US3853199A - Collision sensor for fender bumper operated vehicle safety device - Google Patents
Collision sensor for fender bumper operated vehicle safety device Download PDFInfo
- Publication number
- US3853199A US3853199A US00310943A US31094372A US3853199A US 3853199 A US3853199 A US 3853199A US 00310943 A US00310943 A US 00310943A US 31094372 A US31094372 A US 31094372A US 3853199 A US3853199 A US 3853199A
- Authority
- US
- United States
- Prior art keywords
- housing
- collision
- actuating member
- fixed contact
- movable contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006835 compression Effects 0.000 claims abstract description 9
- 238000007906 compression Methods 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 6
- 238000005192 partition Methods 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 6
- 230000035939 shock Effects 0.000 claims description 5
- 235000014676 Phragmites communis Nutrition 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 abstract description 37
- 230000007850 degeneration Effects 0.000 abstract description 3
- 230000006378 damage Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000454273 Hirashima Species 0.000 description 1
- 102000018210 Recoverin Human genes 0.000 description 1
- 108010076570 Recoverin Proteins 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
- H01H3/22—Power arrangements internal to the switch for operating the driving mechanism
- H01H3/24—Power arrangements internal to the switch for operating the driving mechanism using pneumatic or hydraulic actuator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H35/00—Switches operated by change of a physical condition
- H01H35/14—Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H35/00—Switches operated by change of a physical condition
- H01H35/14—Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
- H01H35/146—Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch operated by plastic deformation or rupture of structurally associated elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H36/00—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
- H01H36/0006—Permanent magnet actuating reed switches
Definitions
- ABSTRACT elongate retractable member is axially' slidably mounted in the bore to retract to open or close two contacts provided therein when subjected to a collision impact.
- the elongate retractable member has attached thereto a permanent magnet which, in the retracted position, applies an attractive or repulsive force tending to close or open the two contacts-which are hermetically sealed within an evacuated glass tube to prevent degeneration of the contacts.
- the impactresponsive switch is so positioned on the bumper that the elongate member is subjected to the collision impact upon compression of a resilient member which is interposed between aback plate of a buffer barand an end plate of a piston rod forming a part of the bumper mechanism.
- Such collision sensor usually comprises a switch mechanism which is adapted to be closed or opened upon sensing a collision condition. It has been found in the art that in order to successfully protect occupants from injuries the switch is required to be closed or opened within one or two milliseconds after a collision begins. Another requirement to be satisfied by the switch mechanism of this kind is that it cannot be readily actuated by anything else than a collision.
- Another object of the present invention is to provide an improved switch mechanism which is adapted for use on a shock-absorbing bumper of amotor vehicle to sense an impact upon the bumper resulting from a collision of the vehicle.
- FIG. 1 is a side elevation, partly in section, of a shock-absorbing bumper of a motor vehicle on which a switch mechanism according to the invention is mounted; I v
- FIG. 2 is an enlarged sectional view of the connection between a buffer bar and a piston rod of the bumper mechanism the switch mechanismv of the invention being shown as mounted on an end plate of the piston rod;
- FIG. '3 is a perspective view. with a schematic diagram of theassociated electrical circuit, of a shockabsorbing' bumper according to the invention.
- FIG. 4 is a longitudinal sectional view of a typical switch mechanism according to the invention.
- FIG. 5 is a view showing the manner in which the switch mechanism of the invention is mounted on the buffer bar of the bumper mechanism
- FIG. 6 is a view of a modification of the switch mechanism of FIG. 4;
- FIG. 7 is an illustration of a further embodiment of the switch mechanism according to the invention.
- FIG. 8 is a view of a typical hermetically sealed' an inertia switch employed in combination with the switch mechanism of the invention.
- FIG. 1 A simplified schematic diagram illustrating a preferred overall arrangement of a shock-absorbing bumper to which the sensor or switch mechanism of the invention is applied is shown in FIG. 1.
- the bumper comprises an impact member, such as a buffer bar 10 extending crosswise and horizontally of the vehicle in front of the front wheels or in the back of the rear wheels.
- the buffer bar 10 is of profiled steel type having a web portion 10a and upper and lower inwardly directed flanges 10b.
- Affixed on the outer surface of the web portion 10a is an elongate plate-like member 13 of urethan foam or other suitable material that serves to lessen impacts upon pedestrians which could otherwise cause critical physical damages to them at the time of a collision.
- a back plate or impact receiving member 15 is provided which extends between the upper and lower flanges 10b of the buffer plate 10, the upper and lower ends of the back plate 15 being secured to the inner surfaces of the upper and lower flanges 10b, respectively. by welding or other suitable method.
- the back plate 15 has one or more openings 17 formed therein (see FIG. 2) for securing thereto a piston 'rod which forms part of a shock absorbing mounting 21.
- the shock absorbing mounting 21 is preferably of the hydraulic cushion type and comprises a cylinder 23, a
- the piston (not shown) axially movable within the cylinder 23, and the piston rod 25 extending from the piston toward the buffer bar 10.
- the cylinder 23 is secured-on a longitudinally disposed frame portion or a side bar 27 of a vehicle chassis by means of bracket members 29.
- thepiston rod 25 has mounted thereon or integrally formed therewith an end plate 31 which is secured to the back plate 15 by a bolt and nut assembly 33 with a resilient plate member 35 interposed therebetween.
- the resilient member 35 is made of foam rubber or any other suitable material that is sufficiently resilient to absorb shearing stresses as well as compression stresses.
- the opening 17 in the back plate 15, and its corresponding openings 37 and 39 formed in the end plate 31 and the resilient member 35, respectively, are so arranged as to have same diameters which are somewhat larger than the outer diameter of a bolt 33a so as to provide slight lateral movement or play of the back plate 15 relative to the end plate 31.
- the sensor or switch mechanism according to the invention is generally designated by and is mounted on the end plate 31 of the piston rod 25 to sense an impact upon the buffer bar 10 at the time of a collision.
- a typical example of the switch mechanism is shown in FIG. 4, which comprises a casing or housing 52 having a chamber 54 formed therein and an axial bore 56 extending from the chamber 54.
- An elongate retractable member 58 is mounted in the axial bore 56 slidably movable therein.
- the elongate member 58 has secured at its inner end a plate 60 of electrically conductive material for normally providing an electric path between two contacts 62 and 63 provided in the chamber 54 on both sides of the axial bore 56.
- the chamber 54 is also provided with a spring seat 65 for receiving a coil or helical spring 67 which acts to apply a force on the end plate 60 to urge the elongate retractable member 58 to its fully extended position shown in FIG. 4.
- Connections to the contacts 62 and 63 are made by wires 72 and 73, respectively, which are connected to a vehicle safety device (not shown).
- the resilient member 35 and the end plate 31 of the piston rod 25 have formed therein aligned openings 75 and 76, respectively, which are of identical diameter somewhat larger than the outer diameter of the elongate retractable member 58.
- the sensor or switch mechanism 50 is secured to the surface of the end plate 31 opposite to the resilient member 35 by suitable means (not shown), with the elongate retractable member 58 extending through the aligned openings 75 and 76. It should be noted that the length of the elongate member 58 is such that there is a gap left between the tip of the elongate member 58 and the surface of the back plate 15 under normal conditions.
- FIG. 6 illustrates another preferred embodiment of the sensor or switch mechanism according to the invention which is different from that of FIG. 4 in that a leaf spring 85 is employed in place of the coil or helical spring 67.
- the leaf spring 85 is preloaded so as to normally urge the elongate member 58' to its fully extended position through a protuberance 87 provided on the end plate 60'.
- the leaf spring 85 is made of electrically conductive material and is normally kept in contact with afixed contact 89 provided in the housing 52.
- FIG. 7 illustrates a further embodiment of the switch mechanism according to the invention which includes a permanent magnet 90 for magnetically actuating a hermetically sealed switch 92.
- the sensor or switch mechanism also includes a casing or housing 94 having a chamber 96 formed therein and an axial bore 98 extending from the chamber 96.
- An elongate retractable member 100 is axially slidably mounted in the axial bore 98 and is normally biased to its fully extended position by means of a spring 102.
- the permanent magnet 90 is mounted at the inner end of the elongate member 100 and, when the elongate member 100 is moved to its retracted position, the magnet 90 is placed in a position immediately above the hermetically sealed switch 92, where it actuates the switch 92.
- the switch 92 is disposed within the chamber 96 longitudinally of the housing 94 to extend along the spring 102.
- the switch 92 comprises an elongate hollow tube 106 of electrically insulating material such as glass, containing inert gas. Alternatively, the hollow tube 106 may be evacuated to prevent degeneration of contacts provided therein.
- a contact 108 extends into the interior of the tube 106 from the left exterior side thereof and is preferably made of nonmagnetic material such as aluminum or copper.
- Another contact 110 is made of resilient and magnetic material and extends into the tube 106 from the right exterior side thereof toward the contact 108. The contact 110 is preloaded so that the tip thereof is normally held in contact with the lower surface of the contact 108.
- FIG. 9 illustrates the sensor or switch mechanism according to the invention which includes a cover mounted on the housing 52 to enclose the elongate retractable member 58.
- the cover 120 serves to prevent the entrance of dirt, water or other foreign matter into the axial bore 56 (not identified) which would otherwise cause corrosion of contacts or lead to malfunction of the switch mechanism.
- FIG. 10 illustrates a further preferred embodiment of the sensor or switch mechanism according to the invention which sensor is generally of the pneumatically actuated type.
- a casing or housing has formed therein a chamber 132 which is divided into two axial compartments 132a and 1321; by a partition member 134 provided in the chamber 132.
- a piston 136 is axially slidably mounted within the compartment 132a and has a piston rod 138 extending externally therefrom through an opening formed in the housing 130.
- the partition member 134 is formed in the center thereof with an opening 140 which communicates with the interior of a bellows member 142 provided within the compartment 132a on the partition member 134.
- the bellows member 142 is secured to a plate member 144 through which the bellows member 142 is normally compressed to its contracted condition by means of a spring 146 provided between the partition member 134 and the plate member 144.
- the plate member 144 is of electrically conductive material and is normally engaging a contact 148 leading to a'terminal 150.
- a fixed contact 152 is provided between the partition member 134 and the plate member 144 and is normally held in abutting engagement with the conductive plate member 144.
- Another terminal 154 is provided leading to the fixed contact 152.
- FIG. 11 illustrates still another preferred embodiment of the sensor or switch mechanism according to the invention which is similar to that shown in FIG. 4 except that the elongate retractable member 58 is normally held in its fullyextended position by means of a magnet instead of the spring 67'(see FIG. 4).
- the magnet 160 may be a permanent magnet or an electromagnet which is capable of holding the elongate member 58 in the-position shown without being affected by rather light impacts not resulting from a collision of the vehicle.
- FIG. .12 illustrates a still .further preferred embodiment of the sensor or switch mechanism accordingto the invention which is also similar to that shown in FIG. 4 except that the contacts 62 and 63 are replaced by a tubular contact member 165.
- the tubular contact member comprises two elongate portions 165a and l65b which are made of glass or other suitable material having thereon a coating of electrically conductivemate'rial.
- the portions 165:: and 16512 shatter, interrupting an electric path between terminals connected thereto.
- the contact member 165 may be formed of carbon
- the switch mechanisms as shown and described 7 above are employed separately or in combination with other collision-sensitive switch types in order to insure a reliable sensing of a collision condition which could possibly cause critical physical injuries to the vehicle occupants.
- FIG. 15 illustrates a typical arrangement of the inertia switch which is of the sensitivity-modulating type.
- the switch 170 includes a weight 174 of magnetic material which is suspended by a conductive wire 176 leading to a terminal 178.
- the weight 174 is normally held in abutting engagement with a permanent magnet I80 and an electromagnet 182 which is energized by a battery 184 through the switch mechanism 50 of the invention. Since, in normal condition. the weight 174 is held in the position shown with two forces exerted by the permanent magnet I80 and the electromagnet 182, it will be appreciated that even a rapid acceleration or deceleration of the vehicle during normal driving cannot cause movement of the weightl74 away from the magnets and 182.
- the switch mechanism 50 is opened, reducing to zero the force exerted on the weight 174 by the electromagnet 182, so that the weight 174 is moved into contact with a fixed contact 186 with a decreased force of inertia applied to the weight 174. It will be appreciated that with this arrangement it is possible to keep at a relatively low value the'magnitude of deceleration above which the inertia switch 17 is actuated at the time of a collision.
- FIG. 16 illustrates another arrangement of the inertia switch 170' which is adapted for use with the sensor or switch mechanism of the invention.
- the inertia switch 170 comprises a tubular member or housing 190 having an internal cylindrical bore 192 f0 formed therein within which a weight in the form of a sphere 194 is disposed.
- the weight 194 is normally held against one end wall of the cylidrical bore 192 by a contact member 196 which in turn is urged in a left-hand direction as viewed in FIG. 16 by a spring 198 provided within the cylindrical bore 192.
- Extending inwardly from the other end wall of the bore 192 toward the contact member 196 is another contact member 200 which leads to a terminal 202.
- the spring 198 is of electrically conductive material, connecting the contact member 196 to a terminal 204.
- the inertia switch 170' also includes an electromagnet 206 provided in the left end portion of the tubular member 190 adjacent the spherical weight 194.
- the electromagnet 206 is connected in series with the switch mechanism 50 of the present inmembers it should be understood that the invention is not restricted to either one of the two types. It would be possible to readily modify the switch mechanism from a closed-open to open-closed or from open-closed to closed-open type. In this connection, it should be noted that the switch mechanism which is opened when a collision takes place is characterized by a quick response in that even a slight movement of the movable contact causes itself to be disconnected fromthe fixed contact.
- the switch mechanism of the invention has an increased durability in use since the internally mounted contacts 108 and 110 are prevented from exposure to the air.
- the sensor or switch mechanism of the invention is responsive to a collision other than a headon collision as well.
- a shock absorbing bumper which bumper includes an impact receiving member extending crosswise horizontally of the vehicle, a cylinder disposed longitudinally of the vehicle and secured to the vehicle's body, a piston axially slidable in a bore of the cylinder, a piston rod extending externally from the piston and having one end secured to the impact receiving member, the piston rod being adapted to be withdrawn into the cylinder when said impact receiving member deforms upon collision against a solid obstacle, and a resilient member disapparatus comprising, in
- an elongate actuating member axially slidably mounted in the cavity and extending externally of said housing, said elongated actuating member being arranged to normally extend through said niche in said one end of said piston rod into said niche formed in said'resilient member but to be withdrawn into said housingupon compression of the resilient member resulting from the collision,
- a movable contact which is associated with said elongate actuating member, disposed in said cavity and normally held in contact with the fixed contact, the
- movable contact being movable to disengage from the fixed contact in response to the withdrawal movement of said elongate actuating member to open said first electric circuit
- inertia responsive switch forming part of a second electric circuit connected with the safety'device for producing the collision signal upon closure thereof, said inertia responsive switch including,
- an inertia-responsive magnetic weight located in said cavity for movement in a longitudinal direction of the vehicle body in response to the inertia applied to the body during the collision
- a fixed contact disposed in said housing adjacent to the movable contact, the fixed contact being positioned in a path of the inertia responsive movement of said inertia weight
- An apparatus further comprising means to keep said elongate actuating member at its extended position.
- said means to keep said elongate actuating member at its extended position is a spiral spring disposed between a wall of said cavity and said elongate actuating member and preloaded to urge the actuating member toward the extended position.
- said means to keep said elongate actuating member at its extended position is plate spring having one end fixed to a wall of said cavity and preloaded to urge the actuating member toward the extended position.
- said means to keep said elongate actuating member at its extended position is a permanent magnet disposed on said housing to exert an attractive force upon said movable contact on said actuating member to urge it toward the extended position.
- said fixed contact of the deformation responsive switch is a tubular member of glass coated thereon with an electrically conductive material and disposed in contact with said movable contact, said tubular member being adapted to be broken by said actuating member when said actuating member is withdrawn thereby cutting off the electric connection of said movable contact with said fixed contact.
- said deformation responsive switch further comprises a permanent magnet provided on said elongate actuating member.
- said cavity of said housing of said deformation responsive switch is divided into a first compartment and a second compartment by a partition member, and accommodates therein a piston secured to the inner end of said elongate actuating member, said piston being axially slidable in the first compartment, and a bellows member provided within the second compartment and communicating with the first compartment through an opening formed in the partition member, and in which said movable contact is disposed on the bellows member for movement therewith and said fixed contact is provided in the second compartment normally in contact with said fixed contact by a tension spring, whereby upon compression of said bellows member, said movable contact is removed from said fixed contact.
- said force applying means is a permanent magnet disposed adjacent to said inertia weight on the side site to the position of said fixed contact.
- said force applying means is a spring within said cavity ex-- tending in. the longitudinal direction of the vehicle and having one end anchored to the movable contact on said inertia weight to urge ittoward the electromagnetic means.
- a collision sensor for sensing a collision condition of a motor vehicle to actuate a safety device mounted thereon, said collision sensor being mounted on a shock-absorbing bumper which includes an impact receiving member extending crosswise horizontally of the vehicle, a cylinder extending longitudinally of the vehicle and secured to the vehicle's body, a piston axially slidable in the cylinder, a piston rod extending externally from the piston and connected with the impact receiving member, and a resilient member provided on the impact receiving member to partially absorb an impact resulting from a collision, said collision sensor comprising: a housing having a bore formed therein; an elongate actuating member axially and slidably mounted in the bore and extending externally of said oppohousing, said elongate actuating member being arranged to normally extend into a niche formed in the resilient member but to be retracted into said housing upon compression of the resilient member resulting from a collision; biasing means for normally biasing said elongate actuating member to its extended position; switch means provided in
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Switches Operated By Changes In Physical Conditions (AREA)
- Air Bags (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11187071 | 1971-11-30 | ||
JP4973172U JPS4911782U (enrdf_load_stackoverflow) | 1972-04-28 | 1972-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3853199A true US3853199A (en) | 1974-12-10 |
Family
ID=26390176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00310943A Expired - Lifetime US3853199A (en) | 1971-11-30 | 1972-11-30 | Collision sensor for fender bumper operated vehicle safety device |
Country Status (6)
Country | Link |
---|---|
US (1) | US3853199A (enrdf_load_stackoverflow) |
AU (1) | AU458138B2 (enrdf_load_stackoverflow) |
CA (1) | CA1000384A (enrdf_load_stackoverflow) |
DE (1) | DE2258772C2 (enrdf_load_stackoverflow) |
FR (1) | FR2182429A5 (enrdf_load_stackoverflow) |
GB (1) | GB1403597A (enrdf_load_stackoverflow) |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936621A (en) * | 1973-10-17 | 1976-02-03 | Imperial Chemical Industries Limited | Destructible type switch having frangible conductive element |
US4050537A (en) * | 1973-12-22 | 1977-09-27 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Installation for the energy absorption of vehicles |
US4149415A (en) * | 1976-08-09 | 1979-04-17 | Probe Engineering Company Limited | Apparatus for sensing moving particles or small moving objects |
US4194588A (en) * | 1978-09-15 | 1980-03-25 | Geraldine Schandoney | Motor vehicle fire prevention device |
US4246456A (en) * | 1975-08-01 | 1981-01-20 | The Marconi Company Limited | Monitoring devices |
US4397372A (en) * | 1981-03-09 | 1983-08-09 | Bell & Howell Company | Pendulum suspended bumper assembly |
US4683974A (en) * | 1986-04-14 | 1987-08-04 | General Motors Corporation | Warning system for vehicle air dam |
US4685860A (en) * | 1983-12-23 | 1987-08-11 | Mcfarland Robert E | Apparatus for loading a wheelchair or similar object |
US4877927A (en) * | 1989-04-06 | 1989-10-31 | Hamlin Incorporated | Extended dwell shock sensing device |
WO1990003040A1 (en) * | 1988-09-02 | 1990-03-22 | Automotive Technologies International, Inc. | Vehicle crush zone crash sensor |
US4964485A (en) * | 1989-04-18 | 1990-10-23 | Backstop, Inc. | Back-up safety device and method |
US4980526A (en) * | 1989-04-06 | 1990-12-25 | Hamlin Incorporated | Device and method for testing acceleration shock sensors |
WO1993001071A1 (en) * | 1991-07-09 | 1993-01-21 | Automotive Technologies International, Inc. | Improved tape switch crush sensor |
US5185592A (en) * | 1991-10-04 | 1993-02-09 | Hamilton Kenneth B | Contact alarm apparatus |
US5194706A (en) * | 1991-08-14 | 1993-03-16 | Hamlin, Inc. | Shock sensor with a magnetically operated reed switch |
US5364158A (en) * | 1990-08-09 | 1994-11-15 | Mazda Motor Corporation | Impact-sensor mounting structure for an automotive vehicle |
US5408214A (en) * | 1992-04-30 | 1995-04-18 | Chalmers; George R. | Vehicle impact sensor |
US5416293A (en) * | 1994-08-17 | 1995-05-16 | Hamlin, Inc. | Shock sensor including a compound housing and magnetically operated reed switch |
US5441301A (en) * | 1991-07-09 | 1995-08-15 | Automotive Technologies International, Inc. | Crush sensing vehicle crash sensor |
US5463260A (en) * | 1993-01-20 | 1995-10-31 | Nsk Ltd. | Trigger device for triggering a passive restraint device in a car |
WO1997048582A1 (en) * | 1996-06-21 | 1997-12-24 | Automotive Systems Laboratory, Inc. | Hybrid vehicle crash discrimination system |
US5793005A (en) * | 1994-10-06 | 1998-08-11 | Nippon Soken Inc. | Collision detecting apparatus operable in response to deformation and acceleration |
US6183025B1 (en) * | 1997-03-25 | 2001-02-06 | Hope Technical Developments Limited | Bumper assembly |
US6212456B1 (en) * | 1998-04-24 | 2001-04-03 | Jaguar Cars Limited | Pedestrian impact sensor system |
US6234519B1 (en) * | 1991-07-09 | 2001-05-22 | Automotive Technologies International Inc. | Arrangements and methods for controlling deployment of a vehicular occupant restraint device |
US6328126B2 (en) * | 1991-07-09 | 2001-12-11 | Automotive Technologies International, Inc. | Crush sensing vehicle crash sensor |
US20020180596A1 (en) * | 2000-06-21 | 2002-12-05 | Bernhard Mattes | Method and device for recognition of a collision with a pedestrian |
US6538219B2 (en) * | 2000-12-13 | 2003-03-25 | Esw-Extel Systems Wedel Gesellschaft Fuer Ausruestung Mbh | Arrangement for detecting impermissibly high forces acting on the supporting structure of a vehicle |
US6557889B2 (en) | 1991-07-09 | 2003-05-06 | Automotive Technologies International Inc. | Crush velocity sensing vehicle crash sensor |
US20030178238A1 (en) * | 2002-03-22 | 2003-09-25 | Ruiz Primitivo F. | Sliding Safety Bumper |
US6764118B2 (en) | 2002-09-11 | 2004-07-20 | Autoliv Asp, Inc. | Active bumper assembly |
US6834899B2 (en) * | 2003-03-24 | 2004-12-28 | Autoliv Asp, Inc. | Bumper assembly that provides early crash detection |
US6942261B2 (en) | 2003-08-14 | 2005-09-13 | Autoliv Asp, Inc. | Linear actuator with an internal dampening mechanism |
US20050242553A1 (en) * | 2004-04-29 | 2005-11-03 | Seung-Jae Song | Apparatus and method for enhanced impact sensing |
US20060043711A1 (en) * | 2004-08-27 | 2006-03-02 | Honda Motor Co., Ltd. | Sensor setup structure |
US20060087132A1 (en) * | 2004-10-21 | 2006-04-27 | Denso Corporation | Collision detection system for vehicle |
US20060102414A1 (en) * | 2004-11-18 | 2006-05-18 | Nissan Motor Co., Ltd. | Vehicle passenger restraining system |
US7182191B2 (en) | 2002-07-11 | 2007-02-27 | Autoliv Asp, Inc. | Motion damper |
US20070158127A1 (en) * | 2004-03-05 | 2007-07-12 | Katsuaki Taguchi | On-vehicle component fixation-release apparatus |
US20070227797A1 (en) * | 2006-03-29 | 2007-10-04 | Denso Corporation | Collision detector |
US20080258887A1 (en) * | 2004-12-24 | 2008-10-23 | Daimlerchrysler Ag | Device for the Detection of a Collision of a Motor Vehicle |
US20090001759A1 (en) * | 2007-06-27 | 2009-01-01 | Nissan Motor Co., Ltd. | Mounting structure for vehicle crash sensor |
US20090088921A1 (en) * | 2007-09-28 | 2009-04-02 | Korea Advanced Institute Of Science And Technology | Module for detecting a vehicle crash and an airbag deploying system including the same |
US20090108598A1 (en) * | 2005-09-06 | 2009-04-30 | Hiroyuki Takahashi | Vehicular Front Bumper Structure |
US20090306857A1 (en) * | 2008-06-06 | 2009-12-10 | Katz Beverly M | Automotive impact sensing system |
US7635043B2 (en) | 1991-07-09 | 2009-12-22 | Automotive Technologies International, Inc. | Crash sensor arrangement for controlling deployment of an occupant restraint device |
US20160129869A1 (en) * | 2013-11-18 | 2016-05-12 | Ford Global Technologies, Llc | Flexible electro-resistive impact detection sensor for front rail mounted airbag |
CN106043181A (zh) * | 2016-06-12 | 2016-10-26 | 李宏江 | 运动体防碰伸缩杆 |
US20160318424A1 (en) * | 2015-04-28 | 2016-11-03 | Lear Corporation | Easy entry seat assembly having an object detection feature |
CN107140073A (zh) * | 2017-04-14 | 2017-09-08 | 浙江好来喜儿童用品有限公司 | 一种具有避震功能的童车 |
WO2018104010A1 (de) * | 2016-12-07 | 2018-06-14 | Conductix-Wampfler Gmbh | Anschlagpuffer mit stosserkennung und/oder ausfallerkennung und drahtlose datenübertragung |
US10679071B2 (en) | 2018-01-10 | 2020-06-09 | International Business Machines Corporation | Capturing digital images during vehicle collisions |
US11167709B2 (en) * | 2018-01-22 | 2021-11-09 | Will John Temple | Extendable vehicle bumper |
CN113851334A (zh) * | 2021-09-28 | 2021-12-28 | 中铁工程装备集团有限公司 | 行程限位装置 |
US20220032481A1 (en) * | 2018-12-13 | 2022-02-03 | Etegent Technologies Ltd. | Preloaded strut |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2473175A1 (fr) * | 1980-01-07 | 1981-07-10 | Bruss I Kardiolog | Dispositif pour determiner le niveau des efforts physiques humains |
US5307896A (en) * | 1991-08-13 | 1994-05-03 | Nippondenso Co., Ltd. | Collision detection sensor |
US5623246A (en) * | 1992-04-16 | 1997-04-22 | Autoliv Development Ab | Vehicle impact sensor arrangement for detecting a side impact |
DE9311354U1 (de) * | 1993-07-30 | 1993-09-30 | Mayser-Gmbh & Co, 89073 Ulm | Sicherheitspuffer |
DE102011081772B4 (de) * | 2011-08-30 | 2021-04-01 | Robert Bosch Gmbh | Vorrichtung bzw. Fahrzeug mit einer Vorrichtung zur Befestigung eines Bauteils an einem Fahrzeugsträger |
DE102017217520A1 (de) * | 2017-09-29 | 2019-04-04 | Audi Ag | Sicherheitsanordnung für eine elektrische Komponente eines Kraftfahrzeugs und Kraftfahrzeug mit einer solchen Sicherheitsanordnung |
CN111952086B (zh) * | 2019-05-16 | 2022-05-13 | 安徽科瑞特模塑有限公司 | 一种前保险杠用触角式简易探头 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2530051A (en) * | 1944-08-07 | 1950-11-14 | Bristol Steel & Iron Works Inc | Fuse or heat exploded link |
BE507283A (fr) * | 1951-11-21 | 1951-12-15 | Dispositifs de pare-chocs "électro-magnétique" pour véhicules automobiles | |
US2902105A (en) * | 1958-03-26 | 1959-09-01 | Int Harvester Co | Safety device for electric lift truck |
US3003045A (en) * | 1958-09-08 | 1961-10-03 | Clyde L Tichenor | Electrical switching device |
US3185803A (en) * | 1964-09-11 | 1965-05-25 | Neil J Driscoll | Push button switch with flexible contact |
US3308903A (en) * | 1963-10-14 | 1967-03-14 | Leonard H Sobel | Motor vehicle push preventing bumper guard |
US3320382A (en) * | 1965-01-08 | 1967-05-16 | Alan Muntz & Co Ltd | Devices responsive to fluid flow |
US3465271A (en) * | 1968-04-02 | 1969-09-02 | Illinois Tool Works | Magnetic switching device |
US3495675A (en) * | 1967-07-17 | 1970-02-17 | Eaton Yale & Towne | Vehicle safety method and apparatus using expandable confinement |
US3654412A (en) * | 1971-02-10 | 1972-04-04 | Nissan Motor | Motor vehicle pressure actuated deformation responsive switch with piston actuator and vent opening |
US3668355A (en) * | 1971-01-27 | 1972-06-06 | Northern Electric Co | Reed material for sealed contact application |
US3673358A (en) * | 1971-03-31 | 1972-06-27 | James R Harmon | Electric rocker switch for controlling multiple circuits with magnetic coupling members |
US3699276A (en) * | 1971-04-05 | 1972-10-17 | Appleton Electric Co | Linear push plunger electrical switch with tubular shroud arc prevention means |
US3704514A (en) * | 1966-06-04 | 1972-12-05 | Telephonwerk Und Kabel Ind Ag | Sealed armature contact relay making process |
US3718877A (en) * | 1970-09-22 | 1973-02-27 | Hattori Tokeiten Kk | Switch for push key |
US3744588A (en) * | 1971-12-28 | 1973-07-10 | M Nave | Vehicular brake actuating device |
US3778572A (en) * | 1971-03-25 | 1973-12-11 | Nissan Motor | Inertia sensor switch assemblies with magnetic holding means or the like |
US3793498A (en) * | 1971-04-27 | 1974-02-19 | Nissan Motor | Automotive inertia switch with dashpot type actuator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3489917A (en) * | 1967-09-27 | 1970-01-13 | Eaton Yale & Towne | Interconnected collision sensing devices with a velocity responsive electromagnetic latching means |
US3556556A (en) * | 1968-08-20 | 1971-01-19 | Eaton Yale & Towne | Crash sensor |
JPS4925539Y1 (enrdf_load_stackoverflow) * | 1970-03-18 | 1974-07-10 |
-
1972
- 1972-11-24 AU AU49270/72A patent/AU458138B2/en not_active Expired
- 1972-11-24 GB GB5431972A patent/GB1403597A/en not_active Expired
- 1972-11-29 FR FR7242431A patent/FR2182429A5/fr not_active Expired
- 1972-11-30 US US00310943A patent/US3853199A/en not_active Expired - Lifetime
- 1972-11-30 CA CA157,882A patent/CA1000384A/en not_active Expired
- 1972-11-30 DE DE2258772A patent/DE2258772C2/de not_active Expired
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2530051A (en) * | 1944-08-07 | 1950-11-14 | Bristol Steel & Iron Works Inc | Fuse or heat exploded link |
BE507283A (fr) * | 1951-11-21 | 1951-12-15 | Dispositifs de pare-chocs "électro-magnétique" pour véhicules automobiles | |
US2902105A (en) * | 1958-03-26 | 1959-09-01 | Int Harvester Co | Safety device for electric lift truck |
US3003045A (en) * | 1958-09-08 | 1961-10-03 | Clyde L Tichenor | Electrical switching device |
US3308903A (en) * | 1963-10-14 | 1967-03-14 | Leonard H Sobel | Motor vehicle push preventing bumper guard |
US3185803A (en) * | 1964-09-11 | 1965-05-25 | Neil J Driscoll | Push button switch with flexible contact |
US3320382A (en) * | 1965-01-08 | 1967-05-16 | Alan Muntz & Co Ltd | Devices responsive to fluid flow |
US3704514A (en) * | 1966-06-04 | 1972-12-05 | Telephonwerk Und Kabel Ind Ag | Sealed armature contact relay making process |
US3495675A (en) * | 1967-07-17 | 1970-02-17 | Eaton Yale & Towne | Vehicle safety method and apparatus using expandable confinement |
US3465271A (en) * | 1968-04-02 | 1969-09-02 | Illinois Tool Works | Magnetic switching device |
US3718877A (en) * | 1970-09-22 | 1973-02-27 | Hattori Tokeiten Kk | Switch for push key |
US3668355A (en) * | 1971-01-27 | 1972-06-06 | Northern Electric Co | Reed material for sealed contact application |
US3654412A (en) * | 1971-02-10 | 1972-04-04 | Nissan Motor | Motor vehicle pressure actuated deformation responsive switch with piston actuator and vent opening |
US3778572A (en) * | 1971-03-25 | 1973-12-11 | Nissan Motor | Inertia sensor switch assemblies with magnetic holding means or the like |
US3673358A (en) * | 1971-03-31 | 1972-06-27 | James R Harmon | Electric rocker switch for controlling multiple circuits with magnetic coupling members |
US3699276A (en) * | 1971-04-05 | 1972-10-17 | Appleton Electric Co | Linear push plunger electrical switch with tubular shroud arc prevention means |
US3793498A (en) * | 1971-04-27 | 1974-02-19 | Nissan Motor | Automotive inertia switch with dashpot type actuator |
US3744588A (en) * | 1971-12-28 | 1973-07-10 | M Nave | Vehicular brake actuating device |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936621A (en) * | 1973-10-17 | 1976-02-03 | Imperial Chemical Industries Limited | Destructible type switch having frangible conductive element |
US4050537A (en) * | 1973-12-22 | 1977-09-27 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Installation for the energy absorption of vehicles |
US4246456A (en) * | 1975-08-01 | 1981-01-20 | The Marconi Company Limited | Monitoring devices |
US4149415A (en) * | 1976-08-09 | 1979-04-17 | Probe Engineering Company Limited | Apparatus for sensing moving particles or small moving objects |
US4194588A (en) * | 1978-09-15 | 1980-03-25 | Geraldine Schandoney | Motor vehicle fire prevention device |
US4397372A (en) * | 1981-03-09 | 1983-08-09 | Bell & Howell Company | Pendulum suspended bumper assembly |
US4685860A (en) * | 1983-12-23 | 1987-08-11 | Mcfarland Robert E | Apparatus for loading a wheelchair or similar object |
US4683974A (en) * | 1986-04-14 | 1987-08-04 | General Motors Corporation | Warning system for vehicle air dam |
WO1990003040A1 (en) * | 1988-09-02 | 1990-03-22 | Automotive Technologies International, Inc. | Vehicle crush zone crash sensor |
US4995639A (en) * | 1988-09-02 | 1991-02-26 | Automotive Technologies International, Inc. | Vehicle crush zone crash sensor |
US4877927A (en) * | 1989-04-06 | 1989-10-31 | Hamlin Incorporated | Extended dwell shock sensing device |
US4980526A (en) * | 1989-04-06 | 1990-12-25 | Hamlin Incorporated | Device and method for testing acceleration shock sensors |
US4964485A (en) * | 1989-04-18 | 1990-10-23 | Backstop, Inc. | Back-up safety device and method |
WO1990012711A1 (en) * | 1989-04-18 | 1990-11-01 | Backstop, Inc. | Badk-up safety device and method |
US5364158A (en) * | 1990-08-09 | 1994-11-15 | Mazda Motor Corporation | Impact-sensor mounting structure for an automotive vehicle |
US5441301A (en) * | 1991-07-09 | 1995-08-15 | Automotive Technologies International, Inc. | Crush sensing vehicle crash sensor |
US6009970A (en) * | 1991-07-09 | 2000-01-04 | Automotive Technologies Int'l., Inc. | Tape switch crush sensor |
WO1993001071A1 (en) * | 1991-07-09 | 1993-01-21 | Automotive Technologies International, Inc. | Improved tape switch crush sensor |
US6328126B2 (en) * | 1991-07-09 | 2001-12-11 | Automotive Technologies International, Inc. | Crush sensing vehicle crash sensor |
US6234519B1 (en) * | 1991-07-09 | 2001-05-22 | Automotive Technologies International Inc. | Arrangements and methods for controlling deployment of a vehicular occupant restraint device |
US7635043B2 (en) | 1991-07-09 | 2009-12-22 | Automotive Technologies International, Inc. | Crash sensor arrangement for controlling deployment of an occupant restraint device |
US6557889B2 (en) | 1991-07-09 | 2003-05-06 | Automotive Technologies International Inc. | Crush velocity sensing vehicle crash sensor |
US5194706A (en) * | 1991-08-14 | 1993-03-16 | Hamlin, Inc. | Shock sensor with a magnetically operated reed switch |
US5185592A (en) * | 1991-10-04 | 1993-02-09 | Hamilton Kenneth B | Contact alarm apparatus |
US5408214A (en) * | 1992-04-30 | 1995-04-18 | Chalmers; George R. | Vehicle impact sensor |
US5463260A (en) * | 1993-01-20 | 1995-10-31 | Nsk Ltd. | Trigger device for triggering a passive restraint device in a car |
US5416293A (en) * | 1994-08-17 | 1995-05-16 | Hamlin, Inc. | Shock sensor including a compound housing and magnetically operated reed switch |
US5793005A (en) * | 1994-10-06 | 1998-08-11 | Nippon Soken Inc. | Collision detecting apparatus operable in response to deformation and acceleration |
GB2329274A (en) * | 1996-06-21 | 1999-03-17 | Automotive Systems Lab | Hybrid vehicle crash discrimination system |
WO1997048582A1 (en) * | 1996-06-21 | 1997-12-24 | Automotive Systems Laboratory, Inc. | Hybrid vehicle crash discrimination system |
GB2329274B (en) * | 1996-06-21 | 2000-10-18 | Automotive Systems Lab | Hybrid vehicle crash discrimination system |
US6183025B1 (en) * | 1997-03-25 | 2001-02-06 | Hope Technical Developments Limited | Bumper assembly |
US6212456B1 (en) * | 1998-04-24 | 2001-04-03 | Jaguar Cars Limited | Pedestrian impact sensor system |
US6784792B2 (en) * | 2000-06-21 | 2004-08-31 | Robert Bosch Gmbh | Method and device for recognition of a collision with a pedestrian |
US20020180596A1 (en) * | 2000-06-21 | 2002-12-05 | Bernhard Mattes | Method and device for recognition of a collision with a pedestrian |
US6538219B2 (en) * | 2000-12-13 | 2003-03-25 | Esw-Extel Systems Wedel Gesellschaft Fuer Ausruestung Mbh | Arrangement for detecting impermissibly high forces acting on the supporting structure of a vehicle |
US20030178238A1 (en) * | 2002-03-22 | 2003-09-25 | Ruiz Primitivo F. | Sliding Safety Bumper |
US7182191B2 (en) | 2002-07-11 | 2007-02-27 | Autoliv Asp, Inc. | Motion damper |
US6764118B2 (en) | 2002-09-11 | 2004-07-20 | Autoliv Asp, Inc. | Active bumper assembly |
US6834899B2 (en) * | 2003-03-24 | 2004-12-28 | Autoliv Asp, Inc. | Bumper assembly that provides early crash detection |
US6942261B2 (en) | 2003-08-14 | 2005-09-13 | Autoliv Asp, Inc. | Linear actuator with an internal dampening mechanism |
US20070158127A1 (en) * | 2004-03-05 | 2007-07-12 | Katsuaki Taguchi | On-vehicle component fixation-release apparatus |
US7681684B2 (en) * | 2004-03-05 | 2010-03-23 | Honda Motor Co., Ltd. | On-vehicle component fixation-release apparatus |
US7207410B2 (en) * | 2004-04-29 | 2007-04-24 | Daimlerchrysler Corporation | Apparatus and method for enhanced impact sensing |
US20050242553A1 (en) * | 2004-04-29 | 2005-11-03 | Seung-Jae Song | Apparatus and method for enhanced impact sensing |
US7695008B2 (en) | 2004-08-27 | 2010-04-13 | Honda Motor Co., Ltd. | Sensor setup structure |
US20060043711A1 (en) * | 2004-08-27 | 2006-03-02 | Honda Motor Co., Ltd. | Sensor setup structure |
DE102005040115B4 (de) * | 2004-08-27 | 2009-07-23 | Honda Motor Co., Ltd. | Sensoranordnung |
US20060087132A1 (en) * | 2004-10-21 | 2006-04-27 | Denso Corporation | Collision detection system for vehicle |
US7347464B2 (en) * | 2004-10-21 | 2008-03-25 | Denso Corporation | Collision detection system for vehicle |
US7597352B2 (en) * | 2004-11-18 | 2009-10-06 | Nissan Motor Co., Ltd. | Vehicle passenger restraining system |
US20060102414A1 (en) * | 2004-11-18 | 2006-05-18 | Nissan Motor Co., Ltd. | Vehicle passenger restraining system |
US20080258887A1 (en) * | 2004-12-24 | 2008-10-23 | Daimlerchrysler Ag | Device for the Detection of a Collision of a Motor Vehicle |
US20090108598A1 (en) * | 2005-09-06 | 2009-04-30 | Hiroyuki Takahashi | Vehicular Front Bumper Structure |
US8075029B2 (en) * | 2005-09-06 | 2011-12-13 | Toyota Jidosha Kabushiki Kaisha | Vehicular front bumper structure |
US7806222B2 (en) * | 2006-03-29 | 2010-10-05 | Denso Corporation | Collision detector |
US20070227797A1 (en) * | 2006-03-29 | 2007-10-04 | Denso Corporation | Collision detector |
US20090001759A1 (en) * | 2007-06-27 | 2009-01-01 | Nissan Motor Co., Ltd. | Mounting structure for vehicle crash sensor |
US7753419B2 (en) * | 2007-06-27 | 2010-07-13 | Nissan Motor Co., Ltd. | Mounting Structure for vehicle crash sensor |
US20090088921A1 (en) * | 2007-09-28 | 2009-04-02 | Korea Advanced Institute Of Science And Technology | Module for detecting a vehicle crash and an airbag deploying system including the same |
US8100215B2 (en) * | 2007-09-28 | 2012-01-24 | Korea Advanced Institute Of Science And Technology | Module for detecting a vehicle crash and an airbag deploying system including the same |
US20090306857A1 (en) * | 2008-06-06 | 2009-12-10 | Katz Beverly M | Automotive impact sensing system |
US8374751B2 (en) | 2008-06-06 | 2013-02-12 | Chrysler Group Llc | Automotive impact sensing system |
US20160129869A1 (en) * | 2013-11-18 | 2016-05-12 | Ford Global Technologies, Llc | Flexible electro-resistive impact detection sensor for front rail mounted airbag |
US9731673B2 (en) * | 2013-11-18 | 2017-08-15 | Ford Global Technologies, Llc | Flexible electro-resistive impact detection sensor for front rail mounted airbag |
US20160318424A1 (en) * | 2015-04-28 | 2016-11-03 | Lear Corporation | Easy entry seat assembly having an object detection feature |
CN106043181A (zh) * | 2016-06-12 | 2016-10-26 | 李宏江 | 运动体防碰伸缩杆 |
WO2018104010A1 (de) * | 2016-12-07 | 2018-06-14 | Conductix-Wampfler Gmbh | Anschlagpuffer mit stosserkennung und/oder ausfallerkennung und drahtlose datenübertragung |
CN108779829A (zh) * | 2016-12-07 | 2018-11-09 | 康达提斯-瓦普弗勒有限公司 | 具有碰撞识别和/或失效识别和无线数据传输的止挡缓冲器 |
CN108779829B (zh) * | 2016-12-07 | 2020-09-15 | 康达提斯-瓦普弗勒有限公司 | 具有碰撞识别和/或失效识别和无线数据传输的止挡缓冲器 |
US11441630B2 (en) | 2016-12-07 | 2022-09-13 | Conductix-Wampfler Gmbh | Stop buffer |
CN107140073A (zh) * | 2017-04-14 | 2017-09-08 | 浙江好来喜儿童用品有限公司 | 一种具有避震功能的童车 |
US10679071B2 (en) | 2018-01-10 | 2020-06-09 | International Business Machines Corporation | Capturing digital images during vehicle collisions |
US11167709B2 (en) * | 2018-01-22 | 2021-11-09 | Will John Temple | Extendable vehicle bumper |
US20220032481A1 (en) * | 2018-12-13 | 2022-02-03 | Etegent Technologies Ltd. | Preloaded strut |
US12083674B2 (en) * | 2018-12-13 | 2024-09-10 | Etegent Technologies, Ltd. | Preloaded strut |
CN113851334A (zh) * | 2021-09-28 | 2021-12-28 | 中铁工程装备集团有限公司 | 行程限位装置 |
CN113851334B (zh) * | 2021-09-28 | 2023-10-27 | 中铁工程装备集团有限公司 | 行程限位装置 |
Also Published As
Publication number | Publication date |
---|---|
CA1000384A (en) | 1976-11-23 |
AU458138B2 (en) | 1975-02-20 |
AU4927072A (en) | 1974-05-30 |
DE2258772C2 (de) | 1984-04-05 |
DE2258772A1 (de) | 1973-06-07 |
GB1403597A (en) | 1975-08-28 |
FR2182429A5 (enrdf_load_stackoverflow) | 1973-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3853199A (en) | Collision sensor for fender bumper operated vehicle safety device | |
US3793498A (en) | Automotive inertia switch with dashpot type actuator | |
US4900880A (en) | Gas damped crash sensor | |
US5281780A (en) | Impact detector | |
US4877927A (en) | Extended dwell shock sensing device | |
US2868309A (en) | Ignition safety system cut-out switch | |
US5179256A (en) | Collision sensor | |
US5237134A (en) | Gas damped crash sensor | |
US3905015A (en) | Vehicle collision detecting apparatus | |
US3571539A (en) | Collision sensor | |
US3750100A (en) | System for sensing collision of motor vehicles | |
US5756948A (en) | Side-impact electro-mechanical accelerometer to actuate a vehicular safety device | |
US3639710A (en) | Trigger switch for motor vehicle safety devices | |
US3744588A (en) | Vehicular brake actuating device | |
US3944764A (en) | Inertia sensor switch | |
CA2026922C (en) | Velocity change sensor with contact retainer | |
US3942051A (en) | Shock actuated electrical pulse generator | |
US3887819A (en) | Safety device actuating arrangement | |
JPH071280B2 (ja) | 衝撃センサー | |
US5322981A (en) | Velocity change sensor with a cylindrical magnet | |
US6142007A (en) | Shock sensor | |
US5845730A (en) | Electro-mechanical accelerometer to actuate a vehicular safety device | |
CA2083442C (en) | Velocity change sensor with lateral shock absorber | |
US3766341A (en) | Locking device | |
US3655928A (en) | Device for detecting and signaling a change of more than a prescribed amount in the rate of movement of an object |