US3870232A - Nozzle for projecting powdered solid products - Google Patents
Nozzle for projecting powdered solid products Download PDFInfo
- Publication number
- US3870232A US3870232A US35530673A US3870232A US 3870232 A US3870232 A US 3870232A US 35530673 A US35530673 A US 35530673A US 3870232 A US3870232 A US 3870232A
- Authority
- US
- United States
- Prior art keywords
- nozzle
- spray
- particles
- separate
- jet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012265 solid product Substances 0.000 title abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 27
- 239000007921 spray Substances 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 238000007493 shaping process Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 40
- 238000000227 grinding Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 10
- 230000005686 electrostatic field Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229920004943 Delrin® Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229920003319 Araldite® Polymers 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/03—Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying
- B05B5/032—Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying for spraying particulate materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/08—Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/14—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
- B05B7/1481—Spray pistols or apparatus for discharging particulate material
- B05B7/1486—Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/24—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
- B05B7/26—Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
- B05B7/28—Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/14—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87571—Multiple inlet with single outlet
- Y10T137/87587—Combining by aspiration
- Y10T137/87603—Plural motivating fluid jets
Definitions
- ABSTRACT The invention relates to a nozzle for projecting powdered solid products intended for coating-objects, of the kind comprising a device for shaping the incident mixture consisting of said powdered solid and its conveyor gas, into an outlet jet of substantially flat form, said nozzle essentially comprising a plurality of separate pipes passing at least partly through the nozzle in the direction of emission of the jet, and intended to be completely traversed by a specific portion of said jet, each of said separate pipes being provided with a suction device for said incident mixture, said suction devices being of the Venturi type, each comprising at least one conduit for injecting a flow of auxiliary gas into said pipes.
- the present invention relates to a projection nozzle for powdered products which can be used in all projection apparatus, electrostatic or other, for powdered solid products such as PVC, polyethylene, epoxy resin, polyamides, enamel, talcum powder, etc., these powdered solid products being intended for coating objects.
- the invention is concerned with a projection nozzle for powder products of the type specified above, in which the jet of powder mixed with its conveyor gas is discharged from the nozzle in the form of a flat jet shaped like a fan.
- the invention is also concerned with an electrostatic projection nozzle of this kind.
- the known devices of this kind comprise a flat fan-shaped nozzle in which the jet of powder, mixed with its conveyor gas, is projected in a thin uniform layer. Nozzles of this kind are not however entirely satisfactory in operation.
- the flat fan-shaped jet obtained is surrounded on both sides by a cloud of powder particles due to the turbulence created by the expansion to free air of the jet of gas passing out of the nozzle.
- the charged particles of powder having penetrated into these cavities or recesses then become fixed on the wall by virtue of the attraction due to the electrical image forces and to inter-molecular forces.
- a nozzle with a round jet could obviously be employed, but its use would however be difficult in the case where the surface to be coated is fairly large and where only a short time is available in order to ensure its coating, which is the case in the field of industrial powdering.
- a flat jet gives more rapid and furthermore more uniform powdering of the cavities and especially of those of elongated shape.
- flat jet nozzles are utilized in such manner that the jet is vertical in its largest dimension, and does not give a uniform distribution of powder in the jet.
- the density of powder per cubic centimetre is much greater in the lower part of the fan formed by the jet than in its upper part.
- the coating of the object is also irregular, which is particularly undesirable.
- the jet in the shape of a fan is incurvcd to-- wards the bottom, so that the use of the nozzle becomes difficult.
- Another known powdering nozzle device with a flat jet consists of a hemispherical nozzle, at the downstream extremity of which is provided a horizontal slot cutting the hemisphere and passing thereinto in the shape of a fan.
- This device has a number of disadvantages.
- the said slot has been given a small dimension with respect to the radius of the hemisphere, in order to obtain a sufficiently fine jet having an outlet angle which is not too large in order to ensure the coating of objects of all shapes.
- the flow-rate is limited.
- the device according to the invention makes it possible to overcome these drawbacks.
- the flow-rate of powder can be made variable over a very wide range, the cloud surrounding the jet in nozzles known at the present time being eliminated; the distribution of powder in the jet is well defined, and it is possible to construct nozzles according to the invention in such manner that the jet has any desired width, either very large or very small.
- the device is characterized in that the projection nozzle is constructed in such manner that its front portion comprises a number of separate openings, each of these openings forming the larger base of a tube in the shape of a truncated cone, each of these tubes terminating towards the rear portion of the nozzle in a separate powder injection suction device of the Venturi type, by means of which a definite portion of the mixture of powder and conveyor gas is tapped off by individual suction and is injected into the said pipe.
- the said circular openings are preferably placed in alignment in order that the jets discharged from each of these openings at a correct angle become mixed so as to form a flat jet.
- FIGS. la and 1b are perspective views of an electrostatic projection nozzle for powder products in accordance with the invention.
- FIG. 2 is a front view of the said nozzle
- FIG. 3 is a longitudinal section of a view looking on the side of the said nozzle
- FIG. 4 is a longitudinal section ofa view looking from above on the said nozzle
- FIGS. 5a and 5b are perspective views of a second electrostatic projection nozzle for products in powdered form, according to the invention.
- FIG. 6 is a front view of the said nozzle
- FIG. 7 is a longitudinal section of a view looking on the side of the said nozzle
- FIG. 8 is a view in cross-section projected at the level of the charge electrodes of the said nozzle.
- the electrostatic powdering nozzle shown diagrammatically in FIGS. 1 to 4 comprises a nozzle body 1 constituted by an electrically-insulated material such for example as that sold commercially under the trademark DELRIN or TEFLON, and screwed on the extremity 2 of an electrostatic powdering apparatus, such as a manual or automatic powdering gun described in U.S. Pat. Nos.
- the electrodes 4 and 5 are each constituted for example by a length of piano wire of 0.4 mm. in diameter, the whole of the length except for the front portion being embedded in an insulating material such as Araldite.
- the front face of each nozzle is provided, according to the invention, with a number of separate orifices 7, 8, 9, 10, 11 and 12, through which the powder is ejected in the direction of the object to be coated.
- the electrode 4 ensures the charging of the powder particles discharged from the orifices 7, 8 and 9, while the electrode 5 ensures the charge of the powder particles proceeding from the orifices 10, I1 and 12.
- Each of the orifices 7, 8, 9, 10, 11 and 12 forms the termination of separate tubes 13,14, 15, 16,17 and 18 which are preferably of frusto-conical section flaring outwards towards the front portion of the nozzle.
- the mixture of the powder and it conveyor gas is distributed over each of the pipes l3, 14, 15, 16, I7 and 18.
- this distribution is controlled in intensity by individual suction devices constituted, for each ofthe pipes 13 to 18, by one or a plurality of inlets I9, 20 of auxiliary gas under pressure, terminating in an oblique manner towards the front in the corresponding tube, so as to create a suction in the said tube by a system of the Venturi type.
- the auxiliary inlets l9 and 20 are connected to an auxiliary gas inlet such as the inlet which is normally intended, in the STAJET and MEGASTAJET spraying guns for the injection of turbulent secondary air.
- the STAJET or MEGASTAJET gun it is in practice only necessary to remove the vortex nozzle with which it is normally fitted, and then to screw on instead of this latter the nozzle according to the invention.
- the quantity of powder sucked-in by a given pipe is a function of the diameter of the orifice of the pipe and also of the diameter of the auxiliary inlets l9 and 20.
- the orifices 7 to 12 may be set back from the mouth 6, which latter is then constituted by a uniform slot which ensures a better mixture of the separate jets in order to form the flat jet.
- the axes of the pipes 13 to 18 are so arranged that they form as a whole a fan opening out towards the front of the nozzle, the angle existing between the axes of the end pipes 13 and 18 determining in practice the outlet angle of the jet of powder.
- FIGS. 5 to 8 show diagrammatically an electrostatic projection nozzle for powder products according to the invention, similar to that shown diagrammatically in FIGS. 1 to 4 and described above, but of an improved type.
- the electrostatic projection nozzle for powder products previously described comprises at least one charge electrode located outside the jet and level with the front mouth of the nozzle. Electrodes of this type are each constituted, as has been seen, by a glow-discharge point of small radius. It has unfortunately been found that, due to the glow-discharge produced by such a point, the latter was brought up to a temperature sufficient to melt the particles which become accidentally deposited on it.
- the nozzle in accordance with FIGS. 5 to 8, makes it possible, in the case of an electrostatic projection nozzle for powder products according to the invention, to prevent the points utilized as charge electrodes from being covered with powder, without requiring any additional supply of secondary air.
- auxiliary gas intended for the various suction devices of the Venturi type in the different pipes provided on a nozzle according to the invention, to create, in a manner known per se, a jet of auxiliary gas around needles constituting the charge electrodes, thereby preventing these needles from becoming covered with powder tending to melt on them and in consequence to form an insulating shell.
- the electrostatic powdering nozzle shown diagrammatically in the said FIGS. 5 to 8, thus comprises, in the same way as the nozzle previously described and shown diagrammatically in FIGS. 1 to 4, a nozzle body 21 made of an electrically-insulating material such as DELRIN of TEFLON and fixed on the extremity 22 of an electrostatic powdering device, such as a manual or automatic spraying gun sold by the Applicants under the respective Trade-Marks STAJET or MEGASTA- JET, together with a rear inlet ring 23 made of an electrically-conducted and preferably resistive material, forming the inlet orifice for the mixture of powder and its conveyor gas, and which is brought up to the high-tension voltage.
- a nozzle body 21 made of an electrically-insulating material such as DELRIN of TEFLON and fixed on the extremity 22 of an electrostatic powdering device, such as a manual or automatic spraying gun sold by the Applicants under the respective Trade-Marks STAJET or MEGASTA- JET, together with a
- Two electrodes 24 and 25 constituted by points of small radius are electrically connected to the ring 23 and extend towards the front up to the level of the mouth 26 of the nozzle.
- the electrodes 24 and 25 are for example constituted, as previously, each by a length of piano wire of 0.4 mm. in diameter, the whole of which with the exception of the front portion is embedded in an insulating material.
- each of these points 24 and 25 is surrounded by a sheath of air coming from the supply of secondary air provided, as previously, in order to create a suction device of the Venturi type in each of the separate frusto-conical pipes forming the interior of the nozzle.
- the body 21 of the nozzle has been pierced with three channels, 28, 29 and 210.
- the channel 210 is intended to surround the corresponding charge electrode 24 or 25, the channel 29 and the channel 28 are intended to provide a communication between the channel 210 and the supply of secondary air to the projection gun.
- a plug 211 prevents communication between the channel 29 and the exterior.
- the powdering nozzles according to the invention may be utilized on all apparatus intended for the coating of objects by projection of powdered solid products. They find a particularly advantageous industrial application in the field of electrostatic powdering for coating objects.
- a nozzle body defining a plurality of separate ducts passing through said body in the direction of said spray, each separate duct having an inlet and a spray outlet and adapted to be completely traversed by a portion of said particles, said plurality of ducts being positioned to form beyond said outlets a spray in'which said particles are uniformly distributed, and
- each suction device comprising a constriction at the inlet of the separate duct with which it is associated and at least one injection conduit positioned for discharging auxiliary gas received from sid secondary air supply means into said associated duct downstream of said constriction.
- each of said separate ducts has the shape of a truncated cone flared toward the outlet end of said duct.
- a nozzle as claimed in claim 2 in which the apex angle of said truncated cone lies between 0 and 14 degrees.
- a nozzle as claimed in claim 1 in which the axes of said separate ducts lie in a single plane.
- a nozzle as claimed in claim 1 which comprises at least one charge electrode positioned to impart an electrical charge to said particles but located outside the region occupied by said spray and level with the outlet of said nozzle.
- each charge electrode defines a point of small radius and is housed in a hollow tube positioned to be connected to said secondary air supply means.
- a nozzle as claimed in claim 7 in which said hollow tube is connected to said secondary air supply means through a duct in the body of said nozzle.
Landscapes
- Nozzles (AREA)
- Electrostatic Spraying Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7219635A FR2185938A5 (enrdf_load_stackoverflow) | 1972-05-26 | 1972-05-26 | |
FR7304028A FR2216775A6 (enrdf_load_stackoverflow) | 1973-02-01 | 1973-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3870232A true US3870232A (en) | 1975-03-11 |
Family
ID=26217127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US35530673 Expired - Lifetime US3870232A (en) | 1972-05-26 | 1973-04-30 | Nozzle for projecting powdered solid products |
Country Status (6)
Country | Link |
---|---|
US (1) | US3870232A (enrdf_load_stackoverflow) |
JP (1) | JPS529219B2 (enrdf_load_stackoverflow) |
CH (1) | CH570207A5 (enrdf_load_stackoverflow) |
DE (1) | DE2325989A1 (enrdf_load_stackoverflow) |
GB (1) | GB1413394A (enrdf_load_stackoverflow) |
IT (1) | IT984188B (enrdf_load_stackoverflow) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991942A (en) * | 1974-01-17 | 1976-11-16 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Long-range nozzle |
US4109861A (en) * | 1976-09-16 | 1978-08-29 | Solar Suede Corporation | Electrostatic flocking system |
US4715535A (en) * | 1986-04-28 | 1987-12-29 | Nordson Corporation | Powder spray gun |
US4886215A (en) * | 1985-10-18 | 1989-12-12 | Nordson Corporation | Hand operated powder spray pistol |
US4955960A (en) * | 1987-03-23 | 1990-09-11 | Behr Industrieanlagen Gmbh & Co. | Apparatus for coating workpieces electrostatically |
US5106590A (en) * | 1990-05-11 | 1992-04-21 | Davy Mckee (London) Limited | Gas mixer and distributor with heat exchange between incoming gases |
EP0857515A2 (en) | 1997-02-05 | 1998-08-12 | Illinois Tool Works Inc. | Exhausting turbine air from powder coating apparatus |
US5853126A (en) * | 1997-02-05 | 1998-12-29 | Illinois Tool Works, Inc. | Quick disconnect for powder coating apparatus |
US5947390A (en) * | 1997-12-30 | 1999-09-07 | Smith; Gary L | Reduced emissions flow control plate |
US6012657A (en) * | 1997-10-03 | 2000-01-11 | Nordson Corporation | Powder spray head for fan-like patterns |
US6328224B1 (en) | 1997-02-05 | 2001-12-11 | Illinois Tool Works Inc. | Replaceable liner for powder coating apparatus |
US20050173555A1 (en) * | 2002-06-07 | 2005-08-11 | Kyowa Hakko Kogyo Co. Ltd | Powder density-measuring device and automatic powder spray amount control system using the same |
EP2343148A1 (en) * | 2010-01-12 | 2011-07-13 | Rolls-Royce PLC | Spray nozzle |
EP2514554A1 (en) * | 2011-04-20 | 2012-10-24 | Rolls-Royce plc | Heat source for material processing with a laser source and an optical element for laser beam intensity distribution |
US20140284406A1 (en) * | 2013-03-21 | 2014-09-25 | Bruker Daltonik Gmbh | Multi-nozzle chip for electrospray ionization in mass spectrometers |
US10086386B2 (en) | 2016-02-09 | 2018-10-02 | Honda Motor Co., Ltd. | Coating nozzle and coating device |
US20180369878A1 (en) * | 2017-06-26 | 2018-12-27 | Citic Dicastal Co., Ltd | Automatic powder cleaning system for mixed-line hub bolt holes and combined powder cleaning gun |
US12403490B1 (en) * | 2023-11-10 | 2025-09-02 | Ivan Pejovic | Powder coating nozzle |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5275796A (en) * | 1975-12-17 | 1977-06-25 | Mitsui Eng & Shipbuild Co Ltd | Method of positioning ship body blocks |
JPS57940Y2 (enrdf_load_stackoverflow) * | 1976-09-01 | 1982-01-07 | ||
JPS5471841A (en) * | 1977-11-18 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPS54124310U (enrdf_load_stackoverflow) * | 1978-02-21 | 1979-08-30 | ||
JPS60102965A (ja) * | 1983-11-08 | 1985-06-07 | Yoshihisa Jin | 粉体塗料による静電塗装方法及び粉体塗料噴射ノズル |
DE3417700C2 (de) * | 1984-05-12 | 1987-02-19 | Ransburg-Gema AG, St. Gallen | Vorrichtung zum Sprühbeschichten von Gegenständen mit Pulver |
GB2158748A (en) * | 1984-05-17 | 1985-11-20 | John Link | Abrasive blasting nozzle |
DE3608426C3 (de) * | 1986-03-13 | 1994-11-24 | Gema Volstatic Ag | Elektrostatische Sprüheinrichtung für Beschichtungspulver |
JPH0414624U (enrdf_load_stackoverflow) * | 1990-05-29 | 1992-02-05 | ||
GB2328166A (en) * | 1997-08-14 | 1999-02-17 | Ernest Joscelyn Clerk | Irrigation nozzle |
JP5885953B2 (ja) * | 2011-07-25 | 2016-03-16 | 株式会社カワタ | 粉体分散装置および方法 |
CN104802767A (zh) * | 2015-04-15 | 2015-07-29 | 四川和鼎环保工程有限责任公司 | 悬吊臂式线喷射洗车系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US777680A (en) * | 1904-08-22 | 1904-12-20 | Valdemar F Laessoe | Oil-burner. |
US3677470A (en) * | 1970-06-01 | 1972-07-18 | Ransburg Electro Coating Corp | Nozzle holder |
US3746253A (en) * | 1970-09-21 | 1973-07-17 | Walberg & Co A | Coating system |
-
1973
- 1973-04-30 US US35530673 patent/US3870232A/en not_active Expired - Lifetime
- 1973-04-30 IT IT2358773A patent/IT984188B/it active
- 1973-05-11 GB GB2268373A patent/GB1413394A/en not_active Expired
- 1973-05-22 DE DE2325989A patent/DE2325989A1/de active Pending
- 1973-05-24 CH CH743873A patent/CH570207A5/xx not_active IP Right Cessation
- 1973-05-24 JP JP5730473A patent/JPS529219B2/ja not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US777680A (en) * | 1904-08-22 | 1904-12-20 | Valdemar F Laessoe | Oil-burner. |
US3677470A (en) * | 1970-06-01 | 1972-07-18 | Ransburg Electro Coating Corp | Nozzle holder |
US3746253A (en) * | 1970-09-21 | 1973-07-17 | Walberg & Co A | Coating system |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991942A (en) * | 1974-01-17 | 1976-11-16 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Long-range nozzle |
US4109861A (en) * | 1976-09-16 | 1978-08-29 | Solar Suede Corporation | Electrostatic flocking system |
US4886215A (en) * | 1985-10-18 | 1989-12-12 | Nordson Corporation | Hand operated powder spray pistol |
US4715535A (en) * | 1986-04-28 | 1987-12-29 | Nordson Corporation | Powder spray gun |
US4955960A (en) * | 1987-03-23 | 1990-09-11 | Behr Industrieanlagen Gmbh & Co. | Apparatus for coating workpieces electrostatically |
US5106590A (en) * | 1990-05-11 | 1992-04-21 | Davy Mckee (London) Limited | Gas mixer and distributor with heat exchange between incoming gases |
US6328224B1 (en) | 1997-02-05 | 2001-12-11 | Illinois Tool Works Inc. | Replaceable liner for powder coating apparatus |
EP0857515A2 (en) | 1997-02-05 | 1998-08-12 | Illinois Tool Works Inc. | Exhausting turbine air from powder coating apparatus |
US5853126A (en) * | 1997-02-05 | 1998-12-29 | Illinois Tool Works, Inc. | Quick disconnect for powder coating apparatus |
US6012657A (en) * | 1997-10-03 | 2000-01-11 | Nordson Corporation | Powder spray head for fan-like patterns |
US5947390A (en) * | 1997-12-30 | 1999-09-07 | Smith; Gary L | Reduced emissions flow control plate |
US20050173555A1 (en) * | 2002-06-07 | 2005-08-11 | Kyowa Hakko Kogyo Co. Ltd | Powder density-measuring device and automatic powder spray amount control system using the same |
US9120123B2 (en) * | 2010-01-12 | 2015-09-01 | Rolls-Royce Plc | Spray nozzle |
EP2343148A1 (en) * | 2010-01-12 | 2011-07-13 | Rolls-Royce PLC | Spray nozzle |
US20110168092A1 (en) * | 2010-01-12 | 2011-07-14 | Rolls-Royce Plc | Spray nozzle |
GB2476835B (en) * | 2010-01-12 | 2012-02-01 | Rolls Royce Plc | Spray nozzle |
EP2514554A1 (en) * | 2011-04-20 | 2012-10-24 | Rolls-Royce plc | Heat source for material processing with a laser source and an optical element for laser beam intensity distribution |
US20140284406A1 (en) * | 2013-03-21 | 2014-09-25 | Bruker Daltonik Gmbh | Multi-nozzle chip for electrospray ionization in mass spectrometers |
US9242258B2 (en) * | 2013-03-21 | 2016-01-26 | Bruker Daltonik Gmbh | Multi-nozzle chip for electrospray ionization in mass spectrometers |
US10086386B2 (en) | 2016-02-09 | 2018-10-02 | Honda Motor Co., Ltd. | Coating nozzle and coating device |
US20180369878A1 (en) * | 2017-06-26 | 2018-12-27 | Citic Dicastal Co., Ltd | Automatic powder cleaning system for mixed-line hub bolt holes and combined powder cleaning gun |
US10639681B2 (en) * | 2017-06-26 | 2020-05-05 | Citic Dicastal Co., Ltd. | Automatic powder cleaning system for mixed-line hub bolt holes and combined powder cleaning gun |
US12403490B1 (en) * | 2023-11-10 | 2025-09-02 | Ivan Pejovic | Powder coating nozzle |
Also Published As
Publication number | Publication date |
---|---|
JPS4942742A (enrdf_load_stackoverflow) | 1974-04-22 |
GB1413394A (en) | 1975-11-12 |
IT984188B (it) | 1974-11-20 |
CH570207A5 (enrdf_load_stackoverflow) | 1975-12-15 |
JPS529219B2 (enrdf_load_stackoverflow) | 1977-03-15 |
DE2325989A1 (de) | 1974-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3870232A (en) | Nozzle for projecting powdered solid products | |
US3248606A (en) | Apparatus for dispersing and electrically charging substances in discrete particulate form | |
EP1171243B1 (en) | High mass transfer electrosprayer | |
US3676638A (en) | Plasma spray device and method | |
CA1125334A (en) | Method and apparatus for atomizing, especially for powdered coating-material | |
US4802625A (en) | Electrostatic spray coating device for coating with powder | |
GB1518547A (en) | Coating apparatus | |
JPH0510144B2 (enrdf_load_stackoverflow) | ||
WO1995004604A1 (en) | Induction spray charging apparatus | |
EP0237207A1 (en) | Gun head for powder painting | |
CH645040A5 (it) | Spruzzatore per sostanze in polvere a carica elettrostatica. | |
US4715535A (en) | Powder spray gun | |
JP3866295B2 (ja) | 粉体噴霧装置 | |
JPS62210066A (ja) | 粉体荷電装置および静電粉体塗着装置 | |
US5686149A (en) | Spray device and method for powder coating material | |
ITMI20001023A1 (it) | Dispositivo per verniciatura elettrostatica, a geometria con profilo venturi planare per emissione lineare e a densita' uniforme di polvere, | |
US3351285A (en) | Spraying apparatus having improved spray controlling means | |
JPH02503648A (ja) | 導電性被覆液用吹付け被覆装置 | |
GB1587952A (en) | Electrostatic spraying device | |
US3476319A (en) | Electrostatic powder-coating apparatus | |
EP0230723B1 (en) | Powder charging apparatus and electrostatic powder coating apparatus | |
KR800001711Y1 (ko) | 분사패턴의 조정이 가능한 분체도장용 분사노즐 | |
RU18654U1 (ru) | Распылительная головка электродугового металлизатора | |
RU2228799C2 (ru) | Устройство для электродуговой металлизации | |
EP4547409A1 (en) | Applicator for electrostatic deposition coating of continuous moving web |