rotor |
CN102630275A (zh) * | 2009-10-13 | 2012-08-08 | 罗伯托·博莱利 | 能量转换组件 |
WO2011045820A1 (en) * | 2009-10-13 | 2011-04-21 | Roberto Bolelli | Energy conversion assembly |
US9046073B2 (en) | 2009-10-26 | 2015-06-02 | Glenn Raymond Lux | Lift-type vertical axis turbine |
US8410627B2 (en) | 2009-10-30 | 2013-04-02 | Stephen F. Cowap | Self orienting vertical axis wind turbine |
US20110101694A1 (en) * | 2009-10-30 | 2011-05-05 | Cowap Stephen F | Self orienting vertical axis wind turbine |
WO2011083345A3 (en) * | 2010-01-08 | 2012-01-05 | Myron Nouris | Wind generator of vertical axle with inhibition overspeed flaps |
US10253755B2 (en) | 2010-01-14 | 2019-04-09 | Daniel P. Coffey | Wind energy conversion devices |
US8257018B2 (en) | 2010-01-14 | 2012-09-04 | Coffey Daniel P | Wind energy conversion devices |
WO2011088377A3 (en) * | 2010-01-14 | 2012-01-12 | Coffey Daniel P | Wind energy conversion device |
US20110176919A1 (en) * | 2010-01-14 | 2011-07-21 | Coffey Daniel P | Wind Energy Conversion Devices |
US9482204B2 (en) * | 2010-05-27 | 2016-11-01 | Windstrip Llc | Rotor blade for vertical axis wind turbine |
US20130287591A1 (en) * | 2010-05-27 | 2013-10-31 | Windstrip Llc | Rotor blade for vertical axis wind turbine |
WO2011150171A3 (en) * | 2010-05-27 | 2012-04-05 | Windstrip, Llc | Rotor blade for vertical axis wind turbine |
US8450872B2 (en) * | 2010-11-15 | 2013-05-28 | Hiwin Mikrosystem Corp. | Vertical wind power generator with automatically unstretchable blades |
US8905704B2 (en) | 2010-11-15 | 2014-12-09 | Sauer Energy, Inc. | Wind sail turbine |
US20120119502A1 (en) * | 2010-11-15 | 2012-05-17 | Tzu-Yao Huang | Vertical wind power generator with automatically unstretchable blades |
US8864440B2 (en) | 2010-11-15 | 2014-10-21 | Sauer Energy, Incc. | Wind sail turbine |
WO2012073124A1 (es) * | 2010-12-02 | 2012-06-07 | Ecopetrol S.A. | Sistema para la generacion de energia electrica a partir de energia eolica de baja velocidad con dos sistemas de ala impulsora |
EP2672107A4 (en) * | 2010-12-02 | 2015-04-22 | Ecopetrol Sa | SYSTEM FOR GENERATING ELECTRIC ENERGY FROM WIND ENERGY WITH LOW SPEED BY MEANS OF TWO SYSTEMS OF DRIVE SHOVELS |
US8994207B2 (en) | 2010-12-02 | 2015-03-31 | Universidad Pontificia Bolivariana | System for generating electrical energy from low speed wind energy by means of two systems of drive blades |
EP2672107A1 (en) * | 2010-12-02 | 2013-12-11 | Ecopetrol S.A. | System for generating electrical energy from low speed wind energy by means of two systems of drive blades |
CN103443451A (zh) * | 2010-12-02 | 2013-12-11 | 哥伦比亚国家石油公司 | 借助两个驱动叶片的系统从低速风能生成电能的系统 |
WO2012123968A3 (en) * | 2011-03-14 | 2012-11-22 | Valagam Rajagopal Raghunathan | System and method of nacelle mounting enabling stacking/cascading of airfoil blade(s) in wind turbine |
CN102322396A (zh) * | 2011-06-03 | 2012-01-18 | 江重华 | 一种磁悬浮风力发电机 |
WO2012176048A3 (en) * | 2011-06-20 | 2013-05-02 | En-Eco S.P.A. | Improved vertical-axis aerogenerator |
US8680705B2 (en) * | 2011-07-22 | 2014-03-25 | Industrias Tecnoflex, S.A. | Vertical axis wind turbine |
US20130168967A1 (en) * | 2011-07-22 | 2013-07-04 | Industrias Technoflex, S.A. | Vertical axis wind turbine |
CN102493914A (zh) * | 2011-11-30 | 2012-06-13 | 上海大学 | 升力型垂直轴风力发电机的辅助风机 |
CN102493914B (zh) * | 2011-11-30 | 2013-12-25 | 上海大学 | 升力型垂直轴风力发电机的辅助风机 |
US20140367972A1 (en) * | 2012-02-03 | 2014-12-18 | Yeong Won Rhee | Wind energy electricity generator for low wind velocity |
US9347428B2 (en) * | 2012-02-03 | 2016-05-24 | Ji Eun Lee | Wind energy electricity generator for low wind velocity |
US9970410B2 (en) | 2012-02-21 | 2018-05-15 | Clean Green Energy LLC | Installation and erection assembly for an elongated structure |
US10808677B2 (en) | 2012-02-21 | 2020-10-20 | Clean Green Energy LLC | Fluid driven vertical axis turbine |
US20130216379A1 (en) * | 2012-02-21 | 2013-08-22 | Clean Green Energy LLC | Fluid driven vertical axis turbine |
US8985948B2 (en) * | 2012-02-21 | 2015-03-24 | Clean Green Energy LLC | Fluid driven vertical axis turbine |
US20160169196A1 (en) * | 2013-07-12 | 2016-06-16 | Treecube S.R.L. | Vertical axis wind turbine |
US20150086366A1 (en) * | 2013-09-24 | 2015-03-26 | Robert Jeffrey Barnes | Wind turbine blade and blade hub |
US20150118053A1 (en) * | 2013-10-25 | 2015-04-30 | Abundant Energy, LLC | High efficiency vertical axis wind turbine apparatus |
US20170045034A1 (en) * | 2014-08-12 | 2017-02-16 | Occasion Renewable Resources Company Limited | Device and system for wind power generation |
CN106121911A (zh) * | 2016-08-25 | 2016-11-16 | 中冶华天工程技术有限公司 | 一种流线型采风装置 |
CN106121911B (zh) * | 2016-08-25 | 2019-07-26 | 中冶华天工程技术有限公司 | 一种流线型采风装置 |
US11231084B2 (en) * | 2017-12-12 | 2022-01-25 | Martin W. Stryker | Foldable flywheel mechanism to facilitate energy generation |
US20190360458A1 (en) * | 2018-05-23 | 2019-11-28 | William Olen Fortner | Vertical axis wind turbines with v-cup shaped vanes, multi-turbine assemblies and related methods and systems |
US10975839B2 (en) * | 2018-05-23 | 2021-04-13 | William Olen Fortner | Vertical axis wind turbines with V-cup shaped vanes, multi-turbine assemblies and related methods and systems |
EP3805555A4 (en) * | 2018-06-08 | 2022-03-09 | Global Energy Co., Ltd. | WIND WHEEL WITH VERTICAL AXIS, ELONGIBLE BLADE FOR A WIND WHEEL WITH VERTICAL AXIS AND DEVICE FOR GENERATING WIND POWER |
US11486353B2 (en) | 2018-06-08 | 2022-11-01 | Global Energy Co., Ltd. | Vertical blade having a vertical main part and an inwardly inclined part and a vertical shaft wind turbine using the vertical blade |
US11635058B2 (en) | 2018-06-08 | 2023-04-25 | Global Energy Co. Ltd. | Vertical blade having a vertical main part and inwardly inclined parts and a vertical shaft wind turbine using the vertical blade |
CN112912621A (zh) * | 2018-11-15 | 2021-06-04 | 马克·丹尼尔·法伯 | 萨沃纽斯风力涡轮机比例 |
WO2020100133A1 (en) * | 2018-11-15 | 2020-05-22 | Mark Daniel Farb | Savonius wind turbine ratios |
EP3880957A4 (en) * | 2018-11-15 | 2022-08-17 | Mark Daniel Farb | SAVONIUS WIND TURBINE RATIOS |
US11313348B2 (en) | 2019-04-17 | 2022-04-26 | University Of Maryland, Baltimore County | Hybrid vertical axis turbine apparatus |
US11859716B2 (en) | 2019-04-17 | 2024-01-02 | University Of Maryland, Baltimore County | Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters |
US20210348595A1 (en) * | 2020-05-11 | 2021-11-11 | XFlow Energy Company | Fluid turbine |
WO2021256912A1 (ru) * | 2020-06-19 | 2021-12-23 | Жандос Ескендiрұлы БАЙЖҰМА | Ветротурбина дарье с системой запуска |
Also Published As
Publication number | Publication date |
---|---|
AU8502675A (en) | 1977-03-24 |
ES439834A1 (es) | 1977-04-16 |
CA1042347A (en) | 1978-11-14 |
NL7508723A (nl) | 1976-03-23 |
NO753023L (xx) | 1976-03-23 |
IT1049691B (it) | 1981-02-10 |
FR2285527B3 (xx) | 1978-05-05 |
JPS5166951A (xx) | 1976-06-10 |
FR2285527A1 (fr) | 1976-04-16 |
BE833581A (fr) | 1976-01-16 |
DE2540757A1 (de) | 1976-04-08 |
SE7509005L (sv) | 1976-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3918839A (en) | Wind turbine | |
US4260325A (en) | Panemone wind turbine | |
US5405246A (en) | Vertical-axis wind turbine with a twisted blade configuration | |
US4832569A (en) | Governed vane wind turbine | |
CA1252392A (en) | Wind turbine system using a savonius type rotor | |
CA2608425C (en) | Vertical axis wind turbines | |
EP1649163B1 (en) | Vertical-axis wind turbine | |
US8562298B2 (en) | Vertical-axis wind turbine | |
US4830570A (en) | Wind turbine system using twin savonius-type rotors | |
US9328717B1 (en) | Golden ratio axial flow apparatus | |
US20130071228A1 (en) | Stationary co-axial multi-rotor wind turbine supported by continuous central driveshaft | |
US20050169742A1 (en) | Wind turbine | |
US20150159628A1 (en) | Offshore contra rotor wind turbine system | |
US11236724B2 (en) | Vertical axis wind turbine | |
US20120183407A1 (en) | Vertical-axis wind turbine | |
US4177009A (en) | Rotor assembly | |
US8137052B1 (en) | Wind turbine generator | |
EP3613980A1 (en) | Vertical-shaft turbine | |
CN107646072B (zh) | 水平轴转绳形张紧叶片流体涡轮机 | |
US20100202869A1 (en) | Hubless windmill | |
CA2532597A1 (en) | Vertical axis fluid actuated turbine | |
TW202233958A (zh) | 能夠對移動體進行設置的風力發電裝置 | |
RU2802564C1 (ru) | Ветросолнечная энергетическая установка | |
RU2157920C2 (ru) | Ветроэлектростанция | |
JPS5815766A (ja) | セイルウイングを用いた垂直軸形風車 |