US3857309A - Filament breakage detection and correction - Google Patents

Filament breakage detection and correction Download PDF

Info

Publication number
US3857309A
US3857309A US00413109A US41310973A US3857309A US 3857309 A US3857309 A US 3857309A US 00413109 A US00413109 A US 00413109A US 41310973 A US41310973 A US 41310973A US 3857309 A US3857309 A US 3857309A
Authority
US
United States
Prior art keywords
filament
filamentary material
path
continuous
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00413109A
Inventor
W Bradley
R Clontz
T Floyd
J Honeycutt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Corp filed Critical Celanese Corp
Priority to US00413109A priority Critical patent/US3857309A/en
Priority to US05/506,624 priority patent/US3999695A/en
Priority to CA212,940A priority patent/CA1029539A/en
Priority to JP49126652A priority patent/JPS50111296A/ja
Priority to BE150214A priority patent/BE821860A/en
Application granted granted Critical
Publication of US3857309A publication Critical patent/US3857309A/en
Priority to CA295,517A priority patent/CA1034751A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/26Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed wherein control means on the work feed means renders the cutting member operative
    • B26D5/28Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed wherein control means on the work feed means renders the cutting member operative the control means being responsive to presence or absence of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/16Devices for entraining material by flow of liquids or gases, e.g. air-blast devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/70Other constructional features of yarn-winding machines
    • B65H54/71Arrangements for severing filamentary materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/06Converting tows to slivers or yarns, e.g. in direct spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0448With subsequent handling [i.e., of product]
    • Y10T83/0453By fluid application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2066By fluid current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2092Means to move, guide, or permit free fall or flight of product
    • Y10T83/2174Blockable exit port
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/626Operation of member controlled by means responsive to position of element remote from member [e.g., interlock]
    • Y10T83/637With means to initiate operation of member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • Y10T83/6472By fluid current

Definitions

  • the present invention relates to: process and apparatus for feeding continuous filaments to a continuous multifilament structure utilizing tangentially converging fluid streams to forward the filaments; process and apparatus for detecting breakage of filaments utilizing a rotatable cylinder, or a gap in a three dimensional body, wherein breakage of the filament causes a measurable change in the pressure of fluid flowing to the cylinder or the gap; process and apparatus for the production of continuous multifilament structures wherein, upon breakage of a continuous filament, the breakage detector automatically activates a filament feeder to temporarily insert a substitute filament;
  • Man-made fibers are often supplied as tows, which are bundles of generally parallel continuous filaments, each such bundle containing a large number of such filaments, generally well over 500, e.g., 6,000 to 500,000.
  • sub-tows may be formed by joining together a plurality of continuous filaments.
  • a number of sub-tows each containing only a fraction of the filaments desired in the main tow, are usually fed side-by-side to a draw frame where they are stretched, in a manner well known in the art, to develop the desired physical properties (e.g. high tenacity and stiffness).
  • the sub-tows are then combined and the resulting tow is fed to a crimping device, which is preferably of the stuffer box type, where the filaments are crimped, and then, in an untensioned condition, onto a belt which transfers the crimped tow continuously through an oven maintained at a temperature sufficiently high to permanently set the crimp, but not high enough to damage or melt the filaments.
  • the draw frame, crimping device and oven are utilized most efficiently when the tow passing therethrough contains a very large number of filaments, e.g. tow whose total denier is over about 50,000 and which contains over about 10,000 filaments.
  • heat set tow may be lower or higher in weight or'filament count.
  • the number of filaments may be as low as 5,000 and the total denier as low as 35,000.
  • Cigarette filters may be formed from such crimped continuous filament tows.
  • the tow Upon being received by the I filter manufacturer, the tow is opened and the crimps of the filaments deregistered, utilizing a process such as that disclosed in US. Pat. No. 3,156,016 to Dunlap et al.
  • the tow is fed along a predetermined path and is subjected to a differential gripping action between a plurality of points spaced from one another both longitudinally and transversely of the path, so that certain laterally spaced sections of the tow are positively gripped relative to other laterally spaced sections if the tow, alternating with the gripped sections, which are not gripped at all or are gripped at different relative points.
  • a relative shifting of adjacent filaments longitudinally of the tow whereby the crimps are moved out of registry with one another.
  • the deregistered tow is then fed through a chamber in which a plasticizer is applied to the tow.
  • the tow is thereafter treated to reduce its cross-sectional area until it is approximately equal to the cross-sectional area of a cigarette.
  • the condensed mass is formed into a coherent structure, e.g. by wrapping paper around it and/or by curing, and is ultimately cut into suitable plug lengths for incorporation into cigarettes.
  • the filters produced are not all identical as far as filtering action is concerned.
  • the filters differ somewhat in weight, in filtering efficiency and in their resistance to gas flow therethrough.
  • After smoking, some filters show a degree of uneven darkening, which indicates a somewhat non-uniform passage of smoke therethrough.
  • the more darkened areas iden-. tify zones through which the smoke has been preferentially drawn.
  • Tests have shown that a significant cause of these non-uniformities in the cigarette filters result from variations in the total denier and number of ends in the tow. This variation results, to a degree, from undetected broken ends in the tow forming process.
  • filament breakage is a serious problem. If filament breakage does occur during the production of the tow, the product will have gaps or discontinuities within it which will adversely afect the uniformity of products made from the tow, unless steps are taken to compensate for the broken ends and thereby maintain a uniform number of ends.
  • Deregistered, opened tows may be utilized for purposes other than cigarette filters.
  • Such tows are especially suitable for the production of nonwoven fibrous sheet-like structures such as may be used as sanitary napkin cover fabrics, pillow stuffing material, filling for sleeping bags or mattress covers, and the like.
  • These products are superior to conventional nonwovens in their freedom from loose fiber ends, in their uniformity (e.g., freedom from thick or thin spots) and strength in the longitudinal direction.
  • a substantially uniform tow is required.
  • the continuous feeding of filamentary material is,
  • Suitable means must be. provided for detecting individual breaks in the filaments making up the tow.
  • the delivery-of a continuous strand of filamentary material must be assured. To accomplish this, it is essential that appropriate means be utilized to ensure the feeding of a new filamentary strand or strands to a given tow line upon the breakage of one or more strands of continuous filamentary material.
  • Certain types of feeding mechanisms are presently available to retain the leading end of a standby supply of filamentary material in readiness to be fed to an appropriate feeding mechanism upon the breakage or exhaustion of one or more strands of filamentary material.
  • One such mechanism is disclosed in US. Pat. No. 3,128,026 which utilizes electrical means to effect certain shifting arrangements which are utilized to transfer the driving effect of a feeding mechanism from a first strand of filamentary material to a second strand.
  • Another such mechanism is illustrated in US. Pat. No. 3,519,181.
  • a mechanism is provided for feeding continuous strandular material, utilizing guide means defining a path and means for forwarding the strandular material along this path.
  • a standby supply of strandular material is provided with a supporting means engaging and positioning its leading end.
  • a control sensitive to the exhaustion of the first strands, because of the loss of contact therewith, operates to initiate movement of the support means for the first strand to introduce the second strand into engagement with the feed means.
  • Both of these apparatus require an arrangement for transferring the driving effect of a feed mechanism from the exhausted or broken strandular material to the standby end for insertion into the multifilament' strandular material being produced Of necessity, this results in a certain lag time before the standbyend is actually inserted. .Under such circumstances, it is clear that a gap can occur in the supplying of an end to the multifilament product, thereby providing for nonuniformity of the final product.
  • a filament break detection and correction system comprising a break detection system and a system for temporarily inserting a substitute end until the original filament end can be reinserted.
  • Alternative break detection'systems can be utilized in combination with an end inserter which automatically inserts and removes substitute ends from a multifilamentline, such as a tow production line.
  • the filament end inserter utilizes a jet of fluid, such as air or water, to propel the substitute filament end into anip point in the tow line.
  • a combination clamp-cutter is energized, which cuts the end and holds it in position for the next filament end insertion.
  • the end inserter is activated by a sensor which detects the breakage of one or more filament ends.
  • a sensor which detects the breakage of one or more filament ends.
  • One such device utilizes a fluidic sensing mechanism with the running filament end passing through a gap in the sensor. When a filament end breaks, the gap is opened and a back pressure is created in the gap. The filament end, before breakage, acts as a shield against a fluid,
  • a rotary sensor is utilized for'detecting breaks in the continuous running filaments.
  • the sensor detects arunning filament end when the filament is passing over a rotatable cylinder.
  • the end of the cylinder is mounted within a housing within which it is freely rotatable.
  • the frictional force must be sufficient to overcome the inertial force of the cylin-' der and a counterweight, spring, magnet or other retaining means holds the cylinder in its inertial position.
  • the retaiing means is moved from a position which blocks a fluid orifice, such as an air port, to a position wherein the fluid is free to pass from the orifice.
  • a fluid orifice such as an air port
  • the fluid orifice is connected to a source of supply of the fluid and a pressure sensing mechanism.
  • the pressure sensing mechanism detects the build up in pressure which activates another mechanism, such as an electrical microswitch which sends an electrical signal, which triggers the end inserter to temporarily insert a substitutefilament end into the tow line until the malfunction can be corrected and the original filament end reinserted.
  • another mechanism such as an electrical microswitch which sends an electrical signal
  • the end inserter to temporarily insert a substitutefilament end into the tow line until the malfunction can be corrected and the original filament end reinserted.
  • the cylinder and retaining means are moved from their inertial position back to a position where the retaining. means does not block the passage of fluid from the orifice.
  • the reduction in pressure is sensed and the end inserter is automatically cut off.
  • FIG. 1 is a schematic illustration of a tow .producing process utilizing the break detection and correction system of this invention.
  • FIG. 2 is a front view of an individual filament being fed to the tow line, which shows the passage of the filament end over a sensor for detecting a broken end.
  • FIG. 3 is a side view of the portion of the tow forming system illustrated in FIG. 2.
  • FIG. 4 is a schematic illustration of the break detection system of this invention.
  • FIG. 5 is a plan view of the preferred rotary break detection system utilized in the system of this invention.
  • FIG. 6 is a side cross sectional view of the break de-' tector of FIGS showing the filament end in' frictional contact with the rotatable cylinder and the fluid orifice open.
  • FIG. 7 is a side cross sectional view of the break detector of FIG. 5 showing the rotatable cylinder out of DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is a schematic illustration of a tow producing process utilizing the break detectionand correction system of this invention. The process shown illustrates fivepositions a, b, c, d, and e but, for the sake of clarity, the process will be described with regard to the first position only.
  • the tow 1 passes over roll 2 at which point filament 3a joins the tow after having passed through break detector or sensor 40.
  • Fluid for the fluidic break detector passes from air supply manifold 6 through conduit 7 to the break detector 4a.
  • FIG. 2 is a front view of an individual filament being fed to the tow line, which shows the passage of the filament over a sensor for detecting a broken end.
  • FIG. 3 is a side view of the tow forming system of FIG. 2. The continuous filament 11 passes over sensor 12 through slub catcher 13 to roll 14 where the filament is joined with and becomes a part of tow band 15.
  • FIG. 4 is a schematic illustration of the break detection system of this invention.
  • the continuous filament passes over break detector 21 over roll 22 where it joins with the tow band 23 at the nip between the roll and the tow band.
  • a fluid preferably air, passes from a fluid source 25 through conduit 24, preferably at a flow rate of from about 0.10 to 0.50 SCFM, to filament break detector 21.
  • a back pressure is created in the fluid break detector (as will be shown in detail in FIGS. 5, 6, 7 and 9).
  • the back presure automatically increases thepressure in conduit 24, which increase in pressure is sensed through conduit 26 by a pressure sensing device, such as diaphram 27. When the diaphram is inflated, electrical switch 28 is activated.
  • Electrical switch 28 is connected to the filament end inserter, which automatically inserts a substitute filament end.
  • the original end is reinserted into the tow band and again passes over the break detector. This eliminates the back pressure sensed by the diaphram and deactivates the electrical switch, which cuts off the end inserter.
  • FIG. 5 is a plan view of the preferred break detection mechanism utilized in this invention
  • the running filament end 30 passes over and is in friction contact with rotatable cylinder 31, the frictional force being sufficient to impart rotation to the cylinder.
  • the cylinder is mounted within a housing 32, in such a manner so as to be freely rotatable therein.
  • FIG. 6. is a side cross sectional view of the break detection device of FIG. 5.
  • the running filament 30 passes over the cylinder 31 in frictional contact therewith to impart rotary motion thereto.
  • a fluid orifice 35 preferably a gas port, is positioned in the stationary housing 32.
  • a retaining means 33 such as a countertration the rotation is shown as 90 degrees).
  • the counterweight is moved from counterweight storage point 34 (Point C), which stor age point usually constitutes a small flange.
  • the counterweight moves from counterweight storage at point C to point D, as shown in Flg. 7, where it blocks the fluid orifice 35. This prevents the flow of fluid out of the orifice and builds up pressure in the line through which the fluid passes to the orifice. This increase in pressure is sensed, such as by utilizing the diaphram and electrical switch illustrated in FIG. 4 and the filament end inserter is activated to temporarily insert a substitute end.
  • the filament 30 is repositioned in frictional contact with the cylinder 31, which causes the cylinder to rotate and the counterweight to return from position D to position C, thereby reopening the fluid orifice and permitting the flow of fluid therefrom. This returns the pressure in the fluid conduit to normal and deactivates the switch communicating with the filament end in serter to stop feeding the substitute filament and clamp it for future use, as required.
  • FIG. 8 is a side cross sectional view of the filament end inserter of this invention.
  • the end inserter is generally cylindrical in shape and the substitute filament end 40 passes through the generally circular opening 41 of the generally cylindrical passageway 42 in the body43 of the substitute end inserter.
  • a fluid underpressure is supplied to conduit 44 and passes through coupling 45 through orifice 46 in the body of the end inserter into the passageway 42.
  • the axis of the conduit ending in orifice 46 forms an angle of from about I to 20 degrees with the axis of generally cylindrical passageway 42, preferably the angle ranges from about 3 to 10 degrees.
  • a plurality of fluid orifices are utilized for propelling the filament through the passageway of the end inserter.
  • the plurality of orifices are positioned symetrically around the axis of the passageway which generally coincides with the path of the filament.
  • Fluid pressures utilized must clearly be sufficient to propel the filament and are generally in the range'of from about 15 to 60 pounds per square inch.
  • a combination clamp-cutter 47 is mounted in orifice 48 in the body of the end inserter in such a manner so as to be freely movable from a position B out of the path of the filament end 40 to a position A whereby it cuts and clamps the filament end.
  • the point of convergence of the fluid streams with each other and with the filament end must be prior to the clamp cutter to provide for adequate propelling of the filament.
  • the clamp-cutter 47 and the body 43 of the-end inserter are supported by support means 49.
  • the clamp cutter is connected by suitable means, such as electrically through a microswitch, to the filament breakage detector which activates the clamp-cutter to move from position A to position B upon an end breaking, while simultaneously starting the passage of fluid into the passageway of the inserter.
  • the filament end then passes through outlet orifice 50 to the tow line where it is joined to and becomes a part of the tow band.
  • FIG. 9 is a side cross sectional view of a fluid sensor for detecting the breakage of a filament.
  • a fluid preferably air pumped at a rate of from about 0. l0,to 0.50 SCFM is passed from a fluid supply through conduit 61.
  • the fluid passes out of outlet orifice 63, which preferably has a circular configuration with a diameter of from about 0.04 to 0.015 inch, into gap 64.
  • Another outlet orifice 65 is positioned on the opposite side of gap 64 coaxially aligned with orifice 63.
  • Fluid passes out of orifice 65 at a rate of from about 0.05 to 0.10 SCFM less than the fluid from orifice 63.
  • the lower pressure fluid is passed from a supply thereof through conduit 66, positioned within support body 62, and out of orifice 65 into gap 64.
  • a filament end 67 is passed from a source thereof through gap 64 tothe tow line, where it is joined with and becomesa part of the tow band. When the filament end breaks, the gap 64 is then open. Because of the differential in the pressure of the fluid exiting from coaxially aligned orifices 63 and 65, a back pressure is created at orifice 65.
  • the filament breakage detection and correction system of this invention has been described with particular regard to a process for the production of continuous filament tow.
  • process and apparatus of this invention is equally applicable to processes for the production of other continuous multifilament structures, such as tapes, ropes and the like.
  • Such multifilament structures may beformed from any of the fiber-forming materials which can be formed into continuous filaments, e.g. polyethylene terphthalate, other polyesters such as polyesters of terephthalic acid and other glycols, cellulose esters such as cellulose acetate or cellulose triacetate, polyamides such as nylon 6 or nylon 6,6, polyacrylonitriles, poleolefins, etc.
  • Apparatus for feeding continuous filamentary material to a continuous multifilament structure comprising: a source of continuous filamentary material; guide means defining a path along which said filamentary material is moved; means for forwarding said material along said path, said means comprising a plurality of pressurized fluid supply means directed in a shallow 2.
  • the apparatus of claim 1 wherein the means for i initiating the flow of said pressurized fluid and movement of the clamping and cutting means is responsive to means for detecting a broken filament in said continuous multifilament structure.
  • pressurized fluid supply means is directed at an angle of from 1 to 20 degrees with relation to the path of the filamentary material.
  • a process for feeding continuous filamentary material to a continuous multifliament structure compris- 'ing: clamping and engaging a continuous filamentary material; disengaging said filamentary material; feeding and guiding said filamentary material through a conmaterial along said path; feeding said filamentary material to said multifilament structure; cutting and clamping said filamentary material while simultaneously stopping the pressurized fluid streams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

The present invention relates to: process and apparatus for feeding continuous filaments to a continuous multifilament structure utilizing tangentially converging fluid streams to forward the filaments; process and apparatus for detecting breakage of filaments utilizing a rotatable cylinder, or a gap in a three dimensional body, wherein breakage of the filament causes a measurable change in the pressure of fluid flowing to the cylinder or the gap; process and apparatus for the production of continuous multifilament structures wherein, upon breakage of a continuous filament, the breakage detector automatically activates a filament feeder to temporarily insert a substitute filament.

Description

United States Patent [1 Bradley et al. i
[4 1 Dec. 31, 1974 FILAMENT BREAKAGE DETECTION AND CORRECTION Inventors: Walter Eugene Bradley, Fort Mill,
SC; Raeford Warren Clontz, Charlotte; Terry Stephen Floyd, Matthews; James Reed Honeycutt, Charlotte, all of N.C.
Celanese Corporation, New York, NY.
Filed: Nov. 5,1973
Appl. N0.: 413,109
Assignee:
US. Cl 83/13, 83/24, 83/58, 83/98, 83/147, 83/400, 83/402 Int. Cl B26d 5/28 Field of Search 83/13, 24, 58, 98, 147, 83/400, 402, 375, 382, 396; 226/11 References Cited UNITED STATES PATENTS 8/1951 4/1964 Faro'. 83/98 Bauer 83/98 X Gish 226/11 x 3,640,160 2/1972 Nelson et al..... 83/402 X 3,683,732 8/1972 .luppet 83/402 X 3,808,924 5/l974 Fergusonl 83/402 X Primary Examiner-Frank T. Yost Attorney, Agent, or Firm-Pamela D. Kasa [57] ABSTRACT The present invention relates to: process and apparatus for feeding continuous filaments to a continuous multifilament structure utilizing tangentially converging fluid streams to forward the filaments; process and apparatus for detecting breakage of filaments utilizing a rotatable cylinder, or a gap in a three dimensional body, wherein breakage of the filament causes a measurable change in the pressure of fluid flowing to the cylinder or the gap; process and apparatus for the production of continuous multifilament structures wherein, upon breakage of a continuous filament, the breakage detector automatically activates a filament feeder to temporarily insert a substitute filament;
9 Claims, 9 Drawing Figures 50 r ll w (LAMP- CUTTER PATENTED 3, 857. 309
SHEET 1 OF 2 PURGED CONDUIT CONTAINING PRESSURE SWITCHES 9 AIR SUFPLY MANIFOLD FLUID/C END I SENSOR; 3c INSERTER 3d je l J, J,
F TOW BAND /'5 TOW END f I Ff Z (SLUB (ATCHER I? b I SENSOR I2 FILAMENT BREAKAGE DETECTION AND CORRECTION BACKGROUND OF THE INVENTION Man-made fibers are often supplied as tows, which are bundles of generally parallel continuous filaments, each such bundle containing a large number of such filaments, generally well over 500, e.g., 6,000 to 500,000. In the manufacture of tows, sub-tows may be formed by joining together a plurality of continuous filaments. A number of sub-tows, each containing only a fraction of the filaments desired in the main tow, are usually fed side-by-side to a draw frame where they are stretched, in a manner well known in the art, to develop the desired physical properties (e.g. high tenacity and stiffness). The sub-tows are then combined and the resulting tow is fed to a crimping device, which is preferably of the stuffer box type, where the filaments are crimped, and then, in an untensioned condition, onto a belt which transfers the crimped tow continuously through an oven maintained at a temperature sufficiently high to permanently set the crimp, but not high enough to damage or melt the filaments.
The draw frame, crimping device and oven are utilized most efficiently when the tow passing therethrough contains a very large number of filaments, e.g. tow whose total denier is over about 50,000 and which contains over about 10,000 filaments. However, for certain end uses the crimped, heat set tow may be lower or higher in weight or'filament count. For example, in the production of cigarette filters from tow, the number of filaments may be as low as 5,000 and the total denier as low as 35,000.
Cigarette filters may be formed from such crimped continuous filament tows. Upon being received by the I filter manufacturer, the tow is opened and the crimps of the filaments deregistered, utilizing a process such as that disclosed in US. Pat. No. 3,156,016 to Dunlap et al. The tow is fed along a predetermined path and is subjected to a differential gripping action between a plurality of points spaced from one another both longitudinally and transversely of the path, so that certain laterally spaced sections of the tow are positively gripped relative to other laterally spaced sections if the tow, alternating with the gripped sections, which are not gripped at all or are gripped at different relative points. In this manner there is produced, as a function of the differential positive gripping of the tow, a relative shifting of adjacent filaments longitudinally of the tow, whereby the crimps are moved out of registry with one another.
The deregistered tow is then fed through a chamber in which a plasticizer is applied to the tow. The tow is thereafter treated to reduce its cross-sectional area until it is approximately equal to the cross-sectional area of a cigarette. The condensed mass is formed into a coherent structure, e.g. by wrapping paper around it and/or by curing, and is ultimately cut into suitable plug lengths for incorporation into cigarettes.
It has been found that the filters produced are not all identical as far as filtering action is concerned. The filters differ somewhat in weight, in filtering efficiency and in their resistance to gas flow therethrough. After smoking, some filters show a degree of uneven darkening, which indicates a somewhat non-uniform passage of smoke therethrough. The more darkened areas iden-. tify zones through which the smoke has been preferentially drawn. Tests have shown thata significant cause of these non-uniformities in the cigarette filters result from variations in the total denier and number of ends in the tow. This variation results, to a degree, from undetected broken ends in the tow forming process.
Clearly, uniform cigarette filters cannot be produced from a tow which is not substantially uniform.
Therefore, in the manufacture of continuous filament tow, filament breakage is a serious problem. If filament breakage does occur during the production of the tow, the product will have gaps or discontinuities within it which will adversely afect the uniformity of products made from the tow, unless steps are taken to compensate for the broken ends and thereby maintain a uniform number of ends.
Deregistered, opened tows may be utilized for purposes other than cigarette filters. Such tows are especially suitable for the production of nonwoven fibrous sheet-like structures such as may be used as sanitary napkin cover fabrics, pillow stuffing material, filling for sleeping bags or mattress covers, and the like. These products are superior to conventional nonwovens in their freedom from loose fiber ends, in their uniformity (e.g., freedom from thick or thin spots) and strength in the longitudinal direction. Clearly, in order to produce a uniform product, a substantially uniform tow is required.
The continuous feeding of filamentary material is,
therefore, critical to the production of substantially uniform tow. Suitable means must be. provided for detecting individual breaks in the filaments making up the tow. In addition, the delivery-of a continuous strand of filamentary material must be assured. To accomplish this, it is essential that appropriate means be utilized to ensure the feeding of a new filamentary strand or strands to a given tow line upon the breakage of one or more strands of continuous filamentary material.
Certain types of feeding mechanisms are presently available to retain the leading end of a standby supply of filamentary material in readiness to be fed to an appropriate feeding mechanism upon the breakage or exhaustion of one or more strands of filamentary material. One such mechanism is disclosed in US. Pat. No. 3,128,026 which utilizes electrical means to effect certain shifting arrangements which are utilized to transfer the driving effect of a feeding mechanism from a first strand of filamentary material to a second strand. Another such mechanism is illustrated in US. Pat. No. 3,519,181. A mechanism is provided for feeding continuous strandular material, utilizing guide means defining a path and means for forwarding the strandular material along this path. A standby supply of strandular material is provided with a supporting means engaging and positioning its leading end. A control, sensitive to the exhaustion of the first strands, because of the loss of contact therewith, operates to initiate movement of the support means for the first strand to introduce the second strand into engagement with the feed means.
Both of these apparatus require an arrangement for transferring the driving effect of a feed mechanism from the exhausted or broken strandular material to the standby end for insertion into the multifilament' strandular material being produced Of necessity, this results in a certain lag time before the standbyend is actually inserted. .Under such circumstances, it is clear that a gap can occur in the supplying of an end to the multifilament product, thereby providing for nonuniformity of the final product.
Accordingly, to produce substantially uniform con tinuous filamenttows, it is necessary to provide means for ensuring the continuation of a continuous filamentary material from additional supplies upon the breakage of one or'more of the original strands. In. order to ensure such a continuous supply'of strandular material, the supply means must be immediately warned of the breaking of the strandular material and set into action means for quickly forwarding a new supply of filamentary material to replace the disappearing end of the broken strand.
OB] ECTS OF TH E INVENTION It is an object of this invention to provide a system for the detection of filament breakage and replacement of the broken filament. It isanother object of this invention to provide a filament breakage and correction system which will automatically detect and replace broken filaments without any substantial interruption of the supply of filamentary material. 7
It is yet another object of this invention to provide a filament breakage and correction system utilizing an improved apparatus for inserting replacement filamerits.
SUMMARY OF THE INVENTION In accordance with this invention there is provided a filament break detection and correction system comprising a break detection system and a system for temporarily inserting a substitute end until the original filament end can be reinserted. Alternative break detection'systems can be utilized in combination with an end inserter which automatically inserts and removes substitute ends from a multifilamentline, such as a tow production line.
The filament end inserter utilizes a jet of fluid, such as air or water, to propel the substitute filament end into anip point in the tow line. To remove the substitute end, a combination clamp-cutter is energized, which cuts the end and holds it in position for the next filament end insertion.
The end inserter is activated by a sensor which detects the breakage of one or more filament ends. One such device utilizes a fluidic sensing mechanism with the running filament end passing through a gap in the sensor. When a filament end breaks, the gap is opened and a back pressure is created in the gap. The filament end, before breakage, acts as a shield against a fluid,
such as air, passing from a high pressure supply through an orifice on one side of the gap to a coaxial orifice positioned on the opposite side of the gap which is in communication with a lower pressure fluid supply. when the filament end breaks, a back pressure occurs at the orifice in communication with the low pressure fluid supply. This back pressure is sensed, such as by a diaphram which inflates and thereby trips a microswitch which sends an electrical signal to trigger the end inserter to temporarily insert a substitute filament end into the tow line until the broken end can be reinserted. When the malfunction is repaired and the filament end reinserted through the sensor gap, the reduction in back pressure automatically cuts off the end inserter.
In the preferred embodiment, a rotary sensor is utilized for'detecting breaks in the continuous running filaments. The sensor detects arunning filament end when the filament is passing over a rotatable cylinder. The end of the cylinder is mounted within a housing within which it is freely rotatable. When the running filament is in frictional contact with the cylinder, the cylinder is caused to rotate. The frictional force must be sufficient to overcome the inertial force of the cylin-' der and a counterweight, spring, magnet or other retaining means holds the cylinder in its inertial position. Because of the rotation of the cylinder through an angle of less than degrees, the retaiing means is moved from a position which blocks a fluid orifice, such as an air port, to a position wherein the fluid is free to pass from the orifice. Upon breakage of the running filament end, the frictional contact between the filament end and the rotatable cylinder is terminated and the retaining means and cylinder return to their po sition of inertia, whereby the retaining means effectively blocks passage of the fluid from the orifice.
The fluid orifice is connected to a source of supply of the fluid and a pressure sensing mechanism. When the flow of the fluid stops, the pressure sensing mechanism detects the build up in pressure which activates another mechanism, such as an electrical microswitch which sends an electrical signal, which triggers the end inserter to temporarily insert a substitutefilament end into the tow line until the malfunction can be corrected and the original filament end reinserted. When the malfunction has been corrected and the filament .is running in frictional contact with the rotatable cylinder, the cylinder and retaining means are moved from their inertial position back to a position where the retaining. means does not block the passage of fluid from the orifice. The reduction in pressure is sensed and the end inserter is automatically cut off.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration of a tow .producing process utilizing the break detection and correction system of this invention.
FIG. 2 is a front view of an individual filament being fed to the tow line, which shows the passage of the filament end over a sensor for detecting a broken end.
FIG. 3 is a side view of the portion of the tow forming system illustrated in FIG. 2.
FIG. 4 is a schematic illustration of the break detection system of this invention.
FIG. 5 is a plan view of the preferred rotary break detection system utilized in the system of this invention.
FIG. 6 is a side cross sectional view of the break de-' tector of FIGS showing the filament end in' frictional contact with the rotatable cylinder and the fluid orifice open.
FIG. 7 is a side cross sectional view of the break detector of FIG. 5 showing the rotatable cylinder out of DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic illustration of a tow producing process utilizing the break detectionand correction system of this invention. The process shown illustrates fivepositions a, b, c, d, and e but, for the sake of clarity, the process will be described with regard to the first position only. The tow 1 passes over roll 2 at which point filament 3a joins the tow after having passed through break detector or sensor 40. Fluid for the fluidic break detector passes from air supply manifold 6 through conduit 7 to the break detector 4a. When an end breaks, the change in pressure is sensed through conduit 8 in purged conduit 9 contatining switches or other mechanism sensitive to pressure changes. When a broken filament end is detected by the change in pressure, substitute filament end inserter 5 is activated to temporarily insert a substitute filament until the malfunction is repaired and the original filament reinserted.
FIG. 2 is a front view of an individual filament being fed to the tow line, which shows the passage of the filament over a sensor for detecting a broken end. FIG. 3 is a side view of the tow forming system of FIG. 2. The continuous filament 11 passes over sensor 12 through slub catcher 13 to roll 14 where the filament is joined with and becomes a part of tow band 15.
FIG. 4 is a schematic illustration of the break detection system of this invention. The continuous filament passes over break detector 21 over roll 22 where it joins with the tow band 23 at the nip between the roll and the tow band. A fluid, preferably air, passes from a fluid source 25 through conduit 24, preferably at a flow rate of from about 0.10 to 0.50 SCFM, to filament break detector 21. Whena filament breaks, a back pressure is created in the fluid break detector (as will be shown in detail in FIGS. 5, 6, 7 and 9). The back presure automatically increases thepressure in conduit 24, which increase in pressure is sensed through conduit 26 by a pressure sensing device, such as diaphram 27. When the diaphram is inflated, electrical switch 28 is activated. Electrical switch 28 is connected to the filament end inserter, which automatically inserts a substitute filament end. When the malfunction is corrected, the original end is reinserted into the tow band and again passes over the break detector. This eliminates the back pressure sensed by the diaphram and deactivates the electrical switch, which cuts off the end inserter.
FIG. 5 is a plan view of the preferred break detection mechanism utilized in this invention The running filament end 30 passes over and is in friction contact with rotatable cylinder 31, the frictional force being sufficient to impart rotation to the cylinder. The cylinder is mounted within a housing 32, in such a manner so as to be freely rotatable therein.
' FIG. 6.is a side cross sectional view of the break detection device of FIG. 5. The running filament 30 passes over the cylinder 31 in frictional contact therewith to impart rotary motion thereto. A fluid orifice 35, preferably a gas port, is positioned in the stationary housing 32. A retaining means 33, such as a countertration the rotation is shown as 90 degrees). When the cylinder is rotated, the counterweight is moved from counterweight storage point 34 (Point C), which stor age point usually constitutes a small flange.
Upon rotation of the cylinder 31 within the housing 32, the counterweight moves from counterweight storage at point C to point D, as shown in Flg. 7, where it blocks the fluid orifice 35. This prevents the flow of fluid out of the orifice and builds up pressure in the line through which the fluid passes to the orifice. This increase in pressure is sensed, such as by utilizing the diaphram and electrical switch illustrated in FIG. 4 and the filament end inserter is activated to temporarily insert a substitute end. Upon repairing of the malfunction, the filament 30 is repositioned in frictional contact with the cylinder 31, which causes the cylinder to rotate and the counterweight to return from position D to position C, thereby reopening the fluid orifice and permitting the flow of fluid therefrom. This returns the pressure in the fluid conduit to normal and deactivates the switch communicating with the filament end in serter to stop feeding the substitute filament and clamp it for future use, as required.
FIG. 8 is a side cross sectional view of the filament end inserter of this invention. The end inserter is generally cylindrical in shape and the substitute filament end 40 passes through the generally circular opening 41 of the generally cylindrical passageway 42 in the body43 of the substitute end inserter. A fluid underpressure is supplied to conduit 44 and passes through coupling 45 through orifice 46 in the body of the end inserter into the passageway 42. The axis of the conduit ending in orifice 46 forms an angle of from about I to 20 degrees with the axis of generally cylindrical passageway 42, preferably the angle ranges from about 3 to 10 degrees.
Preferably, a plurality of fluid orifices are utilized for propelling the filament through the passageway of the end inserter. The plurality of orifices are positioned symetrically around the axis of the passageway which generally coincides with the path of the filament. When the orifices are so positioned, the fluid streams which flow therefrom will converge at a pointdownstream of their introduction. The point at which they intersect with each other and with the filament is determined by the exact angle at which they enter the passageway.
Fluid pressures utilized must clearly be sufficient to propel the filament and are generally in the range'of from about 15 to 60 pounds per square inch. A combination clamp-cutter 47 is mounted in orifice 48 in the body of the end inserter in such a manner so as to be freely movable from a position B out of the path of the filament end 40 to a position A whereby it cuts and clamps the filament end. The point of convergence of the fluid streams with each other and with the filament end must be prior to the clamp cutter to provide for adequate propelling of the filament. When the clamp cut ter is closed (in position A), the fluid is automatically cut off by any suitable 'means until reactivation of the inserter.
The clamp-cutter 47 and the body 43 of the-end inserter are supported by support means 49. The clamp cutter is connected by suitable means, such as electrically through a microswitch, to the filament breakage detector which activates the clamp-cutter to move from position A to position B upon an end breaking, while simultaneously starting the passage of fluid into the passageway of the inserter. The filament end then passes through outlet orifice 50 to the tow line where it is joined to and becomes a part of the tow band.
Upon reinsertion of the original filament end, the end breakage detector activates the clamp-cutter to move to position A and stops the flow of fluid into the inserter, whereby the filament end is cut and clamped for the next insertion required FIG. 9 is a side cross sectional view of a fluid sensor for detecting the breakage of a filament. A fluid, preferably air pumped at a rate of from about 0. l0,to 0.50 SCFM is passed from a fluid supply through conduit 61. The fluid passes out of outlet orifice 63, which preferably has a circular configuration with a diameter of from about 0.04 to 0.015 inch, into gap 64. Another outlet orifice 65 is positioned on the opposite side of gap 64 coaxially aligned with orifice 63. Fluid passes out of orifice 65 at a rate of from about 0.05 to 0.10 SCFM less than the fluid from orifice 63. The lower pressure fluid is passed from a supply thereof through conduit 66, positioned within support body 62, and out of orifice 65 into gap 64. A filament end 67 is passed from a source thereof through gap 64 tothe tow line, where it is joined with and becomesa part of the tow band. When the filament end breaks, the gap 64 is then open. Because of the differential in the pressure of the fluid exiting from coaxially aligned orifices 63 and 65, a back pressure is created at orifice 65. This automaticaly increases the pressure in conduit 66, which increase in pressure is sensed by a pressure sensitive device connected to the end inserter, which automaticaly inserts a substitute filament end. When the malfunction is corrected, the originalfilament is reinstated into the gap 64, thus closing the gap. This eliminates the back pressure in conduit 66 and the end inserter is auto matically deactivated. v
The filament breakage detection and correction system of this invention has been described with particular regard to a process for the production of continuous filament tow. However, it is clear that the process and apparatus of this invention is equally applicable to processes for the production of other continuous multifilament structures, such as tapes, ropes and the like. Such multifilament structures may beformed from any of the fiber-forming materials which can be formed into continuous filaments, e.g. polyethylene terphthalate, other polyesters such as polyesters of terephthalic acid and other glycols, cellulose esters such as cellulose acetate or cellulose triacetate, polyamides such as nylon 6 or nylon 6,6, polyacrylonitriles, poleolefins, etc.
It is to be understood that the foregoing detailed description is given merely by way of illustration, and that variations may be made therein without departing from the spirit or the scope of this invention. What we claim is: I 1. Apparatus for feeding continuous filamentary material to a continuous multifilament structure comprising: a source of continuous filamentary material; guide means defining a path along which said filamentary material is moved; means for forwarding said material along said path, said means comprising a plurality of pressurized fluid supply means directed in a shallow 2. The apparatus of claim 1 wherein the means for i initiating the flow of said pressurized fluid and movement of the clamping and cutting means is responsive to means for detecting a broken filament in said continuous multifilament structure.
3. The apparatus of claim 1 wherein the pressurized fluid supply means is directed at an angle of from 1 to 20 degrees with relation to the path of the filamentary material.
4. The apparatus of claim I wherein the plurality of pressurized fluid supply means are arranged symetrically about the path of the filamentary material.
'5. A process for feeding continuous filamentary material to a continuous multifliament structure compris- 'ing: clamping and engaging a continuous filamentary material; disengaging said filamentary material; feeding and guiding said filamentary material through a conmaterial along said path; feeding said filamentary material to said multifilament structure; cutting and clamping said filamentary material while simultaneously stopping the pressurized fluid streams.
6. The process of claim 5 wherein the fluid streams converge with said path of said filamentary material at an angle 'of from 1 to 20 degrees.
7. The process of claim 6 wherein the angle is from 3 to 10 degrees.
8. The process of claim 5 wherein the fluid streams converge with said path of said filamentary material at a plurality of locations positioned symetrically about said path.
9. The process of claim 5 wherein the fluid is directed under a pressure of from about 15 to 60 pounds per square inch.

Claims (9)

1. Apparatus for feeding continuous filamentary material to a continuous multifilament structure comprising: a source of continuous filamentary material; guide means defining a path along which said filamentary material is moved; means for forwarding said material along said path, said means comprising a plurality of pressurized fluid supply means directed in a shallow angle of tangential convergence with the path of said material; means for clamping and cutting said material, said means movably mounted to move from a position of engaging said material to a position of nonengagement; means for initiating flow of said pressurized fluid and movement of said clamping and cutting means from a position of engaging said material to a position of nonengagement, to feed said material to said multifilament structure.
2. The apparatus of claim 1 wherein the means for initiating the flow of said pressurized fluid and movement of the clamping and cutting means is responsive to means for detecting a broken filament in said continuous multifilament structure.
3. The apparatus of claim 1 wherein the pressurized fluid supply means is directed at an angle of from 1 to 20 degrees with relation to the path of the filamentary material.
4. The apparatus of claim 1 wherein the plurality of pressurized fluid supply means are arranged symetrically about the path of the filamentary material.
5. A process for feeding continuous filamentary material to a continuous multifliament structure comprising: clamping and engaging a continuous filamentary material; disengaging said filamentary material; feeding and guiding said filamentary material through a confined path; directing a plurality of fluid streams in a shallow angle of tangential convergence with said path of said filamentary material to forward said filamentary material along said path; feeding said filamentary material to said multifilament structure; cutting and clamping said filamentary material while simultaneously stopping the pressurized fluid streams.
6. The process of claim 5 wherein the fluid streams converge with said path of said filamentary material at an angle of from 1 to 20 degrees.
7. The process of claim 6 wherein the angle is from 3 to 10 degrees.
8. The process of claim 5 wherein the fluid streams converge with said path of said filamentary material at a plurality of locations positioned symetrically about said path.
9. The process of claim 5 wherein the fluid is directed under a pressure of from about 15 to 60 pounds per square inch.
US00413109A 1973-11-05 1973-11-05 Filament breakage detection and correction Expired - Lifetime US3857309A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US00413109A US3857309A (en) 1973-11-05 1973-11-05 Filament breakage detection and correction
US05/506,624 US3999695A (en) 1973-11-05 1974-09-16 Filament breakage detection and correction
CA212,940A CA1029539A (en) 1973-11-05 1974-11-04 Filament breakage detection and correction
JP49126652A JPS50111296A (en) 1973-11-05 1974-11-05
BE150214A BE821860A (en) 1973-11-05 1974-11-05 METHOD AND APPARATUS FOR DETECTION AND CORRECTION OF FILAMENT BREAKS
CA295,517A CA1034751A (en) 1973-11-05 1978-01-24 Process and apparatus for cutting filamentary material forwarded by pressurized fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00413109A US3857309A (en) 1973-11-05 1973-11-05 Filament breakage detection and correction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/506,624 Division US3999695A (en) 1973-11-05 1974-09-16 Filament breakage detection and correction

Publications (1)

Publication Number Publication Date
US3857309A true US3857309A (en) 1974-12-31

Family

ID=23635869

Family Applications (1)

Application Number Title Priority Date Filing Date
US00413109A Expired - Lifetime US3857309A (en) 1973-11-05 1973-11-05 Filament breakage detection and correction

Country Status (4)

Country Link
US (1) US3857309A (en)
JP (1) JPS50111296A (en)
BE (1) BE821860A (en)
CA (1) CA1029539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072664A1 (en) * 1981-08-15 1983-02-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for drafting fiber strands
US5086679A (en) * 1988-10-03 1992-02-11 Basf Fibres Inc. Process for apparatus for collecting continuous supplied yarn to waste
US20070089575A1 (en) * 2003-06-03 2007-04-26 J.G.S. Billingsley, Inc. Method and apparatus for adjustable cutting of filamentary material
US20140367404A1 (en) * 2013-06-18 2014-12-18 The Procter & Gamble Company Discrete cord delivery apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9447525B2 (en) * 2014-02-18 2016-09-20 Eastman Chemical Company On-line detection of defects in fibrous members

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563986A (en) * 1946-07-30 1951-08-14 American Viscose Corp Yarn handling method and apparatus
US3130619A (en) * 1960-12-21 1964-04-28 Flintkote Co Fiber cutter and aspirator
US3635413A (en) * 1969-12-29 1972-01-18 Hercules Inc Break detection and correction system for threadlike materials
US3640160A (en) * 1969-12-24 1972-02-08 Leesona Corp Strand handling
US3683732A (en) * 1970-04-16 1972-08-15 Rhodiaceta Yarn handling pneumatic device
US3808924A (en) * 1973-04-17 1974-05-07 Du Pont Tubular assembly for cutting pneumatically propelled filaments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563986A (en) * 1946-07-30 1951-08-14 American Viscose Corp Yarn handling method and apparatus
US3130619A (en) * 1960-12-21 1964-04-28 Flintkote Co Fiber cutter and aspirator
US3640160A (en) * 1969-12-24 1972-02-08 Leesona Corp Strand handling
US3635413A (en) * 1969-12-29 1972-01-18 Hercules Inc Break detection and correction system for threadlike materials
US3683732A (en) * 1970-04-16 1972-08-15 Rhodiaceta Yarn handling pneumatic device
US3808924A (en) * 1973-04-17 1974-05-07 Du Pont Tubular assembly for cutting pneumatically propelled filaments

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072664A1 (en) * 1981-08-15 1983-02-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for drafting fiber strands
US5086679A (en) * 1988-10-03 1992-02-11 Basf Fibres Inc. Process for apparatus for collecting continuous supplied yarn to waste
US20070089575A1 (en) * 2003-06-03 2007-04-26 J.G.S. Billingsley, Inc. Method and apparatus for adjustable cutting of filamentary material
US7578221B2 (en) * 2003-06-03 2009-08-25 John G. S. Billingsley Method and apparatus for adjustable cutting of a filamentary material
US20140367404A1 (en) * 2013-06-18 2014-12-18 The Procter & Gamble Company Discrete cord delivery apparatus
US9770372B2 (en) * 2013-06-18 2017-09-26 The Procter & Gamble Company Discrete cord delivery apparatus
US10098794B2 (en) * 2013-06-18 2018-10-16 The Procter & Gamble Company Discrete cord delivery apparatus

Also Published As

Publication number Publication date
BE821860A (en) 1975-05-05
CA1029539A (en) 1978-04-18
JPS50111296A (en) 1975-09-01

Similar Documents

Publication Publication Date Title
US4592119A (en) Air jet yarn entangling apparatus
US3343240A (en) Method and apparatus for bulking synthetic fibers
US3457715A (en) Method and apparatus for producing intermittent bulked and saponified yarn
US3999695A (en) Filament breakage detection and correction
KR20010080062A (en) Method for continuously unwinding a thread
TW454051B (en) Apparatus for producing yarns with yarn cutting and sucking units
US3857309A (en) Filament breakage detection and correction
JP2009256871A (en) Improved high-speed fiber feed assembly
US3438101A (en) Process and apparatus for texturizing yarn
US4074871A (en) Method and apparatus for handling strands
IL25868A (en) Tow tie-in method
US4024611A (en) Method and apparatus for texturizing continuous filaments
US4147020A (en) Commingling air jet deflector
US3576058A (en) Process and apparatus for the continuous compression crimping and setting of a multifilament yarn
US5860201A (en) Multiple width fiber strip and method and apparatus for its production
US4014085A (en) String up and shutdown process for a yarn texturizing apparatus
US4152885A (en) Interlocked yarn and method of making same
EP0806503B1 (en) A doubled yarn false twisting machine
US20040094169A1 (en) Process and system for monitoring a continuous element being incorporated within a cigarette filter
JPS5844353B2 (en) filter filter
JP3509870B2 (en) Production of processed yarn
US4122703A (en) Method and apparatus for reeling discrete yarn strand patterns
US4422224A (en) Apparatus for interlacing multifilament yarn
US4095317A (en) Process for producing textured yarn
US3983610A (en) Apparatus for producing textured yarn