US3918248A - Mechanism for driving a spinning rotor of the open-end spinning apparatus - Google Patents
Mechanism for driving a spinning rotor of the open-end spinning apparatus Download PDFInfo
- Publication number
- US3918248A US3918248A US435950A US43595074A US3918248A US 3918248 A US3918248 A US 3918248A US 435950 A US435950 A US 435950A US 43595074 A US43595074 A US 43595074A US 3918248 A US3918248 A US 3918248A
- Authority
- US
- United States
- Prior art keywords
- rotor
- spinning
- pneumatic
- cylindrical
- rotor shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009987 spinning Methods 0.000 title claims abstract description 80
- 238000007383 open-end spinning Methods 0.000 title claims abstract description 22
- 238000007599 discharging Methods 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 3
- 239000000428 dust Substances 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 244000025221 Humulus lupulus Species 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0681—Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
- F16C32/0696—Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for both radial and axial load
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H4/00—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
- D01H4/04—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
- D01H4/08—Rotor spinning, i.e. the running surface being provided by a rotor
- D01H4/12—Rotor bearings; Arrangements for driving or stopping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2340/00—Apparatus for treating textiles
- F16C2340/18—Apparatus for spinning or twisting
Definitions
- ABSTRACT Forelgn Application Pnority Data An improved mechanism is provided for driving the Jan. 27, 1973 Japan 48-11409 i i rotor f h i i i f an OPerHmd Jan. 30, 1973 Japan 48-12359 Spinning apparatus
- a pneumatic bearing is utilized for supporting the rotor shaft. in the preferred mecha- [52] US. Cl.2 57/101; 57/58.89 rnism a pneumatic turbine is utilized to drive the rotor [51] '3 D0111 1/24; 1/12 shaft and the discharge air from the turbine is utilized [58] Fleld of Search "5758894891 for the pneumatic bearing.
- the present invention relates to an improvement in the mechanism for driving a spinning rotor of the openend spinning apparatus.
- the principal object of the present invention is to provide an improved mechanism for driving a spinning rotor of the open-end spinning apparatus by which the above-mentioned difficulties can be perfectly eliminated.
- a further object of the present invention is to provide an improved mechanism for driving a spinning rotor of an open-end spinning apparatus said mechanism being provided with an auxiliary device for supplying a pressurized air stream into the spinning rotor so as to carry out a stable spinning operation without disturbance from the above-mentioned troubles.
- a so-called pneumatic bearing is utilized so as to rotatably support the shaft of the spinning rotor.
- a pneumatic turbine is utilized so as to drive the shaft of the spinning rotor and the pressurized air supplied to the pneumatic turbine is discharged into the pneumatic bearing.
- the pressurized air discharged from the pneumatic bearing is utilized as supply air into the spinning rotor instead of supplying air into the spinning rotor from the atmosphere in the-spinning room.
- the spinning unit can be compactly made and, in addition, loss of power in driving the spinning rotor can be minimized because grease, which is normally utilized for the conventional bearing of an open-end spinning unit, is not used. Consequently, the running durability of the bearing for sup-.
- the filter which is required for separating fiber lint or dust from the supply air into the spinning rotor in the conventional driving system can be omitted so that all maintenance operations related to the filter can be eliminated.
- FIG. 1 is a schematic side view of a spinning unit of the open-end spinning machine according to the present invention
- FIG.2 is a schematic side view of the spinning unit shown in FIG. 1 in a condition wherein a brake is applied to the spinning rotor;
- FIG. 3 is a longitudinal cross-section view of the pneumatic bearing and the pneumatic turbine utilized for driving the spinning rotor shown in FIG. 1;
- FIG. 4 is a cross-sectional view of the pneumatic turbine shown in FIG. 3, taken along a line IVIV in FIG.
- FIG. 5 is a cross-sectional view of the pneumatic bearing shown in FIG. 3, taken along a line VV in FIG. 3.
- a frame 1 having a fiber supply means is supported on a fixed bracket 2 by means of a pivot shaft 3 so that the frame 1 is capable of turning about the pivot shaft 3 and an auxiliary bracket 4 is secured to the bracket 2.
- a rotor holder 5 is turnably mounted on the auxiliary bracket 4 by a pivot shaft 4a so that the rotor holder 5 is capable of turning about the pivot shaft 4a.
- An engaging pin 4b projects from the auxiliary bracket 4 and a hook member 9 is displaceably mounted on the frame of the spinning unit 1 in such a condition that when the hook member 9 is pushed inward, the hook member 9 catches a cap of the engaging pin 4b at a working condition shown in FIG. 1 where the normal spinning operation can be carried out.
- a spinning rotor I3 is rigidly mounted on a rotor shaft 22 which is turnably supported by the rotor holder 5 as hereinafter illustrated in detail.
- a casing 16a of the rotor holder 5 is turnably mounted on the pivot shaft 4a.
- a brake pulley 8 is rigidly mounted on the rotor shaft 22 in such a position that the brake pulley 8 is capable of contacting a brake member 10 when the bracket 2 turns about the pivot shaft 3 by disengaging the hook member 9 from the cap of the engaging pin 4b, and the rotor holder 5 turns about the pivot shaft 40 as shown in FIG. 2. Therefore, when the brake pulley 8 contacts the brake member 10 due to the turning of the holder 5 about the pivot shaft 4a, the rotation of the rotor shaft 22 is stopped.
- the above-mentioned respective turning motions of the bracket 2 and the rotor holder 5 about the pivot shafts 3 and 4a are required when a spinning yarn is broken or a certain maintenance operation is required.
- the rotor holder 5 comprises the casing 16a, which covers the spinning rotor 13 and a bearing 16b which rotatably supports the rotor shaft 22.
- a hook member 7 is turnably mounted on the frame of the spinning unit 1 and a hook like projection 16c is projected downward from the casing 16a of the rotor holder 5 as shown in FIGS. 1 and 2 so that the rotor holder 5 is capable of holding by engaging the hook member 7 with the projection when the frame 1 of the spinning unit is turned about the pivot shaft 3 by its own-weight. According to the above-mentioned turning motion of the frame 1, the holder 5 is'forced to turn about the pivot shaft 4a and the brake pulley 8 is urged to the brake 10.
- a pneumatic turbine As a driving means for driving the rotor shaft 22, a pneumatic turbine is utilized. That is, a turbine 18 is secured to the rotor shaft 22 and compressed'air is supplied from a supply source into a cylindrical space 30 formed in the rotor holder 5 by way of supply conduits 50, 51 and an inlet 17, and then the compressed air is accelerated by a nozzle 31 (see FIG. 4) so that the accelerated compressed air is ejected into a space surrounding the turbine 18. Consequently, the ejected compressed air impinges on blades 32 of the turbine 18 so that the rotor shaft 22 is turned in a direction represented by an arrow 33 in FIG. 4.
- the rotor 13 is turned in the same direction so that the yarn forming operation in the spinning rotor 13 can be carried out.
- other types of pneumatic turbines other than the one described above, can be utilized with the same working effect as the abovementioned turbine.
- the pressure of the highly compressed air which has been used for turning the pneumatic turbine 18 is low ered in the space surrounding the blades 32 of the turbine 18 and is discharged from a passage 19 which connects the space surrounding the blades 32 of the tur bine 18 with the pneumatic bearing 16b, and supplied into the pneumatic bearing 16b via a plurality of connecting passage 20 (see FIG.
- the compressed air in the passages is fed into spaces formed in the body of the pneumatic bearing 16b via the respective passages 21 and then carried into a small cylindrical space 23 formed between the rotor shaft 22 and the bearing through a plurality of inlets 36, for example, four inlets 36 in this embodiment. Consequently, the shaft 22 is held in a floating coaxial condition within the inside cylindrical wall of the bearing 40 by the static pressure of the air flow.
- a pair of flanges 27a and 27b are rigidly secured to the rotor shaft 22 in proximity to and outside the ends of the bearing 40 so as to bear the thrust forces 28a, 28b created by the turbine 18, and the pressurized air is ejected from ejection apertures 37a, 37b via the respective spaces 35, toward the inside surfaces of the flanges 27a. 27b so that very small clearances between the flanges 27a, 27b and the corresponding outside surfaces of the bearing 40 can be maintained.
- the pressurized air used as mentioned above is then introduced into a space 24 which is connected to the abovementioned air passages, and then discharged via a conduit 25 and discharge apertures 26a, 26b.
- the pipe flow resistances between the inlet aperture 17 and the plurality of discharge apertures 31, and between the inlet aperture 19 and the plurality of apertures 35, are designed so as to attain uniform supply of the pressurized air into the spaces surrounding the rotor shaft 22 and the turbine 18.
- the air discharged from the spinning rotor 13 through an aperture or apertures 14 formed in the spinning rotor 13 is carried to a discharge duct (not shown) from a diffusion space 41 via a discharge conduit 15.
- the bearing 16b is sealed by a labyrinth packing 29a. It is also acceptable to utilize a taper labyrinth packing which permits a very weak air flow from the bearing 40 into the diffusion space 14. To prevent the discharge of the pressurized air from the turbine 18 into the atmosphere, a labyrinth packing 29b similar to the packing 29a is utilized as shown in FIG. 3.
- a pneumatic turbine 18 is utilized to drive the rotor shaft 22, however, any other driving means such as a high frequency motor, etc. may be used.
- the pressurized air is directly supplied into the bearing 16b.
- the discharged air from the outlet aperture 26a is fed into the spinning rotor 13 as hereinafter illustrated in detail. That is, the aperture 26a is connected, by means of a flexible connecting conduit 60, with an inlet conduit 61, which in turn is connected to an air supply inlet 11 of the spinning unit 1.
- the inlet 11 is connected with the spinning rotor 13 by a conduit 12. If, the quantity of the discharge air from the outlet apertures 26a is too large to be supplied into the spinning rotor 13, another outlet aperture 26b may be opened so as to discharge a part of the discharge air into the atmosphere.
- the flexible connecting conduit 60 is utilized, the turning motion of the bracket 2 about the pivot shaft 3 can be carried out without any disturbance.
- the air supplied from the pneumatic bearing 40 into the spinning rotor 13 does not contain lint and/or dust. Consequently, difficulties due to lint and/or dust, which are the basis for some of the major troubles in the conventional open-end spinning unit, can be suitably eliminated.
- a mechanism for driving the spinning rotor of each spinning unit of an open-end spinning apparatus wherein a shaft of said rotor is rotatably supported by a pneumatic bearing mounted in a rotor holder of said spinning unit, the improvement comprising a cylindrical bearing member mounted to project inwardly in said pneumatic bearing whereby said rotor shaft is rotatably pneumatically supported by means of said cylindrical bearing member, a pair of cylindrical chambers formed in said pneumatic bearing at positions axially beyond opposite ends of said cylindrical member, a pair of flanges rigidly secured to said rotor shaft in the proximity of and beyond the axial ends of said cylindrical bearing member whereby said flanges are positioned in separate said cylindrical chambers, means for supplying pressurized air into a space between said rotor shaft and said cylindrical bearing member and also into spaces between said flanges and said cylindrical bearing member in uniform condition, means for discharging said supplied air from said spaces to the outside of said pneumatic bearing, and means for sea]- ing a clearance between said rotor
- An improvement of the mechanism for driving a spinning rotor of the open-end spinning apparatus further comprising a pneumatic turbine coaxially connected to said rotor shaft, said pneumatic turbine being provided with an inlet conduit for receiving said pressurized air from a supply source and an outlet aperture for discharging said pressurized air therefrom, wherein said means for supplying pressurized air into said space between said rotor shaft and said cylindrical bearing member is connected to said discharging aperture of said turbine.
- An improvement of the mechanism for driving a spinning rotor of the open-end spinning apparatus further comprising a pneumatic turbine coaxially connected to said rotor shaft, said pneumatic turbine being provided with an inlet conduit for receiving said pressurized air from a supply source and an outlet aperture for discharging said pressurized air therefrom, wherein said means for supplying pressurized air into said space and said rotor shaft and said cylindrical bearing member is connected to said discharging aperture of said turbine.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1140973A JPS5648614B2 (enrdf_load_stackoverflow) | 1973-01-27 | 1973-01-27 | |
JP1235973A JPS49100344A (enrdf_load_stackoverflow) | 1973-01-30 | 1973-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3918248A true US3918248A (en) | 1975-11-11 |
Family
ID=26346822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US435950A Expired - Lifetime US3918248A (en) | 1973-01-27 | 1974-01-23 | Mechanism for driving a spinning rotor of the open-end spinning apparatus |
Country Status (2)
Country | Link |
---|---|
US (1) | US3918248A (enrdf_load_stackoverflow) |
CH (1) | CH571582A5 (enrdf_load_stackoverflow) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4030279A (en) * | 1974-11-29 | 1977-03-30 | Elitex, Zavody Textilniho Strojirenstvi, Generalni Reditalstvi | High-speed spindle holder suspension for open-end spinning machines |
US4519205A (en) * | 1981-12-22 | 1985-05-28 | Bbc Brown, Boveri & Company, Limited | Drive and mounting for an open-end spinning unit |
US4543780A (en) * | 1981-12-22 | 1985-10-01 | Bbc Brown, Boveri & Company, Limited | Drive and mounting for an open-end spinning unit |
US4563874A (en) * | 1982-11-01 | 1986-01-14 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Driving gear of rotor type open end fine spinning machine |
US5540043A (en) * | 1993-07-12 | 1996-07-30 | W. Schlafhorst Ag & Co. | Rotor spinning apparatus with spinning box dirt separator |
US5636505A (en) * | 1994-05-28 | 1997-06-10 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Open-end rotor spinning device |
US20050064803A1 (en) * | 2002-01-17 | 2005-03-24 | Air Turbine Technology, Inc. | High torque dual chamber turbine rotor for hand held or spindle mounted pneumatic tool |
WO2008037325A1 (de) * | 2006-09-27 | 2008-04-03 | Oerlikon Textile Gmbh & Co. Kg | Verfahren zum betreiben einer spinnvorrichtung |
CN103572417A (zh) * | 2012-08-02 | 2014-02-12 | 索若德国两合股份有限公司 | 纺纱装置运行方法、具有纺纱装置的气流纺纱机和纺纱装置 |
CN107012546A (zh) * | 2015-12-16 | 2017-08-04 | 立达英格尔施塔特有限公司 | 带进气管的气流式转子纺纱装置 |
EP2903747B1 (en) * | 2012-10-01 | 2022-06-15 | Graco Minnesota Inc. | Impeller for electrostatic spray gun |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0620466U (ja) * | 1992-03-13 | 1994-03-18 | 村田機械株式会社 | 紡績装置 |
DE102004035107A1 (de) * | 2004-07-20 | 2006-02-16 | "Stiftung Caesar" (Center Of Advanced European Studies And Research) | Kultivierungskammer |
DE202016101447U1 (de) * | 2016-03-16 | 2017-06-19 | Zasche handling GmbH | Drehdurchführung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US930850A (en) * | 1906-08-13 | 1909-08-10 | Sebastian Ziani De Ferranti | Motor-driven twisting element for spinning, doubling, and twisting machines. |
US2659193A (en) * | 1948-06-23 | 1953-11-17 | Warner Swasey Co | Twisting device |
US2790298A (en) * | 1953-03-25 | 1957-04-30 | Heberlein Patent Corp | Apparatus for crimping yarn |
US2856749A (en) * | 1950-09-11 | 1958-10-21 | Ind Devices Inc | Spindle assembly |
US2942405A (en) * | 1956-10-12 | 1960-06-28 | British Celanese | False-twist spindles |
US3416300A (en) * | 1966-04-06 | 1968-12-17 | Schenkel Erwin | Spinning and twisting apparatus |
US3798886A (en) * | 1970-12-16 | 1974-03-26 | Elitex Z Textilnoho Strojirens | Self-cleaning spinning arrangement for use with textile machines |
-
1974
- 1974-01-23 US US435950A patent/US3918248A/en not_active Expired - Lifetime
- 1974-01-25 CH CH106274A patent/CH571582A5/xx not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US930850A (en) * | 1906-08-13 | 1909-08-10 | Sebastian Ziani De Ferranti | Motor-driven twisting element for spinning, doubling, and twisting machines. |
US2659193A (en) * | 1948-06-23 | 1953-11-17 | Warner Swasey Co | Twisting device |
US2856749A (en) * | 1950-09-11 | 1958-10-21 | Ind Devices Inc | Spindle assembly |
US2790298A (en) * | 1953-03-25 | 1957-04-30 | Heberlein Patent Corp | Apparatus for crimping yarn |
US2942405A (en) * | 1956-10-12 | 1960-06-28 | British Celanese | False-twist spindles |
US3416300A (en) * | 1966-04-06 | 1968-12-17 | Schenkel Erwin | Spinning and twisting apparatus |
US3798886A (en) * | 1970-12-16 | 1974-03-26 | Elitex Z Textilnoho Strojirens | Self-cleaning spinning arrangement for use with textile machines |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4030279A (en) * | 1974-11-29 | 1977-03-30 | Elitex, Zavody Textilniho Strojirenstvi, Generalni Reditalstvi | High-speed spindle holder suspension for open-end spinning machines |
US4519205A (en) * | 1981-12-22 | 1985-05-28 | Bbc Brown, Boveri & Company, Limited | Drive and mounting for an open-end spinning unit |
US4543780A (en) * | 1981-12-22 | 1985-10-01 | Bbc Brown, Boveri & Company, Limited | Drive and mounting for an open-end spinning unit |
US4563874A (en) * | 1982-11-01 | 1986-01-14 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Driving gear of rotor type open end fine spinning machine |
US5540043A (en) * | 1993-07-12 | 1996-07-30 | W. Schlafhorst Ag & Co. | Rotor spinning apparatus with spinning box dirt separator |
US5636505A (en) * | 1994-05-28 | 1997-06-10 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Open-end rotor spinning device |
US20050064803A1 (en) * | 2002-01-17 | 2005-03-24 | Air Turbine Technology, Inc. | High torque dual chamber turbine rotor for hand held or spindle mounted pneumatic tool |
US7077732B2 (en) * | 2002-01-17 | 2006-07-18 | Air Turbine Technology, Inc. | High torque dual chamber turbine rotor for hand held or spindle mounted pneumatic tool |
WO2008037325A1 (de) * | 2006-09-27 | 2008-04-03 | Oerlikon Textile Gmbh & Co. Kg | Verfahren zum betreiben einer spinnvorrichtung |
CN101512054B (zh) * | 2006-09-27 | 2011-01-19 | 欧瑞康纺织有限及两合公司 | 操作纺纱装置的方法 |
CN103572417A (zh) * | 2012-08-02 | 2014-02-12 | 索若德国两合股份有限公司 | 纺纱装置运行方法、具有纺纱装置的气流纺纱机和纺纱装置 |
CN103572417B (zh) * | 2012-08-02 | 2017-07-28 | 索若德国两合股份有限公司 | 纺纱装置运行方法、具有纺纱装置的气流纺纱机和纺纱装置 |
EP2903747B1 (en) * | 2012-10-01 | 2022-06-15 | Graco Minnesota Inc. | Impeller for electrostatic spray gun |
CN107012546A (zh) * | 2015-12-16 | 2017-08-04 | 立达英格尔施塔特有限公司 | 带进气管的气流式转子纺纱装置 |
Also Published As
Publication number | Publication date |
---|---|
CH571582A5 (enrdf_load_stackoverflow) | 1976-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3918248A (en) | Mechanism for driving a spinning rotor of the open-end spinning apparatus | |
CN103572417B (zh) | 纺纱装置运行方法、具有纺纱装置的气流纺纱机和纺纱装置 | |
US3875732A (en) | Textile machines | |
US4607485A (en) | Feed arrangement for an open-end friction spinning machine | |
JPS63112731A (ja) | オープンエンド−ロータ式紡績機の紡績ユニツト | |
US20150361593A1 (en) | Open-End Spinning Device with an Intermediate Chamber | |
US4633664A (en) | Open-end rotor spinning apparatus | |
KR20000053139A (ko) | 인버터블 여과기 장착 원심분리기 | |
GB922473A (en) | Apparatus for cleaning textile machines | |
US3769785A (en) | Rotor of an open end spinning device | |
US4548030A (en) | Open end yarn spinning apparatus having rotor cleaning means | |
US4318206A (en) | Coiler arrangement | |
EP1701018B1 (en) | Air turbine starter enhancement for clearance seal utilization | |
US3958846A (en) | Open end spinning spindle | |
CN110172761B (zh) | 用于运行转杯纺纱机的纺纱装置的方法以及转杯纺纱机的纺纱装置 | |
US5867974A (en) | Opening device for an open-end spinning machine | |
JPH08284961A (ja) | 主軸軸受潤滑装置 | |
GB1419586A (en) | Device for supporting a spindle of an open-end spinning apparatus | |
US4242858A (en) | Open-end spinning device | |
US4939897A (en) | Opening cylinder unit for open-end spinning machines | |
JPH06306712A (ja) | オープンエンド紡績装置 | |
US3599414A (en) | Twisting and forming device for a pneumatic spinning system | |
US4617792A (en) | Air flow control arrangement for an open-end friction spinning machine | |
US3838301A (en) | Electric machine with flywheel-fan | |
RU2029100C1 (ru) | Турбина пневмопривода |