US3861013A - Method of constructing a rotor for a rotary regenerative heat exchanger - Google Patents
Method of constructing a rotor for a rotary regenerative heat exchanger Download PDFInfo
- Publication number
- US3861013A US3861013A US435393A US43539374A US3861013A US 3861013 A US3861013 A US 3861013A US 435393 A US435393 A US 435393A US 43539374 A US43539374 A US 43539374A US 3861013 A US3861013 A US 3861013A
- Authority
- US
- United States
- Prior art keywords
- rotor
- basket
- post
- constructing
- attached
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D19/00—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
- F28D19/04—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
- F28D19/041—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
- F28D19/042—Rotors; Assemblies of heat absorbing masses
- F28D19/044—Rotors; Assemblies of heat absorbing masses shaped in sector form, e.g. with baskets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/26—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49357—Regenerator or recuperator making
Definitions
- ABSTRACT The method of manufacturing a rotor for a rotary regenerative heat exchanger that has a horizontal rotor shaft with an annular mass of heat absorbent element disposed in containers arranged concentrically therearound.
- the several independent parts thereof are joined together at their edges by a system of expansible joints.
- Other connections of the rotor are pivotal, and only after assembly of the rotor is complete and the rotor parts have adjusted to one another are the expansible connections uniformly tightened so that the rotor is made into an integral body.
- I therefor provide a method of constructing a rotary regenerative heat exchanger that is substantially round, and the outer surface thereof provides a continuously arcuate sealing surface, and each individual component thereof is attached pivotally so there is a complete absence in the rotor of the heat exchanger of uneven stresses.
- uneven stresses promote distortion, warping and a differential expansion that leads to poor sealing conditions, cracking or breaking of the welded joints between the several independent parts, and the eventual breakdown of the entire rotor structure.
- FIG. 1 is a perspective view of a rotary regenerative heat exchanger built according to the present invention.
- FIG. 2 is a perspective view of a regenerative heat exchanger in the preliminary steps of assembly.
- the arrangement of the drawing shows a rotary regenerative heat exchanger with a horizontally disposed rotor post 12 that is rotatably mounted on a pair of spaced-apart support bearings 14 and rotated about its axis by means such as a drive motor 15 that is connected through suitable reduction gearing 16 to the rotor post 12.
- a mass of heat absorbent material 18 contained in the independent sector-shaped baskets 22 is adapted to absorb heat from the hot fluid and then give it up to the cooler fluid flowing therethrough.
- the baskets 22 are open at opposite ends thereof to permit the flow of fluid therethrough and are secured at a pivotal coupling 26 that permits limited relative movement between adjacent baskets 22 and between the baskets and the rotor post 12.
- the rotor 28 is surrounded by a rotor housing 30 having end plates positioned opposite ends of the rotor with openings 36, 38, 42 and 44 for the inlet and outlet of the heating fluid and the fluid to be heated.
- sealing means 45 are provided at the end edges of the rotor to bridge the space between the rotor and the rotor housing in accordance with standard practice.
- Pivotal couplings 26 are used to support each basket 22 outward from the rotor post 12 and simultaneously permit a limited amount of relative movement therebetween.
- the radial outer ends of the baskets are bolted together at 54 that provide an integral rotor.
- a rotor post 12 is therefore horizontally disposed and rotatably supported by a pair of spaced-apart support bearings 14.
- a first sector-shaped basket of element 22 is moved into position adjacent the rotor post 12 by suitable hoisting equipment and pivotally attached thereto by a single pivoted joint 26. After a basket of element has been attached to the rotor post it is allowed to depend freely therefrom so that the rotor post 12 will rotate freely in the bearings 14 because of the unbalance thereof until the basket 22 depends vertically beneath the rotor post and a state of equilibrium exists.
- the rotor post and attached baskets is then again permitted to rotate as required to bring the assembly into a state of equilibrium wherein the center of gravity of the attached baskets is aligned beneath the rotor post.
- the additional baskets of element 22 are pivotally at tached to the rotor post 12 and loosely attached to an adjacent basket until the rotor comprises a substantially annular body that is pivotally held by the joints 24 to the rotor post. As each additional basket 22 is secured to the rotor post, the entire mass of element together with the rotor post is permitted to rotate slightly until it hangs in a condition of equilibrium.
- a shimming means 32 between two or more baskets to produce a continuous surface around the periphery of the rotor to provide a smooth surface that will cooperate with the sealing surface at the ends of the rotor and preclude fluid by-passing the rotor without contacting the element 22.
- the method of constructing a rotor for a rotary regenerative heat exchanger comprising the steps of rotatably supporting a horizontally disposed rotor post on a pair of spaced-apart support bearings, pivotally connecting a first sector-shaped element basket to the rotor post intermediate the support bearings, permitting the rotor post with attached element mass to rotate in said bearings until it attains a state of equilibrium, pivotally attaching a second sector-shaped basket of heat absorbent element to the rotor post, permitting the rotor post to rotate in said bearings until a state of equilibrium is again achieved, alternately connecting other baskets of element to said rotor and then permitting them to rotate with the rotor post to attain equilibrium until the rotor comprises an annular body, and
- each basket of heat absorbent element attached to the rotor post lies laterally adjacent a basket previously attached thereto.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US435393A US3861013A (en) | 1974-01-17 | 1974-01-17 | Method of constructing a rotor for a rotary regenerative heat exchanger |
CA216,337A CA1018752A (en) | 1974-01-17 | 1974-12-18 | Assemblying regenerative heat exchanger rotor |
BR42/75A BR7500042A (pt) | 1974-01-17 | 1975-01-03 | Aperfeicoamento em processo para construir um rotor |
AU77173/75A AU481183B2 (en) | 1974-01-17 | 1975-01-08 | Method of manufacturing a rotor fora rotary regenerative heat exchanger |
ZA00750148A ZA75148B (en) | 1974-01-17 | 1975-01-08 | Method of manufacturing a rotor assembly |
GB1107/75A GB1500191A (en) | 1974-01-17 | 1975-01-10 | Method of manufacturing a regenerative heat exchanger rotor assembly |
JP599875A JPS5514358B2 (es) | 1974-01-17 | 1975-01-14 | |
DE19752501276 DE2501276A1 (de) | 1974-01-17 | 1975-01-15 | Verfahren zur herstellung eines rotors fuer einen drehspeicherwaermetauscher |
FR7501343A FR2258607B1 (es) | 1974-01-17 | 1975-01-16 | |
NL7500582A NL7500582A (nl) | 1974-01-17 | 1975-01-17 | Werkwijze voor het vervaardigen van een rotor- samenstel alsmede rotorsamenstel, verkregen door deze werkwijze. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US435393A US3861013A (en) | 1974-01-17 | 1974-01-17 | Method of constructing a rotor for a rotary regenerative heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
US3861013A true US3861013A (en) | 1975-01-21 |
Family
ID=23728202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US435393A Expired - Lifetime US3861013A (en) | 1974-01-17 | 1974-01-17 | Method of constructing a rotor for a rotary regenerative heat exchanger |
Country Status (9)
Country | Link |
---|---|
US (1) | US3861013A (es) |
JP (1) | JPS5514358B2 (es) |
BR (1) | BR7500042A (es) |
CA (1) | CA1018752A (es) |
DE (1) | DE2501276A1 (es) |
FR (1) | FR2258607B1 (es) |
GB (1) | GB1500191A (es) |
NL (1) | NL7500582A (es) |
ZA (1) | ZA75148B (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906606A (en) * | 1974-09-12 | 1975-09-23 | Air Preheater | Erection procedure for vertical shaft air preheaters |
US4418742A (en) * | 1982-06-07 | 1983-12-06 | The Babcock & Wilcox Company | Rotor construction for rotary regenerative air heater |
US20190154355A1 (en) * | 2016-04-05 | 2019-05-23 | Arvos Ljungstrom Llc | Rotor for a rotary pre-heater for high temperature operation |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58182911A (ja) * | 1982-04-20 | 1983-10-26 | Fujitsu Ltd | 圧電振動子 |
JPS5911515U (ja) * | 1982-07-14 | 1984-01-24 | 富士通株式会社 | 振動素子搭載用ホルダ |
GB2125211A (en) * | 1982-08-03 | 1984-02-29 | Standard Telephones Cables Ltd | Mechanical support of piezoelectric devices |
JPH0352036Y2 (es) * | 1985-03-23 | 1991-11-11 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3267562A (en) * | 1963-04-29 | 1966-08-23 | Air Preheater | Rotor assembly |
US3710851A (en) * | 1971-08-19 | 1973-01-16 | Air Preheater | Ball-and-socket coupling for rotor |
US3710850A (en) * | 1971-08-04 | 1973-01-16 | Air Preheater | Unrestrained rotor |
US3789916A (en) * | 1971-04-06 | 1974-02-05 | Munters Ab Carl | Rotor for exchangers of the thermodynamic characteristics of two gas currents |
-
1974
- 1974-01-17 US US435393A patent/US3861013A/en not_active Expired - Lifetime
- 1974-12-18 CA CA216,337A patent/CA1018752A/en not_active Expired
-
1975
- 1975-01-03 BR BR42/75A patent/BR7500042A/pt unknown
- 1975-01-08 ZA ZA00750148A patent/ZA75148B/xx unknown
- 1975-01-10 GB GB1107/75A patent/GB1500191A/en not_active Expired
- 1975-01-14 JP JP599875A patent/JPS5514358B2/ja not_active Expired
- 1975-01-15 DE DE19752501276 patent/DE2501276A1/de not_active Ceased
- 1975-01-16 FR FR7501343A patent/FR2258607B1/fr not_active Expired
- 1975-01-17 NL NL7500582A patent/NL7500582A/xx active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3267562A (en) * | 1963-04-29 | 1966-08-23 | Air Preheater | Rotor assembly |
US3789916A (en) * | 1971-04-06 | 1974-02-05 | Munters Ab Carl | Rotor for exchangers of the thermodynamic characteristics of two gas currents |
US3710850A (en) * | 1971-08-04 | 1973-01-16 | Air Preheater | Unrestrained rotor |
US3710851A (en) * | 1971-08-19 | 1973-01-16 | Air Preheater | Ball-and-socket coupling for rotor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906606A (en) * | 1974-09-12 | 1975-09-23 | Air Preheater | Erection procedure for vertical shaft air preheaters |
US4418742A (en) * | 1982-06-07 | 1983-12-06 | The Babcock & Wilcox Company | Rotor construction for rotary regenerative air heater |
US20190154355A1 (en) * | 2016-04-05 | 2019-05-23 | Arvos Ljungstrom Llc | Rotor for a rotary pre-heater for high temperature operation |
US11137217B2 (en) * | 2016-04-05 | 2021-10-05 | Arvos Ljungstrom Llc | Rotor for a rotary pre-heater for high temperature operation |
Also Published As
Publication number | Publication date |
---|---|
AU7717375A (en) | 1976-07-08 |
NL7500582A (nl) | 1975-07-21 |
ZA75148B (en) | 1976-01-28 |
JPS50118350A (es) | 1975-09-17 |
FR2258607A1 (es) | 1975-08-18 |
GB1500191A (en) | 1978-02-08 |
FR2258607B1 (es) | 1978-02-03 |
CA1018752A (en) | 1977-10-11 |
BR7500042A (pt) | 1975-11-04 |
DE2501276A1 (de) | 1975-07-24 |
JPS5514358B2 (es) | 1980-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3861013A (en) | Method of constructing a rotor for a rotary regenerative heat exchanger | |
US3891029A (en) | Rotor assembly for vertical shaft air preheater | |
US4371035A (en) | Tube support grid | |
US3894581A (en) | Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby | |
US3710850A (en) | Unrestrained rotor | |
US4593750A (en) | Radial seal assembly for rotary regenerative heat exchanger | |
US3710851A (en) | Ball-and-socket coupling for rotor | |
US4418742A (en) | Rotor construction for rotary regenerative air heater | |
TW523576B (en) | Basket design and means of attachment for horizontal air preheaters | |
EP0002823B1 (en) | Tube bundle assembly and process for its construction | |
US3108632A (en) | Rotor arrangement for rotary regenerative heat exchanger | |
US2766970A (en) | High pressure circumferential seal | |
US3906606A (en) | Erection procedure for vertical shaft air preheaters | |
US3392776A (en) | Spirally wound rotary heat exchanger having barrel center mount | |
CA1269097A (en) | Air heater seal frame support link | |
CN109237969B (zh) | 一种化工原料用冷却装置及冷却方法 | |
US3915220A (en) | Stress control in baskets | |
CA1087166A (en) | Rotor construction | |
CA1050007A (en) | Sealing plate support | |
US3998266A (en) | Compartment support for vertical shaft air preheater | |
CA1038368A (en) | Rotor for heat exchanger | |
US3351127A (en) | Regenerator seal | |
US2681208A (en) | Sealing means for rotary air preheaters | |
US3270803A (en) | Sealing arrangement for rotary heat exchanger | |
KR800000237B1 (ko) | 로우터 제작방법 |