US3857309A - Filament breakage detection and correction - Google Patents
Filament breakage detection and correction Download PDFInfo
- Publication number
- US3857309A US3857309A US00413109A US41310973A US3857309A US 3857309 A US3857309 A US 3857309A US 00413109 A US00413109 A US 00413109A US 41310973 A US41310973 A US 41310973A US 3857309 A US3857309 A US 3857309A
- Authority
- US
- United States
- Prior art keywords
- filament
- filamentary material
- path
- continuous
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/20—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
- B26D5/26—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed wherein control means on the work feed means renders the cutting member operative
- B26D5/28—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed wherein control means on the work feed means renders the cutting member operative the control means being responsive to presence or absence of work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H51/00—Forwarding filamentary material
- B65H51/16—Devices for entraining material by flow of liquids or gases, e.g. air-blast devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/70—Other constructional features of yarn-winding machines
- B65H54/71—Arrangements for severing filamentary materials
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G1/00—Severing continuous filaments or long fibres, e.g. stapling
- D01G1/06—Converting tows to slivers or yarns, e.g. in direct spinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
- Y10T83/0448—With subsequent handling [i.e., of product]
- Y10T83/0453—By fluid application
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/081—With randomly actuated stopping means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/202—With product handling means
- Y10T83/2066—By fluid current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/202—With product handling means
- Y10T83/2092—Means to move, guide, or permit free fall or flight of product
- Y10T83/2174—Blockable exit port
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/626—Operation of member controlled by means responsive to position of element remote from member [e.g., interlock]
- Y10T83/637—With means to initiate operation of member
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/647—With means to convey work relative to tool station
- Y10T83/6472—By fluid current
Definitions
- the present invention relates to: process and apparatus for feeding continuous filaments to a continuous multifilament structure utilizing tangentially converging fluid streams to forward the filaments; process and apparatus for detecting breakage of filaments utilizing a rotatable cylinder, or a gap in a three dimensional body, wherein breakage of the filament causes a measurable change in the pressure of fluid flowing to the cylinder or the gap; process and apparatus for the production of continuous multifilament structures wherein, upon breakage of a continuous filament, the breakage detector automatically activates a filament feeder to temporarily insert a substitute filament;
- Man-made fibers are often supplied as tows, which are bundles of generally parallel continuous filaments, each such bundle containing a large number of such filaments, generally well over 500, e.g., 6,000 to 500,000.
- sub-tows may be formed by joining together a plurality of continuous filaments.
- a number of sub-tows each containing only a fraction of the filaments desired in the main tow, are usually fed side-by-side to a draw frame where they are stretched, in a manner well known in the art, to develop the desired physical properties (e.g. high tenacity and stiffness).
- the sub-tows are then combined and the resulting tow is fed to a crimping device, which is preferably of the stuffer box type, where the filaments are crimped, and then, in an untensioned condition, onto a belt which transfers the crimped tow continuously through an oven maintained at a temperature sufficiently high to permanently set the crimp, but not high enough to damage or melt the filaments.
- the draw frame, crimping device and oven are utilized most efficiently when the tow passing therethrough contains a very large number of filaments, e.g. tow whose total denier is over about 50,000 and which contains over about 10,000 filaments.
- heat set tow may be lower or higher in weight or'filament count.
- the number of filaments may be as low as 5,000 and the total denier as low as 35,000.
- Cigarette filters may be formed from such crimped continuous filament tows.
- the tow Upon being received by the I filter manufacturer, the tow is opened and the crimps of the filaments deregistered, utilizing a process such as that disclosed in US. Pat. No. 3,156,016 to Dunlap et al.
- the tow is fed along a predetermined path and is subjected to a differential gripping action between a plurality of points spaced from one another both longitudinally and transversely of the path, so that certain laterally spaced sections of the tow are positively gripped relative to other laterally spaced sections if the tow, alternating with the gripped sections, which are not gripped at all or are gripped at different relative points.
- a relative shifting of adjacent filaments longitudinally of the tow whereby the crimps are moved out of registry with one another.
- the deregistered tow is then fed through a chamber in which a plasticizer is applied to the tow.
- the tow is thereafter treated to reduce its cross-sectional area until it is approximately equal to the cross-sectional area of a cigarette.
- the condensed mass is formed into a coherent structure, e.g. by wrapping paper around it and/or by curing, and is ultimately cut into suitable plug lengths for incorporation into cigarettes.
- the filters produced are not all identical as far as filtering action is concerned.
- the filters differ somewhat in weight, in filtering efficiency and in their resistance to gas flow therethrough.
- After smoking, some filters show a degree of uneven darkening, which indicates a somewhat non-uniform passage of smoke therethrough.
- the more darkened areas iden-. tify zones through which the smoke has been preferentially drawn.
- Tests have shown that a significant cause of these non-uniformities in the cigarette filters result from variations in the total denier and number of ends in the tow. This variation results, to a degree, from undetected broken ends in the tow forming process.
- filament breakage is a serious problem. If filament breakage does occur during the production of the tow, the product will have gaps or discontinuities within it which will adversely afect the uniformity of products made from the tow, unless steps are taken to compensate for the broken ends and thereby maintain a uniform number of ends.
- Deregistered, opened tows may be utilized for purposes other than cigarette filters.
- Such tows are especially suitable for the production of nonwoven fibrous sheet-like structures such as may be used as sanitary napkin cover fabrics, pillow stuffing material, filling for sleeping bags or mattress covers, and the like.
- These products are superior to conventional nonwovens in their freedom from loose fiber ends, in their uniformity (e.g., freedom from thick or thin spots) and strength in the longitudinal direction.
- a substantially uniform tow is required.
- the continuous feeding of filamentary material is,
- Suitable means must be. provided for detecting individual breaks in the filaments making up the tow.
- the delivery-of a continuous strand of filamentary material must be assured. To accomplish this, it is essential that appropriate means be utilized to ensure the feeding of a new filamentary strand or strands to a given tow line upon the breakage of one or more strands of continuous filamentary material.
- Certain types of feeding mechanisms are presently available to retain the leading end of a standby supply of filamentary material in readiness to be fed to an appropriate feeding mechanism upon the breakage or exhaustion of one or more strands of filamentary material.
- One such mechanism is disclosed in US. Pat. No. 3,128,026 which utilizes electrical means to effect certain shifting arrangements which are utilized to transfer the driving effect of a feeding mechanism from a first strand of filamentary material to a second strand.
- Another such mechanism is illustrated in US. Pat. No. 3,519,181.
- a mechanism is provided for feeding continuous strandular material, utilizing guide means defining a path and means for forwarding the strandular material along this path.
- a standby supply of strandular material is provided with a supporting means engaging and positioning its leading end.
- a control sensitive to the exhaustion of the first strands, because of the loss of contact therewith, operates to initiate movement of the support means for the first strand to introduce the second strand into engagement with the feed means.
- Both of these apparatus require an arrangement for transferring the driving effect of a feed mechanism from the exhausted or broken strandular material to the standby end for insertion into the multifilament' strandular material being produced Of necessity, this results in a certain lag time before the standbyend is actually inserted. .Under such circumstances, it is clear that a gap can occur in the supplying of an end to the multifilament product, thereby providing for nonuniformity of the final product.
- a filament break detection and correction system comprising a break detection system and a system for temporarily inserting a substitute end until the original filament end can be reinserted.
- Alternative break detection'systems can be utilized in combination with an end inserter which automatically inserts and removes substitute ends from a multifilamentline, such as a tow production line.
- the filament end inserter utilizes a jet of fluid, such as air or water, to propel the substitute filament end into anip point in the tow line.
- a combination clamp-cutter is energized, which cuts the end and holds it in position for the next filament end insertion.
- the end inserter is activated by a sensor which detects the breakage of one or more filament ends.
- a sensor which detects the breakage of one or more filament ends.
- One such device utilizes a fluidic sensing mechanism with the running filament end passing through a gap in the sensor. When a filament end breaks, the gap is opened and a back pressure is created in the gap. The filament end, before breakage, acts as a shield against a fluid,
- a rotary sensor is utilized for'detecting breaks in the continuous running filaments.
- the sensor detects arunning filament end when the filament is passing over a rotatable cylinder.
- the end of the cylinder is mounted within a housing within which it is freely rotatable.
- the frictional force must be sufficient to overcome the inertial force of the cylin-' der and a counterweight, spring, magnet or other retaining means holds the cylinder in its inertial position.
- the retaiing means is moved from a position which blocks a fluid orifice, such as an air port, to a position wherein the fluid is free to pass from the orifice.
- a fluid orifice such as an air port
- the fluid orifice is connected to a source of supply of the fluid and a pressure sensing mechanism.
- the pressure sensing mechanism detects the build up in pressure which activates another mechanism, such as an electrical microswitch which sends an electrical signal, which triggers the end inserter to temporarily insert a substitutefilament end into the tow line until the malfunction can be corrected and the original filament end reinserted.
- another mechanism such as an electrical microswitch which sends an electrical signal
- the end inserter to temporarily insert a substitutefilament end into the tow line until the malfunction can be corrected and the original filament end reinserted.
- the cylinder and retaining means are moved from their inertial position back to a position where the retaining. means does not block the passage of fluid from the orifice.
- the reduction in pressure is sensed and the end inserter is automatically cut off.
- FIG. 1 is a schematic illustration of a tow .producing process utilizing the break detection and correction system of this invention.
- FIG. 2 is a front view of an individual filament being fed to the tow line, which shows the passage of the filament end over a sensor for detecting a broken end.
- FIG. 3 is a side view of the portion of the tow forming system illustrated in FIG. 2.
- FIG. 4 is a schematic illustration of the break detection system of this invention.
- FIG. 5 is a plan view of the preferred rotary break detection system utilized in the system of this invention.
- FIG. 6 is a side cross sectional view of the break de-' tector of FIGS showing the filament end in' frictional contact with the rotatable cylinder and the fluid orifice open.
- FIG. 7 is a side cross sectional view of the break detector of FIG. 5 showing the rotatable cylinder out of DESCRIPTION OF THE PREFERRED EMBODIMENTS
- FIG. 1 is a schematic illustration of a tow producing process utilizing the break detectionand correction system of this invention. The process shown illustrates fivepositions a, b, c, d, and e but, for the sake of clarity, the process will be described with regard to the first position only.
- the tow 1 passes over roll 2 at which point filament 3a joins the tow after having passed through break detector or sensor 40.
- Fluid for the fluidic break detector passes from air supply manifold 6 through conduit 7 to the break detector 4a.
- FIG. 2 is a front view of an individual filament being fed to the tow line, which shows the passage of the filament over a sensor for detecting a broken end.
- FIG. 3 is a side view of the tow forming system of FIG. 2. The continuous filament 11 passes over sensor 12 through slub catcher 13 to roll 14 where the filament is joined with and becomes a part of tow band 15.
- FIG. 4 is a schematic illustration of the break detection system of this invention.
- the continuous filament passes over break detector 21 over roll 22 where it joins with the tow band 23 at the nip between the roll and the tow band.
- a fluid preferably air, passes from a fluid source 25 through conduit 24, preferably at a flow rate of from about 0.10 to 0.50 SCFM, to filament break detector 21.
- a back pressure is created in the fluid break detector (as will be shown in detail in FIGS. 5, 6, 7 and 9).
- the back presure automatically increases thepressure in conduit 24, which increase in pressure is sensed through conduit 26 by a pressure sensing device, such as diaphram 27. When the diaphram is inflated, electrical switch 28 is activated.
- Electrical switch 28 is connected to the filament end inserter, which automatically inserts a substitute filament end.
- the original end is reinserted into the tow band and again passes over the break detector. This eliminates the back pressure sensed by the diaphram and deactivates the electrical switch, which cuts off the end inserter.
- FIG. 5 is a plan view of the preferred break detection mechanism utilized in this invention
- the running filament end 30 passes over and is in friction contact with rotatable cylinder 31, the frictional force being sufficient to impart rotation to the cylinder.
- the cylinder is mounted within a housing 32, in such a manner so as to be freely rotatable therein.
- FIG. 6. is a side cross sectional view of the break detection device of FIG. 5.
- the running filament 30 passes over the cylinder 31 in frictional contact therewith to impart rotary motion thereto.
- a fluid orifice 35 preferably a gas port, is positioned in the stationary housing 32.
- a retaining means 33 such as a countertration the rotation is shown as 90 degrees).
- the counterweight is moved from counterweight storage point 34 (Point C), which stor age point usually constitutes a small flange.
- the counterweight moves from counterweight storage at point C to point D, as shown in Flg. 7, where it blocks the fluid orifice 35. This prevents the flow of fluid out of the orifice and builds up pressure in the line through which the fluid passes to the orifice. This increase in pressure is sensed, such as by utilizing the diaphram and electrical switch illustrated in FIG. 4 and the filament end inserter is activated to temporarily insert a substitute end.
- the filament 30 is repositioned in frictional contact with the cylinder 31, which causes the cylinder to rotate and the counterweight to return from position D to position C, thereby reopening the fluid orifice and permitting the flow of fluid therefrom. This returns the pressure in the fluid conduit to normal and deactivates the switch communicating with the filament end in serter to stop feeding the substitute filament and clamp it for future use, as required.
- FIG. 8 is a side cross sectional view of the filament end inserter of this invention.
- the end inserter is generally cylindrical in shape and the substitute filament end 40 passes through the generally circular opening 41 of the generally cylindrical passageway 42 in the body43 of the substitute end inserter.
- a fluid underpressure is supplied to conduit 44 and passes through coupling 45 through orifice 46 in the body of the end inserter into the passageway 42.
- the axis of the conduit ending in orifice 46 forms an angle of from about I to 20 degrees with the axis of generally cylindrical passageway 42, preferably the angle ranges from about 3 to 10 degrees.
- a plurality of fluid orifices are utilized for propelling the filament through the passageway of the end inserter.
- the plurality of orifices are positioned symetrically around the axis of the passageway which generally coincides with the path of the filament.
- Fluid pressures utilized must clearly be sufficient to propel the filament and are generally in the range'of from about 15 to 60 pounds per square inch.
- a combination clamp-cutter 47 is mounted in orifice 48 in the body of the end inserter in such a manner so as to be freely movable from a position B out of the path of the filament end 40 to a position A whereby it cuts and clamps the filament end.
- the point of convergence of the fluid streams with each other and with the filament end must be prior to the clamp cutter to provide for adequate propelling of the filament.
- the clamp-cutter 47 and the body 43 of the-end inserter are supported by support means 49.
- the clamp cutter is connected by suitable means, such as electrically through a microswitch, to the filament breakage detector which activates the clamp-cutter to move from position A to position B upon an end breaking, while simultaneously starting the passage of fluid into the passageway of the inserter.
- the filament end then passes through outlet orifice 50 to the tow line where it is joined to and becomes a part of the tow band.
- FIG. 9 is a side cross sectional view of a fluid sensor for detecting the breakage of a filament.
- a fluid preferably air pumped at a rate of from about 0. l0,to 0.50 SCFM is passed from a fluid supply through conduit 61.
- the fluid passes out of outlet orifice 63, which preferably has a circular configuration with a diameter of from about 0.04 to 0.015 inch, into gap 64.
- Another outlet orifice 65 is positioned on the opposite side of gap 64 coaxially aligned with orifice 63.
- Fluid passes out of orifice 65 at a rate of from about 0.05 to 0.10 SCFM less than the fluid from orifice 63.
- the lower pressure fluid is passed from a supply thereof through conduit 66, positioned within support body 62, and out of orifice 65 into gap 64.
- a filament end 67 is passed from a source thereof through gap 64 tothe tow line, where it is joined with and becomesa part of the tow band. When the filament end breaks, the gap 64 is then open. Because of the differential in the pressure of the fluid exiting from coaxially aligned orifices 63 and 65, a back pressure is created at orifice 65.
- the filament breakage detection and correction system of this invention has been described with particular regard to a process for the production of continuous filament tow.
- process and apparatus of this invention is equally applicable to processes for the production of other continuous multifilament structures, such as tapes, ropes and the like.
- Such multifilament structures may beformed from any of the fiber-forming materials which can be formed into continuous filaments, e.g. polyethylene terphthalate, other polyesters such as polyesters of terephthalic acid and other glycols, cellulose esters such as cellulose acetate or cellulose triacetate, polyamides such as nylon 6 or nylon 6,6, polyacrylonitriles, poleolefins, etc.
- Apparatus for feeding continuous filamentary material to a continuous multifilament structure comprising: a source of continuous filamentary material; guide means defining a path along which said filamentary material is moved; means for forwarding said material along said path, said means comprising a plurality of pressurized fluid supply means directed in a shallow 2.
- the apparatus of claim 1 wherein the means for i initiating the flow of said pressurized fluid and movement of the clamping and cutting means is responsive to means for detecting a broken filament in said continuous multifilament structure.
- pressurized fluid supply means is directed at an angle of from 1 to 20 degrees with relation to the path of the filamentary material.
- a process for feeding continuous filamentary material to a continuous multifliament structure compris- 'ing: clamping and engaging a continuous filamentary material; disengaging said filamentary material; feeding and guiding said filamentary material through a conmaterial along said path; feeding said filamentary material to said multifilament structure; cutting and clamping said filamentary material while simultaneously stopping the pressurized fluid streams.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00413109A US3857309A (en) | 1973-11-05 | 1973-11-05 | Filament breakage detection and correction |
| US05/506,624 US3999695A (en) | 1973-11-05 | 1974-09-16 | Filament breakage detection and correction |
| CA212,940A CA1029539A (en) | 1973-11-05 | 1974-11-04 | Filament breakage detection and correction |
| JP49126652A JPS50111296A (enExample) | 1973-11-05 | 1974-11-05 | |
| BE150214A BE821860A (fr) | 1973-11-05 | 1974-11-05 | Procede et appareil pour la detection et la correction de ruptures de filaments |
| CA295,517A CA1034751A (en) | 1973-11-05 | 1978-01-24 | Process and apparatus for cutting filamentary material forwarded by pressurized fluid |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00413109A US3857309A (en) | 1973-11-05 | 1973-11-05 | Filament breakage detection and correction |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/506,624 Division US3999695A (en) | 1973-11-05 | 1974-09-16 | Filament breakage detection and correction |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3857309A true US3857309A (en) | 1974-12-31 |
Family
ID=23635869
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00413109A Expired - Lifetime US3857309A (en) | 1973-11-05 | 1973-11-05 | Filament breakage detection and correction |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3857309A (enExample) |
| JP (1) | JPS50111296A (enExample) |
| BE (1) | BE821860A (enExample) |
| CA (1) | CA1029539A (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0072664A1 (en) * | 1981-08-15 | 1983-02-23 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Method and apparatus for drafting fiber strands |
| US5086679A (en) * | 1988-10-03 | 1992-02-11 | Basf Fibres Inc. | Process for apparatus for collecting continuous supplied yarn to waste |
| US20070089575A1 (en) * | 2003-06-03 | 2007-04-26 | J.G.S. Billingsley, Inc. | Method and apparatus for adjustable cutting of filamentary material |
| US20140367404A1 (en) * | 2013-06-18 | 2014-12-18 | The Procter & Gamble Company | Discrete cord delivery apparatus |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9447525B2 (en) * | 2014-02-18 | 2016-09-20 | Eastman Chemical Company | On-line detection of defects in fibrous members |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2563986A (en) * | 1946-07-30 | 1951-08-14 | American Viscose Corp | Yarn handling method and apparatus |
| US3130619A (en) * | 1960-12-21 | 1964-04-28 | Flintkote Co | Fiber cutter and aspirator |
| US3635413A (en) * | 1969-12-29 | 1972-01-18 | Hercules Inc | Break detection and correction system for threadlike materials |
| US3640160A (en) * | 1969-12-24 | 1972-02-08 | Leesona Corp | Strand handling |
| US3683732A (en) * | 1970-04-16 | 1972-08-15 | Rhodiaceta | Yarn handling pneumatic device |
| US3808924A (en) * | 1973-04-17 | 1974-05-07 | Du Pont | Tubular assembly for cutting pneumatically propelled filaments |
-
1973
- 1973-11-05 US US00413109A patent/US3857309A/en not_active Expired - Lifetime
-
1974
- 1974-11-04 CA CA212,940A patent/CA1029539A/en not_active Expired
- 1974-11-05 JP JP49126652A patent/JPS50111296A/ja active Pending
- 1974-11-05 BE BE150214A patent/BE821860A/xx unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2563986A (en) * | 1946-07-30 | 1951-08-14 | American Viscose Corp | Yarn handling method and apparatus |
| US3130619A (en) * | 1960-12-21 | 1964-04-28 | Flintkote Co | Fiber cutter and aspirator |
| US3640160A (en) * | 1969-12-24 | 1972-02-08 | Leesona Corp | Strand handling |
| US3635413A (en) * | 1969-12-29 | 1972-01-18 | Hercules Inc | Break detection and correction system for threadlike materials |
| US3683732A (en) * | 1970-04-16 | 1972-08-15 | Rhodiaceta | Yarn handling pneumatic device |
| US3808924A (en) * | 1973-04-17 | 1974-05-07 | Du Pont | Tubular assembly for cutting pneumatically propelled filaments |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0072664A1 (en) * | 1981-08-15 | 1983-02-23 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Method and apparatus for drafting fiber strands |
| US5086679A (en) * | 1988-10-03 | 1992-02-11 | Basf Fibres Inc. | Process for apparatus for collecting continuous supplied yarn to waste |
| US20070089575A1 (en) * | 2003-06-03 | 2007-04-26 | J.G.S. Billingsley, Inc. | Method and apparatus for adjustable cutting of filamentary material |
| US7578221B2 (en) * | 2003-06-03 | 2009-08-25 | John G. S. Billingsley | Method and apparatus for adjustable cutting of a filamentary material |
| US20140367404A1 (en) * | 2013-06-18 | 2014-12-18 | The Procter & Gamble Company | Discrete cord delivery apparatus |
| US9770372B2 (en) * | 2013-06-18 | 2017-09-26 | The Procter & Gamble Company | Discrete cord delivery apparatus |
| US10098794B2 (en) * | 2013-06-18 | 2018-10-16 | The Procter & Gamble Company | Discrete cord delivery apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS50111296A (enExample) | 1975-09-01 |
| BE821860A (fr) | 1975-05-05 |
| CA1029539A (en) | 1978-04-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3343240A (en) | Method and apparatus for bulking synthetic fibers | |
| US3457715A (en) | Method and apparatus for producing intermittent bulked and saponified yarn | |
| US3999695A (en) | Filament breakage detection and correction | |
| CN101151404B (zh) | 醋酸纤维素丝束及其制造方法 | |
| KR20010080062A (ko) | 실을 연속적으로 푸는 방법 | |
| TW454051B (en) | Apparatus for producing yarns with yarn cutting and sucking units | |
| US3857309A (en) | Filament breakage detection and correction | |
| US3438101A (en) | Process and apparatus for texturizing yarn | |
| JP2009256871A (ja) | 改良型高速繊維供給アセンブリ | |
| US3895420A (en) | Process for crimping filaments and yarns | |
| US4024611A (en) | Method and apparatus for texturizing continuous filaments | |
| US4147020A (en) | Commingling air jet deflector | |
| US3576058A (en) | Process and apparatus for the continuous compression crimping and setting of a multifilament yarn | |
| US5860201A (en) | Multiple width fiber strip and method and apparatus for its production | |
| US4014085A (en) | String up and shutdown process for a yarn texturizing apparatus | |
| US4152885A (en) | Interlocked yarn and method of making same | |
| EP0806503B1 (en) | A doubled yarn false twisting machine | |
| US20040094169A1 (en) | Process and system for monitoring a continuous element being incorporated within a cigarette filter | |
| JPS5844353B2 (ja) | フイルタ−トリツケキカイ | |
| CN1973067A (zh) | 醋酸纤维素丝束及其制造方法 | |
| US3656214A (en) | Crimping apparatus for manufacturing a bulky yarn | |
| JP3509870B2 (ja) | 加工糸の生産 | |
| US4422224A (en) | Apparatus for interlacing multifilament yarn | |
| US4095317A (en) | Process for producing textured yarn | |
| US3983610A (en) | Apparatus for producing textured yarn |