US3865699A - Electrodeposition on non-conductive surfaces - Google Patents
Electrodeposition on non-conductive surfaces Download PDFInfo
- Publication number
- US3865699A US3865699A US408410A US40841073A US3865699A US 3865699 A US3865699 A US 3865699A US 408410 A US408410 A US 408410A US 40841073 A US40841073 A US 40841073A US 3865699 A US3865699 A US 3865699A
- Authority
- US
- United States
- Prior art keywords
- nickel
- sulfur
- metal
- elastomer
- carbon black
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004070 electrodeposition Methods 0.000 title description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 117
- 238000000034 method Methods 0.000 claims abstract description 89
- 230000008569 process Effects 0.000 claims abstract description 84
- 239000011593 sulfur Substances 0.000 claims abstract description 65
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 65
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 58
- 229910052751 metal Inorganic materials 0.000 claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 51
- 239000006229 carbon black Substances 0.000 claims abstract description 40
- 238000007747 plating Methods 0.000 claims abstract description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000010941 cobalt Substances 0.000 claims abstract description 20
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims description 41
- 229920001971 elastomer Polymers 0.000 claims description 41
- 239000011248 coating agent Substances 0.000 claims description 36
- 229920000642 polymer Polymers 0.000 claims description 35
- 239000000806 elastomer Substances 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 238000009713 electroplating Methods 0.000 claims description 13
- -1 polyethylene Polymers 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 229920003023 plastic Polymers 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 239000002659 electrodeposit Substances 0.000 claims description 8
- 229920001084 poly(chloroprene) Polymers 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 229920000620 organic polymer Polymers 0.000 claims description 5
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 4
- 229920001897 terpolymer Polymers 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000000615 nonconductor Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- 239000011872 intimate mixture Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 235000019241 carbon black Nutrition 0.000 description 21
- 239000002585 base Substances 0.000 description 9
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 8
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 8
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 7
- 230000001464 adherent effect Effects 0.000 description 7
- 239000004922 lacquer Substances 0.000 description 7
- 239000005060 rubber Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000008199 coating composition Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000003892 spreading Methods 0.000 description 5
- 230000007480 spreading Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229960002089 ferrous chloride Drugs 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- OFHMODDLBXETIK-UHFFFAOYSA-N methyl 2,3-dichloropropanoate Chemical compound COC(=O)C(Cl)CCl OFHMODDLBXETIK-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 2
- 229960002447 thiram Drugs 0.000 description 2
- VNDRMZTXEFFQDR-UHFFFAOYSA-N (piperidine-1-carbothioyltrisulfanyl) piperidine-1-carbodithioate Chemical compound C1CCCCN1C(=S)SSSSC(=S)N1CCCCC1 VNDRMZTXEFFQDR-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 229940054266 2-mercaptobenzothiazole Drugs 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920005556 chlorobutyl Polymers 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010338 mechanical breakdown Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- QCAZHHXMIVSLMW-UHFFFAOYSA-N o-butyl (butoxycarbothioyldisulfanyl)methanethioate Chemical compound CCCCOC(=S)SSC(=S)OCCCC QCAZHHXMIVSLMW-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000010058 rubber compounding Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- RKQOSDAEEGPRER-UHFFFAOYSA-L zinc diethyldithiocarbamate Chemical compound [Zn+2].CCN(CC)C([S-])=S.CCN(CC)C([S-])=S RKQOSDAEEGPRER-UHFFFAOYSA-L 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/188—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
Definitions
- ABSTRACT A process for metalizing a non-conductive substrate wherein the substrate is coated with an organic polymer-carbon black mixture, having a volume resistivity of less than about 1,000 ohm-centimeters, the surface of the mixture is caused to contain sulfur and the thus treated substrate is placed as a cathode in a nicke1, cobalt or viron plating bath to cause a rapid spread of metal across the thus treated surface.
- the present invention is concerned with electrodeposition and more particularly with electroplating of a non-electrically conductive substrate.
- the first process involves the coating of the non-conductive object with an electrically conductive lacquer followed by electroplating.
- the second process involves sensitizing the non-conductive object, chemically depositing a metal on the sensitized surface and thereafter electroplating the thus metallized surface.
- the second process as generally practiced by the prior art can achieve good results but only at a cost of employing a large number of individual processing operations carried out with very great care by skilled per sonnel. Furthermore, because the underlying chainically deposited metal can be different from metalsubsequently electrochemically deposited, there is a good chance of forming an electrochemical couple between the two even when, nominally the metals are the same. Thus the possibility of accelerated, localized corrosion exists wherever and whenever the outer electrodeposited layer is not continuous.
- Minklei proposed to treat a plastic surface with an aqueous solution of alkali metal sulfide followed by contacting the treated surface with a metal salt prior to electroplating.
- Brown et al. proposed contacting a plastic surface with a solu-. tion or dispersion of sulfur in an organic medium and contacting the treated surface with an aqueous solution of cuprous salt prior to plating.
- the proposals involve the formation of a metal sulfide on the plastic surface and not the type of metal-polymer bond, which, as will become apparent from the subsequent description, is formed by virtue of'the process of the present invention.
- FIG. 1 depicts electrodeposit growth obtained in accordance with the present invention
- FIG. 2 depicts undesirable electrodeposit growth obtained when an essential requirement of the process of the present invention is omitted.
- the present invention contemplates a process wherein at least part of a substrate for electrodeposition comprises or is coated with an adherent layer of a mixture of an organic polymer and an electrically conductive carbon black of such proportion so as to have an electrical resistivity of less than about 1,000 ohm-centimeter; at least the exposed surface of the layer is caused to contain an effective amount of sulfur, and the thus coated object is then introduced into a nickel, cobalt, or iron plating bath as the cathode to cause rapid deposition of metal across the coated surface. Thereafter the metal coated object can be subjected to further electrodeposition in ways well known to those skilled in the art.
- the polymer used along with conductive carbon black in the coating layer (and which. may also constitute the substrate) is, advantageously a member of the group of organic polymers which readily react with molecular sulfur or a sulfur donor of the type described herein.
- Advantageous polymers for use in the process of the present invention include hydrocarbonaceous and substituted hydrocarbonaceouselastomers such as natural rubber, a polychloroprene, butyl rubber, chlorinated butyl rubber, polybutadiene rubber, acryloni trile-butacliene rubber, styrene-butadiene rubber, etc.
- elastomers- are unsaturated and readily combine with molecular sulfur through either unsaturated linkages in the carbon skeletal structure of the polymer or through activated sites on the polymer structure associated with unsaturated linkages or pendant substituent atoms.
- Another advantageous type of polymer for use in the process of the present invention is an ethylenepropylene terpolymer comprising a saturated poly-ethylene-propylene main chain having unsaturated groups derived from non-conjugated dienes, e.g., hexadiene, dicyclopentadiene etc., pendant from the main chain.
- Such a terpolymer is readily vulcanized with sulfur.
- polymersusefull in the process of the present invention include essentially saturated polymers such as polystyrene, polyvinyl chloride, polyurethane etc., which apparently possess active sites for reaction with sulfur. While polyethylene (and similar polymers of limited solubility) are not readily suited for use in coating formulations, it has been found that milled and molded polyethylene compositions containing carbon black and a sulfur donor can advantageously be employed in the process of the present invention. Undoubtedly some organic polymers, for example, perhaps, polytetrafluoroethylene are too inert to react with sulfur and these polymers are excluded from the ambit of the present invention. However, the great bulk of normally used organic polymeric materials appears to be useable in the process of the present invention.
- those having elastomeric characteristics e.g., rubbers, elastomeric polyurethane etc.
- an elastomer has the ability to dampen stress concentrations which can result in failure of the deposited coating upon exposure to applied stress or thermal cycling.
- the carbon black included for the purpose of providing a proper degree of electrical conductivity acts as a reinforcement agent to improve the physical characteristics of the elastomer. Further factors which make elastomers most advantageous include rapidity of metal coverage and relatively low cost of materials.
- the unsaturated elastomers are deemed to be the most advantageous.
- the exposed surface ofthe polymer-conductive carbon black composition is caused to contain sulfur it is possible that the sulfur initially attacks the polymer chain at activated positions, to provide activated sites for bonding of nickel to the polymer.
- nickel deposits are made in accordance with the teachings of the present invention very strong, highly useful metal to organic bonds are formed very strong, highly useful metal to organic bonds are formed very rapidly on polymer-carbon black surfaces. It is important to avoid overcuring of a polymer with sulfur (or other curative) prior to plating. It appears that a polymer-sulfur-metal bond can occur with most polymers as long as activated sites on the polymer chain exist. Heavy curing, especially in sulfur monochloride will remove these sites from an unsaturated elastomer causing poor plating both as to speed of coverage and as to adherence of the metal. I
- the exposed surface of the polymer-carbon black plating substrate can contain sulfur by inclusion of sulfur in the whole mass of the plating substrate or by enriching the exposed surface with sulfur.
- a plating substrate containing an unsaturated polymeric elastomer will contain about 0.5% to about 5% of sulfur based upon weight of elastomer in order to permit curing of the elastomer.
- agents other than sulfur or sulfur compounds are used for curing the exposed surface of the elastomer can be enriched in sulfur by contacting the surface with a solution containing elemental sulfur or by exposing the surfaces to a sulfur-containing vapor e.g., the vapor of sulfur monochloride (S Cl).
- S Cl sulfur monochloride
- the plating substrate will normally contain ingredients other than sulfur, elastomer and conductive carbon black such are normally included in rubber compositions.
- Such other ingredients include vulcanization accelerators and modifiers, antioxidants and similar types of materials which have been found to be useful in rubber technology.
- vulcanization accelerators and modifiers include vulcanization accelerators and modifiers, antioxidants and similar types of materials which have been found to be useful in rubber technology.
- all ingredients should be limited in amount to amounts which will be permanently soluble in the cured elastomer at normal temperatures i.e., about 25C.
- Plating substrates used in the present invention usually contain carbon black and polymer in weight ratios of about 0.2 to about 1.5 (conductive carbon black to polymer) although somewhat higher or lower weight ratios can be used. It is usually more advantageous to employ weight ratios of conductive carbon black to polymer in the range of about 0.5 to L0. It has been noted with coatings on non-electrically conductive substrates that speed of coverage of polymer-carbon black surfaces becomes very low at very high loadings of carbon black indicating that a minimum surface concentration of polymer is necessary not only for attaining mechanical strength but also forpurposes of facilitating the metal spreading mechanism of the invention. Because carbon blacks vary greatly depending upon sources and methods of manufacture, it is not practical to specify with more precision the relative amounts of polymer and carbon black required in accordance with the present invention.
- the criterion of operability of a particular polymer-carbon black mixture is the electrical volume resistivity.
- the volume resistivity must be less than about l,000 ohm-centimeters and more advantageously is less than about 10 ohmcentimeters.
- Optimum results have been obtained using conductive carbon blacks made from acetylene such as sold by Shawingan Products Corporation under the trade designation Acetylene Carbon Black.
- conductive carbon black which possesses relatively high resistance to mechanical breakdown during milling with a polymer is sold by Cabot Corporation under the trade designation of Vulcan XC72.
- mixtures of conductive and non-conductive carbon blacks can be used provided that the final polymer-carbon black product has a volume resistivity in the range set forth hereinbefore.
- the proper volume re sistivity can be achieved in polymer-carbon black compositions which are made entirely with non-conductive carbon blacks for example, furnace blacks.
- Such compositions ordinarily do not have adequate electrical characteritics when used as coatings and dried on a substrate. However, these compositions may have adequate characteristics for use as molded, extruded or like-formed shapes which can be treated electrochemically in accordance with the present invention without a separate preliminary coating step.
- the rate of coverage of nickel cobalt or iron on a cathode having a surface of polymer-carbon black mixture in accordance with the present invention extending from a point of contact with an electronic conductor (e.g., a metal) is dependent at least upon the resistivity of the mixture, the sulfur content at the mixture surface, the applied voltage across the anodeelectrolyte-cathode circuit; and the nature of the polymer.
- an electronic conductor e.g., a metal
- the minimum rate at which nickel spreads across the cathode surface at a voltage of 3.0 volts is about 0.5 centimeter per minute (cm/min).
- a series of polymer-acetylene black compositions were made containing 100 parts by weight of polymer and 50 parts by weight of the carbon black.
- compositions devoid of sulfur were coated on an ABS panel having a metal contact point at one end.
- the panels were immersed in a Watts type nickel plating bath as cathodes at a voltage of 3.0. The rate of nickel coverage was measured.
- the panels were dipped in a solution of 1% (by weight) of sulfur in cyclohexane, removed and the cyclohexane allowed to evaporate prior to electrolytic treatment in exactly the same manner as was the first series. The results of these tests are set forth in Table I.
- Table I shows that a very small amount of sulfur incorporated in the exposed surface of the polymer increases nickel coverage rates by a factor of at least about 2.5.
- rates of nickel coverage can be much higher. For example, with a composition containing 100 parts by weight nitrile rubber, 50 parts by weight acetylene black and 4 parts by weight sulfur, nickel coverage rates at 3.0 volts of over 6 cm/min. can be obtained. The rate of nickel coverage increases linearly with increases in voltage.
- a nickel coverage rate of about 9.5 cm/min. was obtained at a voltage of 3.0 and a rate of about 14.7 cm/min. at a voltage of 4.5. It is important that the sulfur present in the polymer-carbon black compositions be in the form of non-ionic sulfur, i.e., that. it not be tied up as a metal sulfide or in a stable ion such as the sulfate ion.
- sulfur in the form of a sulfur donor such as sulfur chloride, 2-mercapto-benzothiazole, N- cyclohexyl-2-benzothiozole sulfonomide, dibutyl xanthogen disulfide and tetramethyl thiuram disulfide or combinations of these and sulfur can also be employed.
- sulfur donors are the materials which have been used or have been proposed for use as vulcanizing agents or accelerators.
- FIGS. 1 and 2 depict indentical acrylonitrile-butadienestyrene plaques 11 coated with polymer-carbon black coating 12 containing 20 parts by weight of neoprene and 10 parts by weight of acetylene black and having a wire contact 13.
- the coating 12 of FIG. I initially contained a small amount of thiuram and was treated with a 1% by weight solution of sulfur in cyclohexane prior to plating so as to incorporate a small effective amount of sulfur in the coating.
- Coating 12 of FIG. 2 was made with a neoprene free of thiruam, was not exposed to a sulfur solu tion and therefore contained no sulfur.
- Both plaques were made cathodic under identical voltage conditions (3 volts closed circuit cell potential) in the same nickel plating bath. After 1 /2 minutes the area 15 above line 14 in FIG. 1 was uniformly coated with a highly adherent nickel deposit. At this time the plaque .was removed from the plating bath.
- the cathodic electrolytic treatment used according to the present invention to induce nickel coverage across the expanse of polymer-carbon black mixture surface is carried out in an electrolyte bath from which nickel can be deposited and which, ordinarily is aqueous and contains about to about grams per liter (gpl) of nickel ion, complementing anion from the group of sulfate, chloride, sulfamate, fluoborate and mixtures thereof and exhibits a pH of about 2.8 to about 4.5 stabilized by inclusion of a buffer such as boric acid in the bath.
- An ordinary Watts bath is quite satisfactory for use both as'the initial bath for nickel coverage and for subsequentt plating.
- nickel coverage after nickel coverage has been established, one can plate in a nickel bath containing any kind of additive, e.g., levelling agents or brightening agents, etc., known to the art. Further, after nickel coverage is established one can plate not only with nickel but also with any other electrodepositable metal compatible with nickel, e.g., chromium, copper. zinc, tin, silver, gold, platinum, palladium, cadmium etc.
- any kind of additive e.g., levelling agents or brightening agents, etc.
- the cathodic treatments in accordance with the invention to induce the growth of iron or cobalt across the polymer carbon-black surface can be carried out in any electroplating bath from which these metals can be deposited.
- the process of the invention has been carried out using an aqueous ferrous chloride bath to deposit iron and an aqueous cobalt chloridecobalt sulfate bath to deposit cobalt. Details of operation for these and other iron, cobalt and nickel baths can be obtained from any text on electroplating, for example, Electoplating Engineering Handbook, edited by A. Kenneth Graham, Reinhold Publishing Corporation, Copyright 1955. Those skilled in the art will appreciate that for particular purposes it may be advantageous to deposit alloys of nickel, cobalt and iron such as ironnickel alloys, nickel-cobalt alloys etc.
- the present invention is especially concerned with electrodeposition of metal on a wide variety of plastic and other non-conductors (and on other materials which are not generally amenable to ordinary electroplating techniques) using a coating technique involving an essentially solid polymer carbon-blacksulfur-containig coating adhered directly or through an intermediate layer onto a base
- the invention is also applicable to bases having the requisite carbon blackpolymer-sulfur composition.
- a sample of EPDM synthetic rubber having a volume resistivity of about 235 ohm-centimeters and containing reinforc ing type, furnace carbon black and sulfur is directly plateable in a Watts-type nickel bath to provide a highly adherent, rapidly formed overall deposit of nickel.
- the spreading of the deposit from a point of metallic conduction differs somewhat in the case of a solid base of polymer-carbon black-sulfur from the spreading depicted in FIG. 1 of the drawing which is typical of metal spreading using coatings.
- a solid polymer-carbon black-sulfur base With a solid polymer-carbon black-sulfur base the electrodeposited metals tends to rapidly film over the entire surface of the object blurring to a certain extent the metal deposition front depicted in FIG. 1 of the drawing.
- the aforedescribed coating formulation was sprayed on an acrylonitrile-butadiene-styrene (ABS) surface to provide a dried coating about 0.0025 cm. thick.
- ABS acrylonitrile-butadiene-styrene
- the coated and dried ABS surface was then exposed for 40 seconds to the vapor above sulfur monochloride held at room temperature (about 25C).
- the surface having a single metal contact was'then placed in a Watts-type nickel plating bath as a cathode with a driving voltage of about 3 volts in opposition to a nickel anode.
- the nickel deposit grew rapidly across the coated ABS surface and deposition was continued until the deposited nickel had a substantially uniform thickness of about 0.0025 cm.
- the electrodeposit showed a 90 peel strength of about 1.88 kilogram per centimeter (kg/cm) width (10.5 lb/in width) when pulled at 2.54 cm/minute.
- Coating A was applied by brushing onto a poly-(vinyl chloride) (PVC) plaque, and then coating B was applied in similar fashion over the dried coating A. After curing in an air oven for 3 hours at 90C. the plaque was dipped into a l w/o solution of sulfur in cyclohexane, then plated to a thickness of about 0.001 inch with Watts nickel. Initially the nickel deposit grew rapidly across the surface of the plaque from a single metal contact. A 90 peel strength of 2.5 kg/cm l 2 lb/in) was achieved for the electrodeposit.
- PVC poly-(vinyl chloride)
- Neoprene AF 50 Neozone D l
- EXAMPLE IV Coatings A and B from Example 11 were modified so that the concentration of curatives (CP-B, Ethazate, D-B-A and sulfur) was doubled.
- MEK was added to coating A such that its final weight equaled that of the xylene (i.e., from 11.3 to 77.5).
- An ABS panel was successively dipped in modified coating A, then into modified coating B. The panel was cured at 85C for 1 /2 hours, during which time a noticeable sulfur bloom appeared on the surface. The panel was then directly electroplated with Watts nickel with a rapid initial rate of coverage. The resulting metal deposit exhibited a 90 peel adhesion of about 3.58 kg/c m of width lb/in).
- EXAMPLE V An ABS panel (Cycolac standard test plaque) was coated by successively dipping in first coating A, then coating B of Example 11. After curing 15 hours in air at 85C, the panel was dipped into a l w/o solution of sulfur in cyclohexane. It was then plated with a Watts FLASH, 0.0009 inch of semibright (Perflow) nickel, 0.0003 inch of bright (Udylite) nickel and 15 p. in conventional chromium. The plated panel was given a thermal cycle of 90C for 2 hours, room temperature for 1 hour, 40C for 2 hours, and then given a 16-hour exposure to CASS testing. No detectable failure resulted on the panel from this treatment.
- ABS plastic plaques were used, the process of the present invention is equally as well adapted to the electroplating of utilitarian and decorative objects made of other plastics such as polystyrene, phenol formaldehyde resins, ureaformaldehyde resins, polyacrylates and methacrytates, polyurethane, silicones, vinyls, vinylidenes, epoxys, polyolefins and similar thermoplastic and thermosetting resinous materials.
- the process of the present invention can also be used to plate metals which are coated with non-metallic, non-electrically conductive coatings, e.g., varnished aluminum and the like.
- Example VI A sample plastic treated and coated as in Example 111 was immersed as a cathode in an aqueous plating bath containing 300 gpl of ferrous chloride, 150 gpl of calcium chloride adjusted to a pH of 1.2 to 1.8 and held at a temperature of about 87C. Upon passage of current through the bathat a voltage of 6 volts, the surface of the sample became covered with a smooth adherent coating of iron.
- Example VII The sample of Example V] was. immersed as a cathode in an aqueous cobalt plating bath containing about 335 gpl of cobalt sulfate, about 74 gpl of cobalt chlo ride, about 46.5 gpl of boric acid and about 1.2 gpl of sodium fluoborate. Upon passage of current through the bath, the sample rapidly filmed over with cobalt.
- EXAMPLE Vlll One hundred parts by weight of a low-density, general purpose polyethylene were milled in a Banbury type mixer at a temperature of about 178C. along with 50 parts by weight of Vulcan XC72 carbon black (supplied by Cabot Corporation) and Tetrone A brand dipentamethylenethiuram hexasulfide. The milled composition was then molded and the molding thus produced was inserted as a cathode in a nickel plating bath. Nickel rapidly spread over the surface from a metallic point of contact and plating was continued to provide a firm, adherent nickel electrodeposit having a peel strength of about 1.8 kg/cm of width.
- Example Vlll is illustrative of a broader range of polyethylene, polypropylene and mixtures and copolymers thereof having blended therein about 15% to about 60% by weight (of the total composition) of carbon black, to give a volume resistivity of less than about 1,000 ohm-centimeters, along with sulfur or a sulfur donor for example of the dipentamethylenethiuran hexasulfide type in an amount equivalent in sulfur content to about 1% to about 10% by weight (of the total composition) of dipentamethylenethiuram hexasulfide.
- Example VIII the bond strength of nickel'electrodeposited on the polymer surface improves with aging at room temperature.
- the 90 peel strength set forth in Example VIII is the peel strength observed immediately after plating. After a few days aging the observed bond strength is often double (or more) of that strength as set forth in Example VIII.
- a process for metallizing comprising (1) introducing an essentially solid surface in contact with a metallic conductor into an electroplating bath from which a metal from the Group VIII of the periodictable and alloys thereof can be plated; (2) said essentially solid surface comprising an intimate mixture of an organic polymer reactive with sulfur, a carbon black and a substance from the group of sulfur and sulfur donors and having a volume resistivity of less than about 1,000 ohm-centimeters and (3) applying a potential to said surface through said metallic conductor to cause metal from said group to deposit upon said surface in an essentially uniform manner from the locus of said metallic conductor.
- metal is from the group of iron, nickel and cobalt.
- a process as in claim 2 wherein the metal deposited is from the group of nickel and cobalt.
- composition used to form the coating contains sulfur.
- composition used to form the coating is treated subsequent to coating formation to enrich the surface thereof with sulfur.
- a process as in claim 11 wherein the material of the coating has a volume resistivity in the range of about 1 to about 10 ohm-centimeters.
- a process as in claim 10 wherein the metal deposited is from the group of cobalt and nickel.
- a process as in claim 24 wherein the uniform composition includes polyethylene or polypropylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US408410A US3865699A (en) | 1973-10-23 | 1973-10-23 | Electrodeposition on non-conductive surfaces |
CA203,843A CA1037896A (en) | 1973-10-23 | 1974-07-02 | Electrodeposition of non-conductive surfaces |
JP49100794A JPS5067731A (enrdf_load_stackoverflow) | 1973-10-23 | 1974-09-02 | |
GB44629/74A GB1480522A (en) | 1973-10-23 | 1974-10-15 | Electrodeposition on organic-polymer-containing surfaces |
AU74387/74A AU488730B2 (en) | 1973-10-23 | 1974-10-16 | Electrodispostion on non-conductive surfaces |
ZA00746656A ZA746656B (en) | 1973-10-23 | 1974-10-21 | Electrodeposition on non-conductive surfaces |
ES431240A ES431240A1 (es) | 1973-10-23 | 1974-10-22 | Un procedimiento de electrodeposicion. |
CH1411474A CH592503A5 (enrdf_load_stackoverflow) | 1973-10-23 | 1974-10-22 | |
IT53660/74A IT1032105B (it) | 1973-10-23 | 1974-10-22 | Procedimento di deposizione elettrolitica su superfici non conduttive |
NL7413806A NL7413806A (nl) | 1973-10-23 | 1974-10-22 | Werkwijze voor het elektrolytisch afzetten van een metaal op een substraat. |
DE19742450069 DE2450069A1 (de) | 1973-10-23 | 1974-10-22 | Verfahren zum galvanischen abscheiden von metallen |
SE7413267A SE410627B (sv) | 1973-10-23 | 1974-10-22 | Sett att elektropletera en yta pa ett foremal och komposition for genomforande av detta sett |
BE149797A BE821382A (fr) | 1973-10-23 | 1974-10-23 | Electrodeposition de metal sur un substrat non conducteur |
AT853474A AT334150B (de) | 1973-10-23 | 1974-10-23 | Verfahren zum elektroplattieren von nichtleitendem material |
FR7435534A FR2248339B1 (enrdf_load_stackoverflow) | 1973-10-23 | 1974-10-23 | |
IN2402/CAL/74A IN142485B (enrdf_load_stackoverflow) | 1973-10-23 | 1974-11-02 | |
US05/527,532 US4009093A (en) | 1973-10-23 | 1974-11-27 | Platable polymeric composition |
CA302,771A CA1070939A (en) | 1973-10-23 | 1978-05-08 | Electrodeposition of non-conductive surfaces |
JP57094655A JPS585378A (ja) | 1973-10-23 | 1982-06-02 | 電着用重合体組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US408410A US3865699A (en) | 1973-10-23 | 1973-10-23 | Electrodeposition on non-conductive surfaces |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/527,532 Division US4009093A (en) | 1973-10-23 | 1974-11-27 | Platable polymeric composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US3865699A true US3865699A (en) | 1975-02-11 |
Family
ID=23616178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US408410A Expired - Lifetime US3865699A (en) | 1973-10-23 | 1973-10-23 | Electrodeposition on non-conductive surfaces |
Country Status (15)
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101385A (en) * | 1977-03-21 | 1978-07-18 | International Nickel Company | Process for making a metal plastic structure |
FR2393859A1 (fr) * | 1977-06-10 | 1979-01-05 | Sumitomo Naugatuck | Procede de preparation d'un article metallise par placage |
US4158612A (en) * | 1977-12-27 | 1979-06-19 | The International Nickel Company, Inc. | Polymeric mandrel for electroforming and method of electroforming |
US4191617A (en) * | 1979-03-30 | 1980-03-04 | The International Nickel Company, Inc. | Process for electroplating directly plateable plastic with cobalt alloy strike and article thereof |
US4195117A (en) * | 1979-03-09 | 1980-03-25 | The International Nickel Company, Inc. | Process for electroplating directly plateable plastic with nickel-iron alloy strike and article thereof |
EP0015765A3 (en) * | 1979-03-09 | 1981-04-08 | MPD Technology Limited | An electroplated plastics object and a process for the manufacture thereof |
US4278510A (en) * | 1980-03-31 | 1981-07-14 | Gulf Oil Corporation | Platable propylene polymer compositions |
US4429020A (en) | 1980-05-22 | 1984-01-31 | Daniel Luch | Metal-polymer composite and method of making said composite |
US4463054A (en) * | 1982-09-17 | 1984-07-31 | A. Schulman, Inc. | Plastic-metal laminate, process, and composition |
US4590115A (en) * | 1981-12-14 | 1986-05-20 | Rhone-Poulenc Specialites Chimiques | Metallizing of plastic substrata |
US4714653A (en) * | 1983-10-28 | 1987-12-22 | Rhone-Poulenc Recherches | Metallizable substrate composites and printed circuits produced therefrom |
US5476580A (en) * | 1993-05-17 | 1995-12-19 | Electrochemicals Inc. | Processes for preparing a non-conductive substrate for electroplating |
US5545429A (en) * | 1994-07-01 | 1996-08-13 | International Business Machines Corporation | Fabrication of double side fully metallized plated thru-holes, in polymer structures, without seeding or photoprocess |
US5547516A (en) * | 1995-05-15 | 1996-08-20 | Luch; Daniel | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US5690805A (en) * | 1993-05-17 | 1997-11-25 | Electrochemicals Inc. | Direct metallization process |
US5709586A (en) * | 1995-05-08 | 1998-01-20 | Xerox Corporation | Honed mandrel |
US5725807A (en) * | 1993-05-17 | 1998-03-10 | Electrochemicals Inc. | Carbon containing composition for electroplating |
WO1998059096A1 (en) * | 1997-06-20 | 1998-12-30 | Handelman, Joseph, H. | Tool for working a substance |
US6171468B1 (en) | 1993-05-17 | 2001-01-09 | Electrochemicals Inc. | Direct metallization process |
US6303181B1 (en) | 1993-05-17 | 2001-10-16 | Electrochemicals Inc. | Direct metallization process employing a cationic conditioner and a binder |
US6414235B1 (en) * | 1999-03-30 | 2002-07-02 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US6459032B1 (en) | 1995-05-15 | 2002-10-01 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US6468672B1 (en) | 2000-06-29 | 2002-10-22 | Lacks Enterprises, Inc. | Decorative chrome electroplate on plastics |
US6582887B2 (en) | 2001-03-26 | 2003-06-24 | Daniel Luch | Electrically conductive patterns, antennas and methods of manufacture |
US20030232214A1 (en) * | 2002-06-18 | 2003-12-18 | Veerasamy Vijayen S. | Method of making automotive trim with chromium inclusive coating thereon, and corresponding automotive trim product |
US6697248B1 (en) | 2001-02-06 | 2004-02-24 | Daniel Luch | Electromagnetic interference shields and methods of manufacture |
US6710259B2 (en) | 1993-05-17 | 2004-03-23 | Electrochemicals, Inc. | Printed wiring boards and methods for making them |
US20040065558A1 (en) * | 2001-03-13 | 2004-04-08 | Herdman Roderick D. | Electrolyte media for the deposition of tin alloys and methods for depositing tin alloys |
US20040069340A1 (en) * | 1999-03-30 | 2004-04-15 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20040219376A1 (en) * | 2000-12-20 | 2004-11-04 | Fuji Xerox Co., Ltd. | Heat resistant resin film with metal thin film, manufacturing method of the resin film, endless belt, manufacturing method of the belt, and image forming apparatus |
US20050112388A1 (en) * | 1998-12-17 | 2005-05-26 | Tadashi Watanabe | Coated metal plate |
US20050199502A1 (en) * | 2002-10-15 | 2005-09-15 | International Business Machines Corporation | Method for electroplating on resistive substrates |
US20060017623A1 (en) * | 2001-03-26 | 2006-01-26 | Daniel Luch | Electrically conductive patterns, antennas and methods of manufacture |
US20060032752A1 (en) * | 2004-02-11 | 2006-02-16 | Daniel Luch | Methods and structures for the production of electrically treated items and electrical connections |
US20060180195A1 (en) * | 1999-03-30 | 2006-08-17 | Daniel Luch | Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays |
US20060275553A1 (en) * | 2005-06-03 | 2006-12-07 | Siemens Westinghouse Power Corporation | Electrically conductive thermal barrier coatings capable for use in electrode discharge machining |
US20070040686A1 (en) * | 2005-08-16 | 2007-02-22 | X-Cyte, Inc., A California Corporation | RFID inlays and methods of their manufacture |
US20070040688A1 (en) * | 2005-08-16 | 2007-02-22 | X-Cyte, Inc., A California Corporation | RFID inlays and methods of their manufacture |
EP1760805A2 (en) | 2005-09-06 | 2007-03-07 | X-CYTE, Incorporated | Battery housing and method of manufacturing the same |
US20070182641A1 (en) * | 2001-03-26 | 2007-08-09 | Daniel Luch | Antennas and electrical connections of electrical devices |
US20080011350A1 (en) * | 1999-03-30 | 2008-01-17 | Daniel Luch | Collector grid, electrode structures and interconnect structures for photovoltaic arrays and other optoelectric devices |
US20080227236A1 (en) * | 1995-05-15 | 2008-09-18 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7452656B2 (en) | 2001-03-26 | 2008-11-18 | Ertek Inc. | Electrically conductive patterns, antennas and methods of manufacture |
US20080314433A1 (en) * | 1995-05-15 | 2008-12-25 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20090107538A1 (en) * | 2007-10-29 | 2009-04-30 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20090111206A1 (en) * | 1999-03-30 | 2009-04-30 | Daniel Luch | Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture |
US20100006442A1 (en) * | 2006-08-03 | 2010-01-14 | Basf Se | Process for application of a metal layer on a substrate |
US20100193367A1 (en) * | 2004-02-11 | 2010-08-05 | Daniel Luch | Methods and structures for the production of electrically treated items and electrical connections |
US20100218824A1 (en) * | 2000-02-04 | 2010-09-02 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20100224230A1 (en) * | 2006-04-13 | 2010-09-09 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20100229942A1 (en) * | 2000-02-04 | 2010-09-16 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20100269902A1 (en) * | 2006-04-13 | 2010-10-28 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20110067754A1 (en) * | 2000-02-04 | 2011-03-24 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8198696B2 (en) | 2000-02-04 | 2012-06-12 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8222513B2 (en) | 2006-04-13 | 2012-07-17 | Daniel Luch | Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture |
US8664030B2 (en) | 1999-03-30 | 2014-03-04 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8729385B2 (en) | 2006-04-13 | 2014-05-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8822810B2 (en) | 2006-04-13 | 2014-09-02 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8884155B2 (en) | 2006-04-13 | 2014-11-11 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9006563B2 (en) | 2006-04-13 | 2015-04-14 | Solannex, Inc. | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9236512B2 (en) | 2006-04-13 | 2016-01-12 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
CN106525536A (zh) * | 2016-11-30 | 2017-03-22 | 江西洪都航空工业集团有限责任公司 | 一种用于制备测试热粘结金属包胶件拉伸强度的菌状试样的方法 |
US9852826B2 (en) * | 2010-06-10 | 2017-12-26 | Borealis Ag | Cable with semiconductive layer made of polypropylene composition and improved long term thermal stability |
US9865758B2 (en) | 2006-04-13 | 2018-01-09 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20200010583A1 (en) * | 2009-11-11 | 2020-01-09 | Borealis Ag | Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article |
WO2020160531A1 (en) * | 2019-02-01 | 2020-08-06 | Lumishield Technologies Incorporated | Methods and compositions for improved adherence of organic coatings to materials |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5514804A (en) * | 1978-07-13 | 1980-02-01 | Toyo Terumii Kk | Method of applying partial plating to rubber or plastic |
JPS5536270A (en) * | 1978-09-08 | 1980-03-13 | Toyo Terumii Kk | Partial plating of resin molding |
JPS6123876Y2 (enrdf_load_stackoverflow) * | 1980-03-14 | 1986-07-17 | ||
DE3529302A1 (de) * | 1985-08-16 | 1987-02-19 | Volker Betz | Verfahren zum herstellen von elektrisch leitenden oberflaechen auf nichtleitern |
JP2833421B2 (ja) * | 1993-05-24 | 1998-12-09 | ユケン工業株式会社 | 二層錫又は錫−鉛合金被覆形成方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1624575A (en) * | 1926-07-03 | 1927-04-12 | United Products Corp Of Americ | Art of galvanoplasty |
US2551343A (en) * | 1946-10-19 | 1951-05-01 | Us Rubber Co | Method of electrodepositing a metal layer on rubber |
US2551342A (en) * | 1946-10-19 | 1951-05-01 | Us Rubber Co | Method of electrodepositing a metal layer on rubber |
US2551344A (en) * | 1946-10-19 | 1951-05-01 | Us Rubber Co | Method of electrodepositing a metal layer on rubber |
US2732020A (en) * | 1956-01-24 | Electroplated structure adapted for - | ||
US2776253A (en) * | 1950-05-04 | 1957-01-01 | Siegfried G Bart | Method of making airfoil sections |
US3523875A (en) * | 1967-03-15 | 1970-08-11 | Hooker Chemical Corp | Process for metal coating substrate pretreated with alkali metal sulfide and resultant product |
US3619382A (en) * | 1970-01-27 | 1971-11-09 | Gen Electric | Process of reducing metal compounds to metal in a matrix |
-
1973
- 1973-10-23 US US408410A patent/US3865699A/en not_active Expired - Lifetime
-
1974
- 1974-07-02 CA CA203,843A patent/CA1037896A/en not_active Expired
- 1974-09-02 JP JP49100794A patent/JPS5067731A/ja active Pending
- 1974-10-15 GB GB44629/74A patent/GB1480522A/en not_active Expired
- 1974-10-21 ZA ZA00746656A patent/ZA746656B/xx unknown
- 1974-10-22 SE SE7413267A patent/SE410627B/xx unknown
- 1974-10-22 ES ES431240A patent/ES431240A1/es not_active Expired
- 1974-10-22 NL NL7413806A patent/NL7413806A/xx not_active Application Discontinuation
- 1974-10-22 DE DE19742450069 patent/DE2450069A1/de not_active Ceased
- 1974-10-22 IT IT53660/74A patent/IT1032105B/it active
- 1974-10-22 CH CH1411474A patent/CH592503A5/xx not_active IP Right Cessation
- 1974-10-23 FR FR7435534A patent/FR2248339B1/fr not_active Expired
- 1974-10-23 BE BE149797A patent/BE821382A/xx unknown
- 1974-10-23 AT AT853474A patent/AT334150B/de not_active IP Right Cessation
- 1974-11-02 IN IN2402/CAL/74A patent/IN142485B/en unknown
-
1982
- 1982-06-02 JP JP57094655A patent/JPS585378A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2732020A (en) * | 1956-01-24 | Electroplated structure adapted for - | ||
US1624575A (en) * | 1926-07-03 | 1927-04-12 | United Products Corp Of Americ | Art of galvanoplasty |
US2551343A (en) * | 1946-10-19 | 1951-05-01 | Us Rubber Co | Method of electrodepositing a metal layer on rubber |
US2551342A (en) * | 1946-10-19 | 1951-05-01 | Us Rubber Co | Method of electrodepositing a metal layer on rubber |
US2551344A (en) * | 1946-10-19 | 1951-05-01 | Us Rubber Co | Method of electrodepositing a metal layer on rubber |
US2776253A (en) * | 1950-05-04 | 1957-01-01 | Siegfried G Bart | Method of making airfoil sections |
US3523875A (en) * | 1967-03-15 | 1970-08-11 | Hooker Chemical Corp | Process for metal coating substrate pretreated with alkali metal sulfide and resultant product |
US3619382A (en) * | 1970-01-27 | 1971-11-09 | Gen Electric | Process of reducing metal compounds to metal in a matrix |
Cited By (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101385A (en) * | 1977-03-21 | 1978-07-18 | International Nickel Company | Process for making a metal plastic structure |
FR2393859A1 (fr) * | 1977-06-10 | 1979-01-05 | Sumitomo Naugatuck | Procede de preparation d'un article metallise par placage |
US4179341A (en) * | 1977-06-10 | 1979-12-18 | Sumitomo Naugatuck Co., Ltd. | Method for preparation of a plated product |
US4158612A (en) * | 1977-12-27 | 1979-06-19 | The International Nickel Company, Inc. | Polymeric mandrel for electroforming and method of electroforming |
US4195117A (en) * | 1979-03-09 | 1980-03-25 | The International Nickel Company, Inc. | Process for electroplating directly plateable plastic with nickel-iron alloy strike and article thereof |
EP0015765A3 (en) * | 1979-03-09 | 1981-04-08 | MPD Technology Limited | An electroplated plastics object and a process for the manufacture thereof |
US4191617A (en) * | 1979-03-30 | 1980-03-04 | The International Nickel Company, Inc. | Process for electroplating directly plateable plastic with cobalt alloy strike and article thereof |
US4278510A (en) * | 1980-03-31 | 1981-07-14 | Gulf Oil Corporation | Platable propylene polymer compositions |
US4429020A (en) | 1980-05-22 | 1984-01-31 | Daniel Luch | Metal-polymer composite and method of making said composite |
US4590115A (en) * | 1981-12-14 | 1986-05-20 | Rhone-Poulenc Specialites Chimiques | Metallizing of plastic substrata |
US4463054A (en) * | 1982-09-17 | 1984-07-31 | A. Schulman, Inc. | Plastic-metal laminate, process, and composition |
US4714653A (en) * | 1983-10-28 | 1987-12-22 | Rhone-Poulenc Recherches | Metallizable substrate composites and printed circuits produced therefrom |
US5476580A (en) * | 1993-05-17 | 1995-12-19 | Electrochemicals Inc. | Processes for preparing a non-conductive substrate for electroplating |
US20040084321A1 (en) * | 1993-05-17 | 2004-05-06 | Thorn Charles Edwin | Printed wiring boards and methods for making them |
US5690805A (en) * | 1993-05-17 | 1997-11-25 | Electrochemicals Inc. | Direct metallization process |
US5725807A (en) * | 1993-05-17 | 1998-03-10 | Electrochemicals Inc. | Carbon containing composition for electroplating |
US6710259B2 (en) | 1993-05-17 | 2004-03-23 | Electrochemicals, Inc. | Printed wiring boards and methods for making them |
US6171468B1 (en) | 1993-05-17 | 2001-01-09 | Electrochemicals Inc. | Direct metallization process |
US6303181B1 (en) | 1993-05-17 | 2001-10-16 | Electrochemicals Inc. | Direct metallization process employing a cationic conditioner and a binder |
US7186923B2 (en) | 1993-05-17 | 2007-03-06 | Electrochemicals, Inc. | Printed wiring boards and methods for making them |
US5545429A (en) * | 1994-07-01 | 1996-08-13 | International Business Machines Corporation | Fabrication of double side fully metallized plated thru-holes, in polymer structures, without seeding or photoprocess |
US5709586A (en) * | 1995-05-08 | 1998-01-20 | Xerox Corporation | Honed mandrel |
US5547516A (en) * | 1995-05-15 | 1996-08-20 | Luch; Daniel | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US6459032B1 (en) | 1995-05-15 | 2002-10-01 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20080227236A1 (en) * | 1995-05-15 | 2008-09-18 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7732243B2 (en) | 1995-05-15 | 2010-06-08 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20080314433A1 (en) * | 1995-05-15 | 2008-12-25 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
WO1998059096A1 (en) * | 1997-06-20 | 1998-12-30 | Handelman, Joseph, H. | Tool for working a substance |
US20050112388A1 (en) * | 1998-12-17 | 2005-05-26 | Tadashi Watanabe | Coated metal plate |
US8319097B2 (en) | 1999-03-30 | 2012-11-27 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7851700B2 (en) | 1999-03-30 | 2010-12-14 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8110737B2 (en) | 1999-03-30 | 2012-02-07 | Daniel Luch | Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture |
US7989692B2 (en) | 1999-03-30 | 2011-08-02 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacturing of such arrays |
US7989693B2 (en) | 1999-03-30 | 2011-08-02 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7507903B2 (en) | 1999-03-30 | 2009-03-24 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US6414235B1 (en) * | 1999-03-30 | 2002-07-02 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20110070678A1 (en) * | 1999-03-30 | 2011-03-24 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20110056537A1 (en) * | 1999-03-30 | 2011-03-10 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacturing of such arrays |
US20090145551A1 (en) * | 1999-03-30 | 2009-06-11 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20060180195A1 (en) * | 1999-03-30 | 2006-08-17 | Daniel Luch | Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays |
US20090173374A1 (en) * | 1999-03-30 | 2009-07-09 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7868249B2 (en) | 1999-03-30 | 2011-01-11 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20040069340A1 (en) * | 1999-03-30 | 2004-04-15 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8304646B2 (en) | 1999-03-30 | 2012-11-06 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8664030B2 (en) | 1999-03-30 | 2014-03-04 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US7635810B2 (en) | 1999-03-30 | 2009-12-22 | Daniel Luch | Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays |
US20090111206A1 (en) * | 1999-03-30 | 2009-04-30 | Daniel Luch | Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture |
US20080011350A1 (en) * | 1999-03-30 | 2008-01-17 | Daniel Luch | Collector grid, electrode structures and interconnect structures for photovoltaic arrays and other optoelectric devices |
US20100218824A1 (en) * | 2000-02-04 | 2010-09-02 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20100229942A1 (en) * | 2000-02-04 | 2010-09-16 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7898053B2 (en) | 2000-02-04 | 2011-03-01 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7898054B2 (en) | 2000-02-04 | 2011-03-01 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US20110067754A1 (en) * | 2000-02-04 | 2011-03-24 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8198696B2 (en) | 2000-02-04 | 2012-06-12 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US6468672B1 (en) | 2000-06-29 | 2002-10-22 | Lacks Enterprises, Inc. | Decorative chrome electroplate on plastics |
US20040219376A1 (en) * | 2000-12-20 | 2004-11-04 | Fuji Xerox Co., Ltd. | Heat resistant resin film with metal thin film, manufacturing method of the resin film, endless belt, manufacturing method of the belt, and image forming apparatus |
US7431816B2 (en) * | 2000-12-20 | 2008-10-07 | Fuji Xerox Co., Ltd. | Method of manufacturing heat resistant resin film with metal thin film |
US6697248B1 (en) | 2001-02-06 | 2004-02-24 | Daniel Luch | Electromagnetic interference shields and methods of manufacture |
US7309411B2 (en) * | 2001-03-13 | 2007-12-18 | Herdman Roderick D | Electrolyte media for the deposition of tin alloys and methods for depositing tin alloys |
US20040065558A1 (en) * | 2001-03-13 | 2004-04-08 | Herdman Roderick D. | Electrolyte media for the deposition of tin alloys and methods for depositing tin alloys |
US6582887B2 (en) | 2001-03-26 | 2003-06-24 | Daniel Luch | Electrically conductive patterns, antennas and methods of manufacture |
US20060017623A1 (en) * | 2001-03-26 | 2006-01-26 | Daniel Luch | Electrically conductive patterns, antennas and methods of manufacture |
US7452656B2 (en) | 2001-03-26 | 2008-11-18 | Ertek Inc. | Electrically conductive patterns, antennas and methods of manufacture |
US20070182641A1 (en) * | 2001-03-26 | 2007-08-09 | Daniel Luch | Antennas and electrical connections of electrical devices |
US7394425B2 (en) | 2001-03-26 | 2008-07-01 | Daniel Luch | Electrically conductive patterns, antennas and methods of manufacture |
US7564409B2 (en) | 2001-03-26 | 2009-07-21 | Ertek Inc. | Antennas and electrical connections of electrical devices |
EP1388186A4 (en) * | 2001-03-26 | 2005-08-17 | Daniel Luch | ELECTRICALLY CONDUCTIVE PATTERNS, ANTENNAS AND MANUFACTURING METHOD |
US20040090380A1 (en) * | 2001-03-26 | 2004-05-13 | Daniel Luch | Electrically conductive patterns, antennas and methods of manufacture |
US20030232214A1 (en) * | 2002-06-18 | 2003-12-18 | Veerasamy Vijayen S. | Method of making automotive trim with chromium inclusive coating thereon, and corresponding automotive trim product |
US6861105B2 (en) | 2002-06-18 | 2005-03-01 | Guardian Industries Corp. | Method of making automotive trim with chromium inclusive coating thereon, and corresponding automotive trim product |
US20050199502A1 (en) * | 2002-10-15 | 2005-09-15 | International Business Machines Corporation | Method for electroplating on resistive substrates |
US20060032752A1 (en) * | 2004-02-11 | 2006-02-16 | Daniel Luch | Methods and structures for the production of electrically treated items and electrical connections |
US20100193367A1 (en) * | 2004-02-11 | 2010-08-05 | Daniel Luch | Methods and structures for the production of electrically treated items and electrical connections |
US20060275553A1 (en) * | 2005-06-03 | 2006-12-07 | Siemens Westinghouse Power Corporation | Electrically conductive thermal barrier coatings capable for use in electrode discharge machining |
US20070040686A1 (en) * | 2005-08-16 | 2007-02-22 | X-Cyte, Inc., A California Corporation | RFID inlays and methods of their manufacture |
US20070040688A1 (en) * | 2005-08-16 | 2007-02-22 | X-Cyte, Inc., A California Corporation | RFID inlays and methods of their manufacture |
EP1760805A2 (en) | 2005-09-06 | 2007-03-07 | X-CYTE, Incorporated | Battery housing and method of manufacturing the same |
US9865758B2 (en) | 2006-04-13 | 2018-01-09 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8138413B2 (en) | 2006-04-13 | 2012-03-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20100269902A1 (en) * | 2006-04-13 | 2010-10-28 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8222513B2 (en) | 2006-04-13 | 2012-07-17 | Daniel Luch | Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture |
US8076568B2 (en) | 2006-04-13 | 2011-12-13 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20100224230A1 (en) * | 2006-04-13 | 2010-09-09 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8729385B2 (en) | 2006-04-13 | 2014-05-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8822810B2 (en) | 2006-04-13 | 2014-09-02 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8884155B2 (en) | 2006-04-13 | 2014-11-11 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9006563B2 (en) | 2006-04-13 | 2015-04-14 | Solannex, Inc. | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9236512B2 (en) | 2006-04-13 | 2016-01-12 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20100006442A1 (en) * | 2006-08-03 | 2010-01-14 | Basf Se | Process for application of a metal layer on a substrate |
US20090107538A1 (en) * | 2007-10-29 | 2009-04-30 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US20200010583A1 (en) * | 2009-11-11 | 2020-01-09 | Borealis Ag | Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article |
US10875939B2 (en) * | 2009-11-11 | 2020-12-29 | Borealis Ag | Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article |
US9852826B2 (en) * | 2010-06-10 | 2017-12-26 | Borealis Ag | Cable with semiconductive layer made of polypropylene composition and improved long term thermal stability |
CN106525536A (zh) * | 2016-11-30 | 2017-03-22 | 江西洪都航空工业集团有限责任公司 | 一种用于制备测试热粘结金属包胶件拉伸强度的菌状试样的方法 |
WO2020160531A1 (en) * | 2019-02-01 | 2020-08-06 | Lumishield Technologies Incorporated | Methods and compositions for improved adherence of organic coatings to materials |
Also Published As
Publication number | Publication date |
---|---|
CH592503A5 (enrdf_load_stackoverflow) | 1977-10-31 |
NL7413806A (nl) | 1975-04-25 |
JPS5067731A (enrdf_load_stackoverflow) | 1975-06-06 |
AT334150B (de) | 1976-12-27 |
FR2248339B1 (enrdf_load_stackoverflow) | 1978-06-09 |
IN142485B (enrdf_load_stackoverflow) | 1977-07-16 |
ATA853474A (de) | 1976-04-15 |
BE821382A (fr) | 1975-04-23 |
GB1480522A (en) | 1977-07-20 |
ES431240A1 (es) | 1976-10-16 |
DE2450069A1 (de) | 1975-04-24 |
SE7413267L (enrdf_load_stackoverflow) | 1975-04-24 |
SE410627B (sv) | 1979-10-22 |
IT1032105B (it) | 1979-05-30 |
JPS585378A (ja) | 1983-01-12 |
FR2248339A1 (enrdf_load_stackoverflow) | 1975-05-16 |
CA1037896A (en) | 1978-09-05 |
AU7438774A (en) | 1976-04-29 |
ZA746656B (en) | 1976-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3865699A (en) | Electrodeposition on non-conductive surfaces | |
US4009093A (en) | Platable polymeric composition | |
US3764280A (en) | Electroconductive coatings on non conductive substrates | |
US4278510A (en) | Platable propylene polymer compositions | |
US4038042A (en) | Electroplating of polypropylene compositions | |
US4673469A (en) | Method of plating plastics | |
US4002595A (en) | Electroplatable polypropylene compositions | |
GB2075063A (en) | Process for plating polumeric substrates | |
US4170524A (en) | Method of partially plating article or synthetic resin | |
CN107075709B (zh) | 避免挂架金属化的电镀挂架处理 | |
CA1303436C (en) | Nickel particle plating system | |
KR880002937A (ko) | 폴리우레판 수지 분산재를 함유한 양이온 전해석출성 수지조성물 | |
DE2825735C2 (enrdf_load_stackoverflow) | ||
CA1070939A (en) | Electrodeposition of non-conductive surfaces | |
US3397125A (en) | Electrolytic processes | |
GB1013673A (en) | Improvements in or relating to electroplating processes | |
US4783243A (en) | Articles comprising metal-coated polymeric substrates and process | |
KR100438641B1 (ko) | 전기를사용하지않는금속침적을위한수지조성물및전기를사용하지않는금속침적방법 | |
RU2012575C1 (ru) | Электропроводная полимерная композиция | |
US3449229A (en) | Electrophoretic deposition on zinc enriched metal surface | |
US3562118A (en) | Metal plated plastics and process therefor | |
CA1120420A (en) | Process for providing a polymer-electroplate bond of improved strength and stability | |
Lee et al. | Copper electrodeposition on polyimide substrate using polyaniline film as a seed layer for metallization of flexible devices | |
JPS6358177B2 (enrdf_load_stackoverflow) | ||
Kulkarni et al. | Development of electroplating process for plating polyamides |