US3862070A - Acrylic synthetic fibers having increased flame retardance and method of producing same - Google Patents

Acrylic synthetic fibers having increased flame retardance and method of producing same Download PDF

Info

Publication number
US3862070A
US3862070A US405319A US40531973A US3862070A US 3862070 A US3862070 A US 3862070A US 405319 A US405319 A US 405319A US 40531973 A US40531973 A US 40531973A US 3862070 A US3862070 A US 3862070A
Authority
US
United States
Prior art keywords
magnesium
weight
acrylonitrile
vinyl
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US405319A
Other languages
English (en)
Inventor
Toshihiko Fukushima
Shunichiro Kurioka
Masahiko Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Application granted granted Critical
Publication of US3862070A publication Critical patent/US3862070A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates

Definitions

  • the so-called modified acrylic type which contains a comparatively large portion of flame resistant monomer units, such as vinyl chloride or vinylidene chloride, in the fiber forming polymer, is known to have not only the same or similar texture and touch or feel as other types of acrylic fibers, but also markedly increased flame retardance thereover.
  • flame retardant additives such compounds as those of antimony, zinc, boron, bromine, chlorine and phosphorus.
  • acrylic fibers Only a few are known to be effective with acrylic fibers.
  • Others are known to be effective only when used in considerably large quantities.
  • chlorine compounds such as chlorinated paraffin or tetrabromoethane
  • chlorine-phosphorus compounds such as tris-(2,3-dibromopropyl) phosphate or His-(2,3- dichloropropyl) phosphate show no substantial effect unless more'than 25% by weight (based on the polymer weight; hereinafter similar notation will be used) is added.
  • This invention contains acrylic fibers having increased flame retardance, obtained from a spinning composition containing from 0.5 to 30 weight percent (based on the weight of the polymer) of at least one compound selected from the group of magnesium compounds consisting of magnesium monoxide (MgO), magnesium hydroxide (Mg(OH) magnesium carbonate (MgCO and mixtures thereof.
  • MgO magnesium monoxide
  • Mg(OH) magnesium carbonate MgCO
  • Acrylic synthetic fibers which may be used in this invention are those made of copolymers of 20 to 90 weight percent of acrylonitrile, 80 to 10 weight percent of vinyl chloride, preferably of 40 to 70 weight percent acrylonitrile and 60 to 30 weight percent vinyl chloride, and from O to 30 weight percent of other ethylenically unsaturated compounds copolymerizable with acrylonitrile or vinyl chloride.
  • Ethylenically unsaturated compounds which may be used in this invention can be any compound which is ethylenically unsaturated and copolymerizable with acrylonitrile or vinyl chloride.
  • such compounds may be, although not limited thereto, acrylic acid, methacrylic acid oresters thereof; acrylamide, methacrylamide or N-monoor dialkyl substitutes thereof; halogenated olefinic compounds such as vinylidene chloride, vinyl bromide, or vinylidene bromide; vinyl carboxylates such as vinyl acetate or vinyl chloroacetate; vinyl pyridines such as 2-vinyl pyridine or 2- methyl-S-vinyl pyridine; styrene, a-, substitutes of styrene; allylor methallylsulfonic acid or salts thereof.
  • Appropriate mixtures of the foregoing may be employed.
  • the copolymerization process can be selected from any of emulsion polymerization, solution polymerization and suspension polymerization.
  • the magnesium compounds which may be used in this invention are magnesium monoxide (MgO), magnesium hydroxide (Mg(OH) magnesium carbonate (MgCO and mixtures thereof.
  • Magnesium monoxide, magnesium hydroxide and magnesium carbonate show specific, surprising and outstanding flame retarding effect only for the abovementioned acrylonitrile-vinyl chloride copolymers and copolymers of acrylonitrile and vinyl chloride and ethylenically unsaturated compounds, while no such effect was produced when the mentioned magnesium compounds were used with polyacrylonitrile or polyvinyl chloride themselves, or for polyacrylonitrile-polyvinyl chloride blends having the same composition percentages as the corresponding acrylonitrile-vinyl chloride copolymers.
  • the inventive additives magnesium monoxide, magnesium hydroxide and magnesium carbonate impart flame-retardance specifically to acrylic synthetic fibers of certain polymer compositions as herein discussed and the flame retardant effect is surprising, marked and substantial.
  • the amount of magnesium compounds to be added to this invention is from 0.5 to 30 weight percent, preferably from 1 to 10 weight percent, based on the weight of the acrylic fiber forming polymer. No substantial effect can be expected when the magnesium compound is added in less than 0.5%, while addition of more than 30% impairs mechanical properties, for example tensile strength and elongation of the obtained fibers and also leads to economical disadvantages.
  • magnesium compounds can be used in combination with compounds which are known to have flame retardance effect.
  • such compounds may include inorganic compounds such as antimony trioxide; aromatic halogen compounds such as hexabromobenzene; aliphatic halogen compounds such as chlorinated paraffin; halogen and phosphorus containing compounds such as tris (2,3-dibromoprophyl) phosphate; organic phosphorus compounds such as dibutylamine phosphate; inorganic phosphorus compounds such as polyphosphoric acid, ammonium polyphosphate and combinations thereof.
  • inorganic compounds such as antimony trioxide
  • aromatic halogen compounds such as hexabromobenzene
  • aliphatic halogen compounds such as chlorinated paraffin
  • halogen and phosphorus containing compounds such as tris (2,3-dibromoprophyl) phosphate
  • organic phosphorus compounds such as dibutylamine phosphate
  • inorganic phosphorus compounds such as polyphosphoric
  • magnesium monoxide, magnesium hydroxide, magnesium carbonate or their mixtures can be carried out either in the polymerization stage or in the spinning stage.
  • the spinning process used to spin the spinning solution containing the above-mentioned magnesium compound can be either a dry spinning process or a wet spinning process.
  • a solvent can be used in the spinning solution in both cases; such solvent can be any compound which dissolves acrylonitrile copolymers in use, for example acetone, acetonitrile, dimethylformamide, dimethylacetamide, and mixtures thereof.
  • the method used for evaluating flame retardance of fibers obtained by this invention was as follows.
  • a standarized specimen form was established by using double twisting filaments and measurements were carriedout for specimen in that form.
  • l2 bundles of twisted fibers each comprising 300 of 3 denier acrylic fiber was doubled and heat-set, and was erected on a specimen holder of a limiting oxygen indices tester. Then, the minimal volume fraction of oxygen was determined, that will sustain the burning of the specimen for 5 cm of its length.
  • the invention is further illustrated by, but not limited to, the following example.
  • EXAMPLE 1 A fiber forming copolymer composed of 50.0 weight percent acrylonitrile, 46.0 weight percent vinyl chloride, 3.0 weight methyl methacrylate, and 1.0 weight percent sodium p-styrenesulfonate was dissolved into acetone to a polymer concentration of 20.0%, and a variety of additives were added to give spinning compositions.
  • the spinning compositions were spun into acetone-water coagulation bath through nozzles of 0.1 mm diameter, followed by drying at C, hot stretching to 300% and heat treatment at C for 5 minutes. The thusly obtained samples were subjected to measurement of the flame retardance properties by the above discussed testing method.
  • EXAMPLE 4 A fiber forming copolymer composed of 39.0 wt% acrylonitrile, and 61.0 wt.% vinyl chloride, was dissolved into acetone to a polymer concentration of 23%. To the solution, a variety of flame retardant additives were added in combination with magnesium monoxide, and spun in the manner of Example 1 to evaluate flame retardance. The results are shown in Table 4.
  • Table 4 Compound Percent added Limiting (Based on wt. Oxygen of polymer) index Control None 30.0 Magnesium oxide (MgO) 5 45.0 Antimony Trioxide 5 Magnesium oxide (MgO) 5 44.0 Zirconium oxide 5 Magnesium oxide [Mg0) 5 43.5 Hexabromobenzene 5
  • EXAMPLE 6 Table 6 Compound Limiting Oxygen Index Control 45 10% by wt. magnesium hydroxide Over 50 EXAMPLE 7
  • Table 6 Compound Limiting Oxygen Index Control 45 10% by wt. magnesium hydroxide Over 50
  • EXAMPLE 7 In order to test the flame retarding effects of magnesium monoxide, magnesium hydroxide and magnesium carbonate on fibers based on polymers other than acrylontrile-vinyl chloride copolymer, tests were carried out on the following polymer substrates. Because some of the substrates were unspinnable into fiber form, limiting oxygen indices were measured for specimen in the form of pressed strips in this example.
  • An acrylic synthetic fiber having an increased flame retardance consisting essentially of A. fiber forming copolymer'consisting essentially of tardance effect On acrylic f be to 90 weight percent acrylonitrile, 80 to 10 From the results shown in below Table 7, 1t 1s evident weight percent .vinyl Chloride and 0 to weight that the.
  • butadicnc. and styrene EXAMPLE 8 4O additive comprising a magnesium compound selected from the group consisting of magnesium Fiber strength Properties were measured on magneg; :a "i g magneslum carsiu m oxide containing specimen prepared in Example 2 12 g f if i Said ma m 0 1.
  • Table 8 no substantial degt e s 10 z c 'redation of fiber strength properties took place by addi- 5 g 18 T ig l .welg plercen tion of magnesium oxide.
  • the fiber of claim 1, wherein said fiber forming co- Mgo-added Control polymer comprises 40 to 70 weight percent acryloni- Tensile Strength g/denier 2.88 289 trile, to 30 weight percent vinyl chloride and 0 to 30 Elongation 31.6 32.2 weight percent of ethylenically unsaturated compound t r glli g jt li izr 3 22 2 copolymerizable with acrylonitrile or vinyl chloride.
  • said ethylenically un- 60 saturated compound is selected from the group consisting of acrylic acid, methacrylic acid or esters thereof;
  • the foregoing description isfor purposes of illustraacrylamide, methacrylamide or N-monoor dialkyl tron of the invention.
  • Numerous other variations and substitutes thereof; vinyl and vinylidene halides; vinyl modifications thereof would be'apparent to the worker carboxylates; vinyl pyridines; styrene or a-substitutes skilled in the art. All such variations and modifications of styrene, B-substitutes of styrene or aromatic nucleare to be considered to be within the spirit and scope of the invention.
  • a method of producing an acrylic synthetic fiber having an increased flame retardance comprising the steps of preparing and spinning a spinning solution comprising an organic solvent and the following components
  • A. a fiber forming copolymer consisting essentially of 20 to 90 weight acrylonitrile, 80 to 10 weight vinyl chloride and to 30 weight ethylenically unsaturated compound copolymerizable with acrylonitrile or vinyl chloride, and
  • a flame retardant additive comprising a magnesium compound selected from the group consisting of magnesium monoxide, magnesium hydroxide, magnesium carbonate and mixtures thereof.
  • said flame retardant additive further comprises in combination with said magnesium compound at least one compound selected from the group consisting of antimony trioxide, hexabromobenzene, chlorinated paraffin, tris (2,3- dibromopropyl) phosphate, dibutylamine phosphate, ammonium polyphosphate and mixtures thereof.
  • said fiber forming copolymer consists essentially of 40 to wt.% acrylonitrile, 60 to 30 wt.% vinyl chloride and 0 to 30 wt% ethylenically unsaturate compound copolymerizable with acrylonitrile or vinyl chloride.
  • said ethylenically unsaturated compound is selected from the group consisting of acrylic acid, methacrylic acid or esters therof; acrylamide, methacrylamide or N-monoor dialkyl substitutes thereof; vinyl or vinylidene halides; vinyl carboxylates; vinyl pyridines; styrene or a-substitutes of styrene, B-substitutes of styrene or aromatic nucleous substitutes of styrene; allylor methallyl sulfonic acid or salts thereof, and mixtures thereof.
  • organic solvent is selected from the group consisting of acetone, acetonitrile, dimethylformamide, dimethylacetoamide,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US405319A 1972-10-18 1973-10-11 Acrylic synthetic fibers having increased flame retardance and method of producing same Expired - Lifetime US3862070A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10466672A JPS5436702B2 (en, 2012) 1972-10-18 1972-10-18

Publications (1)

Publication Number Publication Date
US3862070A true US3862070A (en) 1975-01-21

Family

ID=14386774

Family Applications (1)

Application Number Title Priority Date Filing Date
US405319A Expired - Lifetime US3862070A (en) 1972-10-18 1973-10-11 Acrylic synthetic fibers having increased flame retardance and method of producing same

Country Status (5)

Country Link
US (1) US3862070A (en, 2012)
JP (1) JPS5436702B2 (en, 2012)
BE (1) BE806185A (en, 2012)
DE (1) DE2352572A1 (en, 2012)
GB (1) GB1398207A (en, 2012)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012346A (en) * 1974-03-09 1977-03-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Acrylic synthetic fibers having an animal hair-like touch and its method of manufacture
US4032509A (en) * 1975-12-29 1977-06-28 Monsanto Company Fire retardant styrenic terpolymer compositions
US4059560A (en) * 1976-05-05 1977-11-22 The Firestone Tire & Rubber Company Smoke and flame retarded styrene polymers
US4067847A (en) * 1974-10-18 1978-01-10 Mitsubishi Petrochemical Co., Ltd. Self-extinguishing resin composition
US4085088A (en) * 1976-01-23 1978-04-18 Kyowa Chemical Industry Co., Ltd. Fire-retarding thermoplastic resin composition
US4097552A (en) * 1977-06-20 1978-06-27 Monsanto Company Nitrogenous polymer compositions
US4115351A (en) * 1973-11-12 1978-09-19 Yasushi Joh Flame retardant composition
US4138447A (en) * 1977-06-20 1979-02-06 Monsanto Company Nitrogenous polymer compositions
US4151218A (en) * 1975-12-29 1979-04-24 Monsanto Company Fire retardant polymers of styrene and maleic anhydride
US4173561A (en) * 1977-01-12 1979-11-06 Sumitomo Chemical Company, Limited Flame retardant polymer composition
US4394471A (en) * 1978-09-21 1983-07-19 Union Carbide Corporation Compositions of alkylene-alkyl acrylate copolymers having improved flame retardant properties
US4407992A (en) * 1978-09-21 1983-10-04 Union Carbide Corporation Flame retardant compositions based on alkylene-alkyl acrylate copolymers
GB2190680A (en) * 1986-05-20 1987-11-25 Shirley Inst Flame retardant polymers and copolymers of acrylonitrile
US4826899A (en) * 1987-06-15 1989-05-02 E. I. Du Pont De Nemours And Company Low smoke generating, high char forming, flame resistant thermoplastic multi-block copolyesters
US20070237953A1 (en) * 2004-10-08 2007-10-11 Kaneka Corporation Flame resistant synthetic fiber, flame resistant fiber composite and upholstered furniture products using the same
US20190021425A1 (en) * 2016-03-25 2019-01-24 Kaneka Corporation Acrylic fiber for artificial hair, method for producing same, and head decoration article containing same
US20210140071A1 (en) * 2015-06-29 2021-05-13 Kaneka Corporation Acrylic fiber for artificial hair, method for manufacturing said fiber, and headdress product containing said fiber
US12144389B2 (en) 2019-09-10 2024-11-19 Kaneka Corporation Flame-retardant fiber composite and flame-retardant working clothes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2558082C2 (de) * 1974-12-23 1982-08-19 Kanegafuchi Kagaku Kogyo K.K., Osaka Synthetische Acrylfaser aus Acrylnitril, Vinylchlorid und Vinylidenchlorid mit verbesserten Flammwidrigskeitseigenschaften
US4761449A (en) * 1987-10-22 1988-08-02 Shell Oil Company Flame retardant compositions
DE602005024423D1 (de) * 2004-10-08 2010-12-09 Kaneka Corp Flammhemmende synthetische faser, flammhemmender faserkomposit sowie damit hergestelltes polstermöbel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382209A (en) * 1966-05-23 1968-05-07 American Cyanamid Co Flame-retardant systems
US3639299A (en) * 1968-03-05 1972-02-01 North American Rockwell Novel flame retardant compositions and method of applying
US3645964A (en) * 1969-07-16 1972-02-29 Michigan Chem Corp Fire retardant acrylonitrile polymer compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382209A (en) * 1966-05-23 1968-05-07 American Cyanamid Co Flame-retardant systems
US3639299A (en) * 1968-03-05 1972-02-01 North American Rockwell Novel flame retardant compositions and method of applying
US3645964A (en) * 1969-07-16 1972-02-29 Michigan Chem Corp Fire retardant acrylonitrile polymer compositions

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115351A (en) * 1973-11-12 1978-09-19 Yasushi Joh Flame retardant composition
US4012346A (en) * 1974-03-09 1977-03-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Acrylic synthetic fibers having an animal hair-like touch and its method of manufacture
US4067847A (en) * 1974-10-18 1978-01-10 Mitsubishi Petrochemical Co., Ltd. Self-extinguishing resin composition
US4032509A (en) * 1975-12-29 1977-06-28 Monsanto Company Fire retardant styrenic terpolymer compositions
US4151218A (en) * 1975-12-29 1979-04-24 Monsanto Company Fire retardant polymers of styrene and maleic anhydride
US4085088A (en) * 1976-01-23 1978-04-18 Kyowa Chemical Industry Co., Ltd. Fire-retarding thermoplastic resin composition
US4059560A (en) * 1976-05-05 1977-11-22 The Firestone Tire & Rubber Company Smoke and flame retarded styrene polymers
US4173561A (en) * 1977-01-12 1979-11-06 Sumitomo Chemical Company, Limited Flame retardant polymer composition
US4097552A (en) * 1977-06-20 1978-06-27 Monsanto Company Nitrogenous polymer compositions
US4138447A (en) * 1977-06-20 1979-02-06 Monsanto Company Nitrogenous polymer compositions
US4394471A (en) * 1978-09-21 1983-07-19 Union Carbide Corporation Compositions of alkylene-alkyl acrylate copolymers having improved flame retardant properties
US4407992A (en) * 1978-09-21 1983-10-04 Union Carbide Corporation Flame retardant compositions based on alkylene-alkyl acrylate copolymers
GB2190680A (en) * 1986-05-20 1987-11-25 Shirley Inst Flame retardant polymers and copolymers of acrylonitrile
GB2190680B (en) * 1986-05-20 1989-12-28 Shirley Inst Flame retardant polymers and copolymers of acrylonitrile
US4826899A (en) * 1987-06-15 1989-05-02 E. I. Du Pont De Nemours And Company Low smoke generating, high char forming, flame resistant thermoplastic multi-block copolyesters
US20070237953A1 (en) * 2004-10-08 2007-10-11 Kaneka Corporation Flame resistant synthetic fiber, flame resistant fiber composite and upholstered furniture products using the same
US20210140071A1 (en) * 2015-06-29 2021-05-13 Kaneka Corporation Acrylic fiber for artificial hair, method for manufacturing said fiber, and headdress product containing said fiber
US12031239B2 (en) * 2015-06-29 2024-07-09 Kaneka Corporation Acrylic fiber for artificial hair, method for manufacturing said fiber, and headdress product containing said fiber
US20190021425A1 (en) * 2016-03-25 2019-01-24 Kaneka Corporation Acrylic fiber for artificial hair, method for producing same, and head decoration article containing same
US10869514B2 (en) * 2016-03-25 2020-12-22 Kaneka Corporation Acrylic fiber for artificial hair, method for producing same, and head decoration article containing same
US12144389B2 (en) 2019-09-10 2024-11-19 Kaneka Corporation Flame-retardant fiber composite and flame-retardant working clothes

Also Published As

Publication number Publication date
GB1398207A (en) 1975-06-18
BE806185A (fr) 1974-04-17
DE2352572A1 (de) 1974-05-09
JPS4962731A (en, 2012) 1974-06-18
JPS5436702B2 (en, 2012) 1979-11-10

Similar Documents

Publication Publication Date Title
US3862070A (en) Acrylic synthetic fibers having increased flame retardance and method of producing same
EP0183014B1 (en) Flame-retarded fiber blend
US5208105A (en) Flame-retarded composite fiber
US3892667A (en) Novel flame retardant compositions
NO800337L (no) Mykpolyvinylkloridmasser og anvendelse derav
US4409350A (en) Fire retardant acrylic fibers containing organo-tin-sulfur compound having high degree of glossiness
JPS6189339A (ja) 複合難燃繊維
US3855382A (en) Process for producing flame-retardant acrylic fibers
US5981407A (en) Thermal resistance-improved flame retardant cloth
US3607817A (en) Production of dyeable polyacrylonitrile compositions and articles
US3645964A (en) Fire retardant acrylonitrile polymer compositions
US4447568A (en) Flame-retardant polyacrylonitrile fiber
US3875108A (en) Deep dyeable, lusterous, and fire-retardant linear polyester composition
US4007232A (en) Acrylic synthetic fiber superior in non-inflammability
JP3900539B2 (ja) 難燃性布帛
IT9020905A1 (it) Fibre e film poliolefinici resistenti alla fiamma
US3626684A (en) Wool-like acrylic for double knits
US4211853A (en) Flame retardant halohydrocarbon polymer composition
US3210315A (en) Acrylic fibers made flame resistant with halogenated aliphatic acid esters
US4022750A (en) Process for the production of a halogen-containing arcylic synthetic fiber improved in flame retardancy
JP3777707B2 (ja) 難燃性に優れた布帛
US4061615A (en) Shaped polyester articles having good flame resistance and process for the production thereof
US2858293A (en) Chloroethylene polymers stabilized with b-resorcylic acid diesters
EP0125574A2 (en) Flame-retardant acrylic fibers and process for preparing same
JPH0368134B2 (en, 2012)