US3909214A - Multifunctional gasoline additive compositions - Google Patents

Multifunctional gasoline additive compositions Download PDF

Info

Publication number
US3909214A
US3909214A US383252A US38325273A US3909214A US 3909214 A US3909214 A US 3909214A US 383252 A US383252 A US 383252A US 38325273 A US38325273 A US 38325273A US 3909214 A US3909214 A US 3909214A
Authority
US
United States
Prior art keywords
salt
oxo
weight
composition
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US383252A
Inventor
Perry Polss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US383252A priority Critical patent/US3909214A/en
Priority to CA205,783A priority patent/CA1022751A/en
Priority to BE146962A priority patent/BE818107R/en
Priority to DE19742436193 priority patent/DE2436193C3/en
Priority to FR7426055A priority patent/FR2238748B1/fr
Priority to GB3305074A priority patent/GB1442927A/en
Application granted granted Critical
Publication of US3909214A publication Critical patent/US3909214A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/2658Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) amine salts

Definitions

  • compositions consist essentially of, in combination, (i) aliphatic C to C monoamine salts of branched chain primary Cg to C alkyl acid esters of orthophosphoric acid, and (ii) liquid polypropylene having a molecular weight between about 600 to 1200.
  • the compositions of this invention fulfill the need.
  • This invention concerns a gasoline-soluble, gasolineadditive composition consisting essentially of i. a gasoline-soluble neutral salt of a C to C aliphatic monoamine wherein each radical attached to the amine nitrogen is attached through a saturated carbon atom and a C to C branched chain primary alkyl acid ester of orthophosphoric acid,
  • solution concentrates of the additives in a suitable carrier solvent such as a liquid hydrocarbon.
  • suitable carrier solvent such as a liquid hydrocarbon.
  • Such concentrates contain from about 10 to 50% by weight solvent and from about 50 to 90% by weight of the additive compositions described herein.
  • gasoline compositions containing from about 0.02 to 0.10% by weight of the compositions described herein.
  • the hydrocarbon fuel in which the additive of the invention is used is gasoline or a mixture of hydrocarbons boiling in the gasoline boiling range.
  • gasoline is referred to herein as gasoline.
  • the base fuel can consist of straight chain or branched chain paraffins, cycloparaffins, olefins, and
  • aromatic compounds or any mixture of such hydrocarbons obtainable from straight run naphtha, polymer gasoline, 'natura'l gasoline, thermally or catalytically cracked hydrocarbon stocks and catalytically reformed stocks.
  • the gasoline may contain varying amounts of conventional fuel additives such as antiknock compounds including tetramethyllead, tetraethyllead, mixed alkyl lead, scavenging agents, dyes, antoxidants, anti-icing agents, rust inhibitors, detergentsf antipreignition agents and the like.
  • aliphatic monoamine means a compound which contains only one amino nitrogen to which is attached one to three aliphatic radicals and is sufficiently basic to form neutral salts with the defined alkyl acid phosphates.
  • the amines can be primary, secondary or tertiary amines and the aliphatic radical attached to the nitrogen may be alicyclic or acyclic.
  • the aliphatic radical can be saturated or unsaturated, provided that the carbon atom attached to the nitrogen atom is a saturated carbon.
  • the amines are generally unsubstituted hydrocarbon amines.
  • the amine salts are prepared by reacting primary alkyl acid phosphates wherein the primary alkyl groups have 8 to 16 carbon atoms in branched chain configuration with aliphatic monoamines containing 4 to 10 carbon atoms and wherein each aliphatic radical attached to the amine nitrogen is attached'through a saturated carbon atom.
  • Branched chain primary alkyl acid phosphates are those phosphate esters in which only one or two of the three acidic hydrogen atoms of orthophosphoric acid have been replaced with branched chain primary alkyl groups, i.e. they are monoalkyl dihydrogen phosphates and dialkyl hydrogen phosphates.
  • Such alkyl acid phosphates can be obtained according to known methods which involve reacting an alcohol with phosphorus pentoxide (P 0 Usually about 2 to 4 moles of alcohol per mole of P 0 are used. Preferably about 3 moles of alcohol per mole of P 0 are used.
  • reaction mixture is theoretically an equimolar mixture of monoalkyl dihydrogen phosphate and dialkyl hydrogen phosphate, but the range may vary from about 40 to 60 mole percent of monoester to about 60 to 40 mole percent of dialkyl ester.
  • monoand dialkyl esters are preferred but'other mixtures as well as the monoesters or diesters alone, can also be used.
  • the alcohol used will be a branched chain primary alcohol of 8 to 16 carbon atoms, preferablyS to 13 -carbon atoms or a mixture of two or more of'such' alcohols.
  • the preferred branched chain primary alcohols are those prepared by the wellknown Oxo process and therefore the alkyl groups of the preferred alkyl acid phosphates will have branched chainprir'nary alkyl groups derived from Oxo-process alcohols.
  • a molecule of amine is used for each mole cule of monoalkyl dihydrogen phosphate and for each molecule of dialkyl hydrogen phosphate.
  • the resulting salts are substantially neutral, i.e. they exert a pH of between 6 and 7' in water.
  • Suitable primary amines are nbutylamine, isobutylamine, isoamylamine, nhexylamine, cyclohexylamine, octylamine, 2-
  • ethylhexylamine 1, l ,3,3-tetramethylbutylamine, and commercial t-nonylamine which consists mainly of C amine with small amounts of C and C amines.
  • secondary amines are di-n-butylamine, di-secbutylamine, di-isobutylamine and di-amylamine.
  • suitable tertiary amines include N,Ndimethylcyclohexylamine and N,N-diethylcyclohexylamine.
  • the amine will be an alkyl primary monoamine of 4 to 8 carbon atoms and most preferably 8 carbon atoms. If an amine is a secondary amine or a tertiary amine, it is preferable that it contain a total of at least 8 carbon atoms. The most preferred amines are 2-ethylhexylamine and isobutylamine.
  • a preferred class of amine salts comprises substantially neutral salts wherein the alkyl acid phosphates component is a mixture of about 40 to 60 mole percent of mono C to C Oxo-alkyl dihydrogen phosphate and 60to 40 mole percent of di- C to C Oxo-alkylmonohydrogen phosphate.
  • Particularly preferred because of their low cost and exceptional detergency effect are the isobutylamine salt and the 2-e'thylhexylamine salt of the above mixture of mono-Oxo-tridccyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
  • the useful amine salts and the methods of preparation as set out above are more fully described in US. Pat. No. 3,228,758 which is incorporated herein by reference.
  • the polypropylene component of the novel composition consists essentially of a homopolymer of propylene having a molecular weight of about 600 to 1200.
  • the polypropylene can be prepared by any of the art-known polymerization processes, e.g., Linear and Stereoregular Addition Polymers Gaylord and Mark, lnterscience Publishers, New York, N.Y., 1959.
  • the molecular weights referred to herein are number average molecular weights as determined by vapor pressure osmometry (ASTM D2503). In the 600 to 1200 molecular weight range, the polypropylenes are liquids at normal temperatures, have 100F. SUS viscosity of from about 2500 to about 70,000, and are highly soluble in hydrocarbons. SUS viscosity is determined according to ASTM D445-446. The preferred polypropylene has a molecular weight in the range of 800 to 900.
  • the proportion of polypropylene to amine phosphate salt is such that there is present from about 1 to 50 parts of polypropylene for each part of amine phosphate salt, preferably about 2 to 30 parts, most preferably about 4 to 15 parts.
  • the two components can be added separately to the gasoline or they can be added in combination or as a concentrate of the combination in a suitable carrier.
  • the concentrate will contain from about 10 to 50 percent by weight of the solvent, and preferably from about 15 to 30 percent by weight of the solvent.
  • Suitable carrier solvents include such hydrocarbons as hexane, isooctane, kerosene, benzene, toluene, xylene and the like. Commercially available mixed xylenes are the preferred solvent.
  • Representative concentrates contain from about 1 to 45 percent by weight of amine phosphate, from about 25 to 88 percent by weight of polypropylene and from about 10 to 50 percent by weight of hydrocarbon solvent.
  • the solvents will contain from about 2 to 28 percent by weight of amine phosphate, from about 47 to 82 percent by weight of polypropylene and from about 15 to 30 percent by weight of solvent, and most preferably will contain from about 3 to 17 percent by weight of amine salt,
  • the most preferred additive concentrate of the invention contains: 3 to 17 percent by weight of the 2- ethylhexylamine salt of a mixture of mono-Oxo-tridecyl dihydrogen phosphate and di-Oxo-tridecyl hydrogen phosphate; 56 to percent by weight of polypropylene having a molecular weight of about 850; and 15 to 30 percent by'weight of a hydrocarbon solvent consisting essentially of mixed xylenes.
  • this composition will provide from 0.0008 to 0.017 percent of the amine salt and from 0.01 l to 0.08 percent of the polypropylene.
  • the preferred 75 to lbs./ 1000 barrels dosage provides from about 0.0012 to 0.0085 percent of the amine salt and from about 0.017 to 0.04 percent of the polypropylene.
  • fuel additives other than those taught herein can be employed for various purposes in a 'gasoline composition that also contains the novel additives.
  • One such additive is a nonvolatile lubricating mineral oil, e.g. solvent extracted bright stock having a viscosity at 100F. of 500 to 1500 SUS.
  • These oils often referred to as top cylinder oils, are used in amounts of 0.04 to 0.25% by weight of the fuel composition, preferably about 0.16% by weight.
  • the engine was operated under the following conditions: the distributor vacuum advance was eliminated to maintain spark advance of 4 before top center; engine speed at 700 i 10 rpm; water outlet temperature 175 i 2.5F.; air/fuel mixture at maximum vacuum; carburetor air cooled by passage through an ice tower and then reheated to 9095F.; and engine exhaust supplied to carburetor air inlet as described below.
  • the fuel used was MS-08, an industry standard fuel used for Sequence MS oil testing.
  • the engine was started with the exhaust feed valve to engine inlet air closed. The speed was adjusted to 700 rpm at maximum vacuum. The exhaust feed value was opened and the engine speed maintained at 700 rpm.
  • the exhaust feed valve setting is critical. The setting was such as to feed the maximum amount of exhaust that the engine would accept and still operate smoothly without stalling. The engine was operated for about 10 hours or until it could no longer be kept running under these conditions.
  • the carburetor was removed and rated using a visual rating chart. A rating of 100 is clean. If a rating cleaner than 30 is obtained, additional deposit accumulation was required.
  • the dirty carburetor was installed in another engine and the operating conditions described above were used except that normal piston rings were used and the blowby and exhaust were not fed into the air inlet. Before the test new spark plugs were installed, SAE 30 low detergent oil placed in the crankcase and the air cleaner housing and exhaust system were cleaned.
  • the clean-up procedure was followed for 50 hours in five IO-hr. segments, the ratings being made at appropriate intervals to determine the amount and speed of clean-up.
  • the percent clean-up was determined according to the following formula wherein R is the carburetor rating after deposit accumulation and R is the carburetor rating after eleanup.
  • the results with base fuel (MS-08) alone and base fuel containing additive components individually and in combination are summarized below in Table l.
  • the amine phosphate employed was the Z-ethylhexylamine salt of mixed mono-Oxo-tridccyldihydrogen phosphate and di-Oxo-tridecylmonohydrogen phosphate.
  • the results show that the additive combination of the inven tion is effective in cleaning deposits from dirty carburetors. The cleanup effect of the combination is greater than that which would be expected on the individual performance of polypropylene or amine phosphate salt.
  • Valve Deposit Test In the first test the engine used was a 1968, 250 cu. in. 6 cylinder Chevrolet engine equipped with Power- Glide transmission and inertia flywheel. The engine was on a test stand equipped with a dynamometer to absorb the power output. The heads were completely reconditioned, deposits removed from piston tops and carburetor overhauled. One of the intake valves had a thermocouple lead attached to the tulip for recording temperature. New PCV valve, spark plugs, points and gasoline filter were installed. The oil filter was changed and l0W-3O oil put in. The fuel used was previously de scribed MS-08. The fuel contained tetraethyllead (2.9 g. Pb/gal.) as well as 0.5 theory ethylene dibromide and 1.0 theory ethylene dichloride.
  • PCD Programmed Chassis Dynamometer
  • valve tulip temperature measured by the thermocouple during the test ranged from about 480 to 590F. and averaged 527F.
  • the results of the tests using the above-described MS-O8 fuel and the additive of the Preparation are summarized in Table 3.
  • Buick Intake Valve Deposit (lVD) Test "Buick Electras (l97l) with 435 CID. low compression engines (8.5:1) equipped with 4-barrel carburetors and automatic transmissions were used. Air conditioning, standard equipment in these automobiles. was used. Completely reconditioned heads with weighed intake valves were installed before tests. One of the intake valves had a thermocouple lead attached to the tulip for recording temperature. Deposits from piston heads were removed and the intake manifold was solder oil used was solvent extracted bright stock 295 API Gravity, viscosity at F., 763 SUS, viscosity at 2l0F., 78 SUS.
  • a gasoline-soluble, gasoline-additive composition consisting essentially of i. a gasoline-soluble neutral salt of a C to C aliphatic monoamine wherein each radical attached to the amine nitrogen is attached through a saturated carbon atom and a C to C branched chain primary alkyl acid ester of orthophosphoric acid, and
  • composition according to claim 1 wherein the neutral salt is the amine salt of a mixture of esters comprising from about 40 to 60 mole percent of mono-C to C Oxo-alkyl dihydrogen phosphate and 60 to 40 mole percent of di- C to C Oxo-alkyl monohydrogen phosphate.
  • composition according to claim 2 wherein the amine salt is the isobutylamine salt.
  • composition according to claim 2 wherein the amine salt is the Z-ethylhexylamine salt.
  • composition according to claim 3 wherein the mixture of esters comprises mono-x0- tridecyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
  • composition according to claim 4 wherein the mixture of esters comprises mono-0x0- tridecyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
  • composition according to claim 1 wherein the polypropylene has a molecular weight of about 800 to 900.
  • composition according to claim 6 wherein the polypropylene has a molecular weight of about 800 to 900.
  • a gasoline composition containing from about 0.02 to 0.10% by weight of the composition of claim 1, having up to about 0.25%, by weight of the composition, of top cylinder oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed herein are gasoline-soluble, gasoline additive compositions useful to clean carburetors and to control intake valve deposits in spark ignition engines. The compositions consist essentially of, in combination, (i) aliphatic C4 to C10 monoamine salts of branched chain primary C8 to C16 alkyl acid esters of orthophosphoric acid, and (ii) liquid polypropylene having a molecular weight between about 600 to 1200.

Description

nite States Patent U9] Polss [4 1 Sept. 30, 1975 [75] Inventor:
[73] Assignee: E. I. Du Pont de Nemours and Company, Wilmington, Dell [22] Filed: July 27, 1973 [2]] Appl. No.: 383,252
Perry Polss, Wilmington, Dcl.
[52] US. Cl. 44/58; 44/72; 44/80 [51] Int. Cl.'- ClOL 1/26 [58] Field of Search 44/58, 72, DIG. 4
[56] References Cited UNITED STATES PATENTS 2 863 742 l2/l958 Cantrell 44/72 .1228758 1/1966 Bauer 44/DIG, 4
3384.466 5/1968 Popkin v 44/72 3502451 3/l970 Moore et al. 4. 44/58 3504055 3/1970 Andress, Jr. et al. 44/72 FOREIGN PATENTS OR APPLICATIONS 885922 ll/l97l Canada 7. 44/62 Prinmr Examiner-Daniel E. Wyman Assistant Examiner-Mrs. Y. Harris Smith Attorney, Agent, or Firm.lames A. Costello [57 ABSTRACT Disclosed herein are gasoline-soluble, gasoline additive compositions useful to clean carburetors and to control intake valve deposits in spark ignition engines. The compositions consist essentially of, in combination, (i) aliphatic C to C monoamine salts of branched chain primary Cg to C alkyl acid esters of orthophosphoric acid, and (ii) liquid polypropylene having a molecular weight between about 600 to 1200.
10 Claims, N0 Drawings MULTIFUNCTIONAL GASOLINE ADDITIVE COMPOSITIONS BACKGROUND OF THE INVENTION One of the operational difficulties of internal combustion engines in motor vehicles is caused by the formation of deposits on the tulips of theintake valves. These deposits can build up sufficiently to cause improper valve closing with attendantrough idling, loss of power and in severe cases, valve burning. It is generally believed that the two primary sources of these deposits are fuels and lubricating oils. Automotive gasolines frequently contain small amounts of relatively unstable, high molecular weight compounds. A certain amount of lubricating oil also passes between the valve stem and valve guide. Upon exposure to air and the relatively high temperatures of the intake valve tulips, these components from the fuel, and the lubricating oil as well as certain additives in the lubricating oil undergo a series of reactions which probably involve oxidation and thermal decomposition, leading to the formation of solids or semi-solid residues which are called deposits.
Another of the operational difficulties is that caused by the accumulation of deposits in the carburetor, particularly on the throttle plate and on the surrounding wall. Harmful deposits are derived from contaminants in fuel and air, particularly from fumes vented from the crankcase as well as from materials introduced via the exhaust gas recirculation system normally present. The accumulation of the deposits in the carburetor results in rough idling and frequent stalling of the engine.
A need exists for a fuel additive which is effective in overcoming the described operational difficulties of internal combustion engines,- which is effective at low usage levels and which is multifunctional in activity, that is, is capable of overcoming several of the difficulties. The compositions of this invention fulfill the need.
SUMMARY OF THE INVENTION This invention concerns a gasoline-soluble, gasolineadditive composition consisting essentially of i. a gasoline-soluble neutral salt of a C to C aliphatic monoamine wherein each radical attached to the amine nitrogen is attached through a saturated carbon atom and a C to C branched chain primary alkyl acid ester of orthophosphoric acid,
and i ii. from about 1 to 50 parts by weight per part of said salt of liquid polypropylene having a number average molecular weight in the range of about 600 to 1200. i
Included within the scope of this invention are solution concentrates of the additives in a suitable carrier solvent such as a liquid hydrocarbon. Such concentrates contain from about 10 to 50% by weight solvent and from about 50 to 90% by weight of the additive compositions described herein.
Also included are gasoline compositions'containing from about 0.02 to 0.10% by weight of the compositions described herein. i
The hydrocarbon fuel in whichthe additive of the invention is used is gasoline ora mixture of hydrocarbons boiling in the gasoline boiling range. For convenience, such fuels are referred to herein as gasoline. The base fuel (gasoline) can consist of straight chain or branched chain paraffins, cycloparaffins, olefins, and
aromatic compounds or any mixture of such hydrocarbons, obtainable from straight run naphtha, polymer gasoline, 'natura'l gasoline, thermally or catalytically cracked hydrocarbon stocks and catalytically reformed stocks. The gasoline may contain varying amounts of conventional fuel additives such as antiknock compounds including tetramethyllead, tetraethyllead, mixed alkyl lead, scavenging agents, dyes, antoxidants, anti-icing agents, rust inhibitors, detergentsf antipreignition agents and the like.
The term aliphatic monoamine means a compound which contains only one amino nitrogen to which is attached one to three aliphatic radicals and is sufficiently basic to form neutral salts with the defined alkyl acid phosphates. The amines can be primary, secondary or tertiary amines and the aliphatic radical attached to the nitrogen may be alicyclic or acyclic. The aliphatic radical can be saturated or unsaturated, provided that the carbon atom attached to the nitrogen atom is a saturated carbon. The amines are generally unsubstituted hydrocarbon amines.
DETAILS OF THE INVENTION The amine salts are prepared by reacting primary alkyl acid phosphates wherein the primary alkyl groups have 8 to 16 carbon atoms in branched chain configuration with aliphatic monoamines containing 4 to 10 carbon atoms and wherein each aliphatic radical attached to the amine nitrogen is attached'through a saturated carbon atom.
Branched chain primary alkyl acid phosphates are those phosphate esters in which only one or two of the three acidic hydrogen atoms of orthophosphoric acid have been replaced with branched chain primary alkyl groups, i.e. they are monoalkyl dihydrogen phosphates and dialkyl hydrogen phosphates. Such alkyl acid phosphates can be obtained according to known methods which involve reacting an alcohol with phosphorus pentoxide (P 0 Usually about 2 to 4 moles of alcohol per mole of P 0 are used. Preferably about 3 moles of alcohol per mole of P 0 are used. When 3 moles of alcohol per mole of P 0 are used, the reaction mixture is theoretically an equimolar mixture of monoalkyl dihydrogen phosphate and dialkyl hydrogen phosphate, but the range may vary from about 40 to 60 mole percent of monoester to about 60 to 40 mole percent of dialkyl ester. These mixtures of monoand dialkyl esters are preferred but'other mixtures as well as the monoesters or diesters alone, can also be used.
For the preparation of the branched chain primary alkyl acid phosphates, the alcohol used will be a branched chain primary alcohol of 8 to 16 carbon atoms, preferablyS to 13 -carbon atoms or a mixture of two or more of'such' alcohols. The preferred branched chain primary alcohols are those prepared by the wellknown Oxo process and therefore the alkyl groups of the preferred alkyl acid phosphates will have branched chainprir'nary alkyl groups derived from Oxo-process alcohols.
Normally, a molecule of amine is used for each mole cule of monoalkyl dihydrogen phosphate and for each molecule of dialkyl hydrogen phosphate. The resulting salts are substantially neutral, i.e. they exert a pH of between 6 and 7' in water.
Examples of suitable primary amines are nbutylamine, isobutylamine, isoamylamine, nhexylamine, cyclohexylamine, octylamine, 2-
ethylhexylamine, 1, l ,3,3-tetramethylbutylamine, and commercial t-nonylamine which consists mainly of C amine with small amounts of C and C amines. Examples of secondary amines are di-n-butylamine, di-secbutylamine, di-isobutylamine and di-amylamine. Examples of suitable tertiary amines include N,Ndimethylcyclohexylamine and N,N-diethylcyclohexylamine.
Preferably, the amine will be an alkyl primary monoamine of 4 to 8 carbon atoms and most preferably 8 carbon atoms. If an amine is a secondary amine or a tertiary amine, it is preferable that it contain a total of at least 8 carbon atoms. The most preferred amines are 2-ethylhexylamine and isobutylamine.
A preferred class of amine salts comprises substantially neutral salts wherein the alkyl acid phosphates component is a mixture of about 40 to 60 mole percent of mono C to C Oxo-alkyl dihydrogen phosphate and 60to 40 mole percent of di- C to C Oxo-alkylmonohydrogen phosphate. Particularly preferred because of their low cost and exceptional detergency effect are the isobutylamine salt and the 2-e'thylhexylamine salt of the above mixture of mono-Oxo-tridccyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate. The useful amine salts and the methods of preparation as set out above are more fully described in US. Pat. No. 3,228,758 which is incorporated herein by reference.
The polypropylene component of the novel composition consists essentially of a homopolymer of propylene having a molecular weight of about 600 to 1200. The polypropylene can be prepared by any of the art-known polymerization processes, e.g., Linear and Stereoregular Addition Polymers Gaylord and Mark, lnterscience Publishers, New York, N.Y., 1959.
The molecular weights referred to herein are number average molecular weights as determined by vapor pressure osmometry (ASTM D2503). In the 600 to 1200 molecular weight range, the polypropylenes are liquids at normal temperatures, have 100F. SUS viscosity of from about 2500 to about 70,000, and are highly soluble in hydrocarbons. SUS viscosity is determined according to ASTM D445-446. The preferred polypropylene has a molecular weight in the range of 800 to 900.
Normally, the proportion of polypropylene to amine phosphate salt is such that there is present from about 1 to 50 parts of polypropylene for each part of amine phosphate salt, preferably about 2 to 30 parts, most preferably about 4 to 15 parts. The two components can be added separately to the gasoline or they can be added in combination or as a concentrate of the combination in a suitable carrier.
The concentrate will contain from about 10 to 50 percent by weight of the solvent, and preferably from about 15 to 30 percent by weight of the solvent. Suitable carrier solvents include such hydrocarbons as hexane, isooctane, kerosene, benzene, toluene, xylene and the like. Commercially available mixed xylenes are the preferred solvent. Representative concentrates contain from about 1 to 45 percent by weight of amine phosphate, from about 25 to 88 percent by weight of polypropylene and from about 10 to 50 percent by weight of hydrocarbon solvent. Most preferably, the solvents will contain from about 2 to 28 percent by weight of amine phosphate, from about 47 to 82 percent by weight of polypropylene and from about 15 to 30 percent by weight of solvent, and most preferably will contain from about 3 to 17 percent by weight of amine salt,
. from about 56 to 80 percent by weight of polypropylene and from about 15 to 30 percent by weight of solvent. i
The most preferred additive concentrate of the invention contains: 3 to 17 percent by weight of the 2- ethylhexylamine salt of a mixture of mono-Oxo-tridecyl dihydrogen phosphate and di-Oxo-tridecyl hydrogen phosphate; 56 to percent by weight of polypropylene having a molecular weight of about 850; and 15 to 30 percent by'weight of a hydrocarbon solvent consisting essentially of mixed xylenes. When added to gasoline in amounts of 50 to 250 lbs/1000 barrels, which corresponds to 0.02 to 0.10 percent by weight, this composition will provide from 0.0008 to 0.017 percent of the amine salt and from 0.01 l to 0.08 percent of the polypropylene. The preferred 75 to lbs./ 1000 barrels dosage provides from about 0.0012 to 0.0085 percent of the amine salt and from about 0.017 to 0.04 percent of the polypropylene.
The designed mode of operation of newly designed automotive engines involving such conditions as higher intake air temperatures, leaner fuel/air ratio, and retarded spark timing, together with auxiliary devices to control exhaust emissions of undesirable components, have caused the intake valves, particularly the tulip portions of the intake valves to operate at considerably higher temperatures than those of the older automotive engines, such temperature increase being about to F. on the average. It is believed that these higher intake valve temperatures prevent the additives suggested in the art for controlling intake valve deposits from being effective in the hotter engines. It is unexpected that the combination of amine phosphate salt and polypropylene of the invention is highly effective in controlling deposit accumulation on intake valves of hotter engines.
It is generally believed that deposits are formed on the intake valves by pyrolysis and oxidation of fuel components, fuel additives, lubricants and lubricant additives. Based on that belief it would have been expected that polypropylene having a polymer chain consisting of CH (CH )CH- units would be quite susceptible to oxidation and deposition because of the presence of readily oxidizable carbon atoms containing reactive tertiary hydrogen. Unexpectedly, the composition of this invention does not contribute to deposition but, rather, contributes to controlling such deposition.
It has also been discovered, unexpectedly, that combining a polypropylene with an amine phosphate salt of the invention provides carburetor cleanup efficiency considerably in excess of that expected from the cleanup performance of either the amine phosphate or the polypropylene alone.
As has been discussed, fuel additives other than those taught herein can be employed for various purposes in a 'gasoline composition that also contains the novel additives. One such additive is a nonvolatile lubricating mineral oil, e.g. solvent extracted bright stock having a viscosity at 100F. of 500 to 1500 SUS. These oils, often referred to as top cylinder oils, are used in amounts of 0.04 to 0.25% by weight of the fuel composition, preferably about 0.16% by weight.
The following Examples illustrate this invention. Employed in each Example was the composition of the invention made according to the following preparative procedure.
PREPARATION 142 grams (l mole) of P was gradually stirred into 600 grams (3 moles) of Oxo-tridecyl alcohol. During the addition of the P 0 the temperature was allowed to rise to 65C. and held thereabouts by external cooling. After the addition of the P 0 was completed, the reaction mass was stirred at about 65C. for 12 hours, when it was shown by potentiometric titration to consist essentially of an approximately 1:1 molar mixture of mono-Oxo-tridecyl dihydrogen phosphate and di Oxo-tridecyl monohydrogen phosphate.
To the reaction mass, was added, dropwise, 258 grams (2 moles) of 2-ethylhexylamine, with the temperature kept below 65C., to produce the mixed 2ethylhexylammonium monoand di-Oxo-tridecyl phosphates as a viscous amber oil. The mixed phosphates were then combined with polypropylene in the amount and of the M.W. as shown in the Tables.
EXAMPLE I This Example illustrates the ability of the additive combination of the invention to clean up a dirty engine as demonstrated by the carburetor detergency test described below.
Chevrolet 6 cylinder, 230 cu. in. engines having Carter No. 35 l l-S carburetors and ice towers with heaters were used. One engine was used to produce, in the shortest time, sufficient throttle body deposit for the clean-up phase of the test. Since the deposit accumulation phase of the test is carried out over a period of about l0 hours and the clean-up phase of the test requires about 50 hours, by utilizing one engine for deposit accumulation and several engines for the clean-up portion of the test, the testing may be accomplished in the shortest time. In the deposit accumulation engine the ring gap of the top piston ring was increased by V8 to 0.138 inch and the ring was installed in place of the second compression ring, leaving the top ring groove empty thus increasing the blowby. The total blowby was directed to the carburetor air cleaner from the dome cover. The air cleaner element was eliminated. The exhaust line was modified to supply engine exhaust to the carburetor air cleaner.
The engine was operated under the following conditions: the distributor vacuum advance was eliminated to maintain spark advance of 4 before top center; engine speed at 700 i 10 rpm; water outlet temperature 175 i 2.5F.; air/fuel mixture at maximum vacuum; carburetor air cooled by passage through an ice tower and then reheated to 9095F.; and engine exhaust supplied to carburetor air inlet as described below.
The fuel used was MS-08, an industry standard fuel used for Sequence MS oil testing. The engine was started with the exhaust feed valve to engine inlet air closed. The speed was adjusted to 700 rpm at maximum vacuum. The exhaust feed value was opened and the engine speed maintained at 700 rpm. The exhaust feed valve setting is critical. The setting was such as to feed the maximum amount of exhaust that the engine would accept and still operate smoothly without stalling. The engine was operated for about 10 hours or until it could no longer be kept running under these conditions. The carburetor was removed and rated using a visual rating chart. A rating of 100 is clean. If a rating cleaner than 30 is obtained, additional deposit accumulation was required.
For the clean-up phase of the test, the dirty" carburetor was installed in another engine and the operating conditions described above were used except that normal piston rings were used and the blowby and exhaust were not fed into the air inlet. Before the test new spark plugs were installed, SAE 30 low detergent oil placed in the crankcase and the air cleaner housing and exhaust system were cleaned.
The clean-up procedure was followed for 50 hours in five IO-hr. segments, the ratings being made at appropriate intervals to determine the amount and speed of clean-up. The percent clean-up was determined according to the following formula wherein R is the carburetor rating after deposit accumulation and R is the carburetor rating after eleanup. The results with base fuel (MS-08) alone and base fuel containing additive components individually and in combination are summarized below in Table l. The amine phosphate employed was the Z-ethylhexylamine salt of mixed mono-Oxo-tridccyldihydrogen phosphate and di-Oxo-tridecylmonohydrogen phosphate. The results show that the additive combination of the inven tion is effective in cleaning deposits from dirty carburetors. The cleanup effect of the combination is greater than that which would be expected on the individual performance of polypropylene or amine phosphate salt.
This Example demonstrates the unexpected efficiency of the composition of the invention in controlling intake valve deposit accumulation.
Valve Deposit Test In the first test the engine used was a 1968, 250 cu. in. 6 cylinder Chevrolet engine equipped with Power- Glide transmission and inertia flywheel. The engine was on a test stand equipped with a dynamometer to absorb the power output. The heads were completely reconditioned, deposits removed from piston tops and carburetor overhauled. One of the intake valves had a thermocouple lead attached to the tulip for recording temperature. New PCV valve, spark plugs, points and gasoline filter were installed. The oil filter was changed and l0W-3O oil put in. The fuel used was previously de scribed MS-08. The fuel contained tetraethyllead (2.9 g. Pb/gal.) as well as 0.5 theory ethylene dibromide and 1.0 theory ethylene dichloride.
The test was performed by operating the engine for 100 one-hour cycles. Each cycle consisted of the following conditions:
Time
interval Engine Speed. Dyno Speed (min. rpm rpm Throttle -5 I300 I 50 ldle-WOT* -8 600 ldle 8-l 2 1700i 50 ldle-WOT* l 2-l 5 600 ldlc -18 2050 i 75 ldle-WOT* l 8-2 l 600 ldle 21-26 l300 i 50 ldle-W()T* 26-29 600 Idle 29-34 2800 i 75 ldle-WOT" 34-60 600 Idle *5 sec. idle. 5 sec. wide open throttle TABLE 2 Amine Valve Phosphate Deposit Polymer Salt Wt. g. (M.W.) Wtf/z. Wt.'71 (Av.)
None None 1.38 Polypropylene (850) 0.03l 0.003 030 In the second test, designed to have the intake valves operate at higher temperatures than in the first test. the
vent-cleaned. New spark plugs. points, PCV valve, air filter and oil filter were installed. Carburetor adjustments and timing were carried out according to the manufacturers specifications.
Mileage accumulation was carried out on a Programmed Chassis Dynamometer (PCD) according to the following schedule.
Time in Mode Mode (sec.) Conditions, mph
l ldle 2 20 Accelerate to 3 30 Alternate acceleration/ deceleration between 60 and 70 at 5 sec. intervals 4 25 Decelerate to 40 5 l5 Accelerate to 70 6 I00 Repeat Modes 3, 4, 5 and 3 7 25 Decelerate to idle 8 Repeat above for l 10 hours At the conclusion of the test, deposits on the intake valves were weighed and expressed as g./valve. The intake valve tulip deposits were also rated using the standard CRC merit rating scale wherein a clean valve has a rating of 10. Deposits on the valve stem were also rated with a clean stern having a rating of 10. Stem rat- 7 ing is carried out by comparison with a standard photographic scale.
The valve tulip temperature measured by the thermocouple during the test ranged from about 480 to 590F. and averaged 527F. The results of the tests using the above-described MS-O8 fuel and the additive of the Preparation are summarized in Table 3.
As the data indicate, excellent control of deposits is 7 shown by the weights of deposits, tulip and stem ratings. lncorporatioin was made of 0.08 wt. of top cylinder oil in the fuel composition containing polypropylene and 2-ethylhexylamine salt of the mixed monoand di-Oxo-tridecyl phosphate (Run 7) to provide outstanding control of intake valve deposits. The top cylin- TABLE 3 Amine lVD Polymer (M.W.) Phosphate g./Valve 7r Tulip Rating Stem Rating Run No. 0.038 Wt. (Wt. (Av.) Reduction ARating ARating 4 None None 2.32 7.l 5.] 5 Polypropylene 0.003 0.85 63 7.6 +0.5 9.5 +4.4
(850) 6 Polypropylene 0.004 1.20 48 7.1 0 8.9 +3.8
(850) 7 Polypropylene 0.003 0.25 a9 9.0 +1.9 9.8 +4.7
following procedure and conditions were used.
Buick Intake Valve Deposit (lVD) Test "Buick Electras (l97l) with 435 CID. low compression engines (8.5:1) equipped with 4-barrel carburetors and automatic transmissions were used. Air conditioning, standard equipment in these automobiles. was used. Completely reconditioned heads with weighed intake valves were installed before tests. One of the intake valves had a thermocouple lead attached to the tulip for recording temperature. Deposits from piston heads were removed and the intake manifold was solder oil used was solvent extracted bright stock 295 API Gravity, viscosity at F., 763 SUS, viscosity at 2l0F., 78 SUS.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
l. A gasoline-soluble, gasoline-additive composition consisting essentially of i. a gasoline-soluble neutral salt of a C to C aliphatic monoamine wherein each radical attached to the amine nitrogen is attached through a saturated carbon atom and a C to C branched chain primary alkyl acid ester of orthophosphoric acid, and
ii. from about 1 to 50 parts by weight per part of said salt of liquid polypropylene having a number average molecular weight in the range of about 600 to 1200.
2. A composition according to claim 1 wherein the neutral salt is the amine salt of a mixture of esters comprising from about 40 to 60 mole percent of mono-C to C Oxo-alkyl dihydrogen phosphate and 60 to 40 mole percent of di- C to C Oxo-alkyl monohydrogen phosphate.
3. A composition according to claim 2 wherein the amine salt is the isobutylamine salt.
4. A composition according to claim 2 wherein the amine salt is the Z-ethylhexylamine salt.
5. A composition according to claim 3 wherein the mixture of esters comprises mono-x0- tridecyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
6. A composition according to claim 4 wherein the mixture of esters comprises mono-0x0- tridecyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
7. A composition according to claim 1 wherein the polypropylene has a molecular weight of about 800 to 900.
8. A composition according to claim 6 wherein the polypropylene has a molecular weight of about 800 to 900.
9. A solution concentrate of the composition of claim 1 in a hydrocarbon solvent wherein there is from about 10 to 50% by weight of solvent and from about 50 to by weight of the composition of claim 1.
10. A gasoline composition containing from about 0.02 to 0.10% by weight of the composition of claim 1, having up to about 0.25%, by weight of the composition, of top cylinder oil.

Claims (10)

1. A GASOLINE-SOLUBLE ADDITIVE COMPOSITION CONSISTING ESSENTIALLY OF I. A GASOLINE-SOLUBLE NEUTRAL SALT OF A C4 TO C10 ALIPHATIC MONOAMINE WHEREIN EACH RADICAL ATTACHED TO THE AMINE NITROGEN IS ATTACHED THROUGH A SATURATED CARBON ATOM AND A C8 TO C16 BRANCHED CHAIN PRIMARY ALKYL ACID ESTER OF ORTHOPHOSPHORIC ACID AND II. FROM ABOUT 1 TO 50 PARTS BY WEIGHT PER PART OF SAID SALT OF LIQUID POLYPROPYLENE HAVING A NUMBER AVERAGE MOLECULAR WEIGHT IN THE RANGE OF ABOUT 600 TO 1200.
2. A composition according to claim 1 wherein the neutral salt is the amine salt of a mixture of esters comprising from about 40 to 60 mole percent of mono-C8 to C13 Oxo-alkyl dihydrogen phosphate and 60 to 40 mole percent of di- C8 to C13 Oxo-alkyl monohydrogen phosphate.
3. A composition according to claim 2 wherein the amine salt is the isobutylamine salt.
4. A composition according to claim 2 wherein the amine salt is the 2-ethylhexylamine salt.
5. A composition according to claim 3 wherein the mixture of esters comprises mono-Oxo-tridecyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
6. A composition according to claim 4 wherein the mixture of esters comprises mono-Oxo-tridecyldihydrogen phosphate and di-Oxo-tridecyl monohydrogen phosphate.
7. A composition according to claim 1 wherein the polypropylene has a molecular weight of about 800 to 900.
8. A composition according to claim 6 wherein the polypropylene has a molecular weight of about 800 to 900.
9. A solution concentrate of the composition of claim 1 in a hydrocarbon solvent wherein there is from about 10 to 50% by weight of solvent and from about 50 to 90% by weight of the composition of claim 1.
10. A gasoline composition containing from about 0.02 to 0.10% by weight of the composition of claim 1, having up to about 0.25%, by weight of the composition, of top cylinder oil.
US383252A 1973-07-27 1973-07-27 Multifunctional gasoline additive compositions Expired - Lifetime US3909214A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US383252A US3909214A (en) 1973-07-27 1973-07-27 Multifunctional gasoline additive compositions
CA205,783A CA1022751A (en) 1973-07-27 1974-07-25 Multifunctional gasoline additive compositions
BE146962A BE818107R (en) 1973-07-27 1974-07-25 MULTI-FUNCTIONAL ADDITIVE FOR AUTOMATIC GASOLINE AND GASOLINES CONTAINING IT
DE19742436193 DE2436193C3 (en) 1973-07-27 1974-07-26 Multipurpose gasoline-soluble additive for motor gasoline
FR7426055A FR2238748B1 (en) 1973-07-27 1974-07-26
GB3305074A GB1442927A (en) 1973-07-27 1974-07-26 Gasoline additive compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US383252A US3909214A (en) 1973-07-27 1973-07-27 Multifunctional gasoline additive compositions

Publications (1)

Publication Number Publication Date
US3909214A true US3909214A (en) 1975-09-30

Family

ID=23512328

Family Applications (1)

Application Number Title Priority Date Filing Date
US383252A Expired - Lifetime US3909214A (en) 1973-07-27 1973-07-27 Multifunctional gasoline additive compositions

Country Status (5)

Country Link
US (1) US3909214A (en)
BE (1) BE818107R (en)
CA (1) CA1022751A (en)
FR (1) FR2238748B1 (en)
GB (1) GB1442927A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173456A (en) * 1978-02-06 1979-11-06 E. I. Du Pont De Nemours & Co. Polyolefin/acylated poly(alkyleneamine) two component fuel additive
US4231758A (en) * 1976-06-21 1980-11-04 Texaco Inc. Motor fuel composition
US4867754A (en) * 1988-05-24 1989-09-19 Betz Laboratories, Inc. Process and composition for stabilized distillate fuel oils
US5545237A (en) * 1994-07-08 1996-08-13 Exxon Research And Engineering Company Smoke reducing additive for two-cycle engine fuel mixture
US6837201B1 (en) * 2003-10-22 2005-01-04 General Motors Corporation Apparatus and method for lessening the accumulation of high boiling fraction from fuel in intake valves of combustion engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863742A (en) * 1954-10-04 1958-12-09 Gulf Oil Corp Gasoline fuel compositions
US3228758A (en) * 1961-10-24 1966-01-11 Du Pont Fuels containing amine salts of alkyl acid phosphates
US3384466A (en) * 1967-02-21 1968-05-21 Esso Res And Engienering Compa Amine-phosphates as multi-functional fuel additives
US3502451A (en) * 1966-04-29 1970-03-24 Texaco Inc Motor fuel composition
US3504055A (en) * 1967-10-06 1970-03-31 Mobil Oil Corp Neutral primary tertiaralkyl amine salts of tripolyphosphoric acid and phosphoric acid alkyl esters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863742A (en) * 1954-10-04 1958-12-09 Gulf Oil Corp Gasoline fuel compositions
US3228758A (en) * 1961-10-24 1966-01-11 Du Pont Fuels containing amine salts of alkyl acid phosphates
US3502451A (en) * 1966-04-29 1970-03-24 Texaco Inc Motor fuel composition
US3384466A (en) * 1967-02-21 1968-05-21 Esso Res And Engienering Compa Amine-phosphates as multi-functional fuel additives
US3504055A (en) * 1967-10-06 1970-03-31 Mobil Oil Corp Neutral primary tertiaralkyl amine salts of tripolyphosphoric acid and phosphoric acid alkyl esters

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231758A (en) * 1976-06-21 1980-11-04 Texaco Inc. Motor fuel composition
US4173456A (en) * 1978-02-06 1979-11-06 E. I. Du Pont De Nemours & Co. Polyolefin/acylated poly(alkyleneamine) two component fuel additive
US4867754A (en) * 1988-05-24 1989-09-19 Betz Laboratories, Inc. Process and composition for stabilized distillate fuel oils
US5545237A (en) * 1994-07-08 1996-08-13 Exxon Research And Engineering Company Smoke reducing additive for two-cycle engine fuel mixture
US6837201B1 (en) * 2003-10-22 2005-01-04 General Motors Corporation Apparatus and method for lessening the accumulation of high boiling fraction from fuel in intake valves of combustion engines
CN1609413B (en) * 2003-10-22 2010-08-11 通用汽车公司 Apparatus and method for lessening the accumulation of high boiling fraction from fuel in intake valves of combustion engines

Also Published As

Publication number Publication date
CA1022751A (en) 1977-12-20
DE2436193B2 (en) 1976-05-26
BE818107R (en) 1974-11-18
FR2238748A1 (en) 1975-02-21
DE2436193A1 (en) 1975-02-27
FR2238748B1 (en) 1978-12-29
GB1442927A (en) 1976-07-14

Similar Documents

Publication Publication Date Title
US3346354A (en) Long-chain alkenyl succinic acids, esters, and anhydrides as fuel detergents
US4729769A (en) Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents
US3652240A (en) Detergent motor fuel composition
US4039300A (en) Gasoline fuel composition and method of using
CA1122800A (en) Polyether amine-maleic anhydride in gasoline
US3428713A (en) Alkanol amine salts of phosphates
US3009791A (en) Liquid hydrocarbons containing a boron additive
US4047900A (en) Motor fuel composition
US3677726A (en) Monosubstituted ureas as fuel additives
US3909214A (en) Multifunctional gasoline additive compositions
US4207079A (en) Primary aliphatic hydrocarbon amino alkylene-substituted asparagine and a motor fuel composition containing same
US3035905A (en) Internal combustion engine fuel
US3031278A (en) Detergent internal combustion engine fuel
US3707362A (en) Method and composition for optimizing air-fuel ratio distribution in internal combustion engines
US4078901A (en) Detergent fuel composition
US3231347A (en) Gasolene composition containing organometallic orthophosphates
US3807976A (en) Multi-functional gasoline additives and gasolines containing them
CA1138201A (en) Detergent gasoline composition
US3146203A (en) Ocatane requirement increase reducing fuel and lubricant compositions
US3305330A (en) Amine-phosphorus-containing adducts and motor fuel containing same
US4292047A (en) Benzoquinone and amine reaction product for fuels and mineral oils
US3762889A (en) Detergent motor fuel containing the salt reaction product of a paraffinic oil oxidate and a substituted urea
US3052528A (en) Gasoline composition
US3275668A (en) Organometallic orthophosphates
US4416669A (en) Fuel and lubricant compositions for octane requirement reduction