US3848579A - Automatic elasto-valvular hypodermic sampling needle - Google Patents
Automatic elasto-valvular hypodermic sampling needle Download PDFInfo
- Publication number
- US3848579A US3848579A US00335419A US33541973A US3848579A US 3848579 A US3848579 A US 3848579A US 00335419 A US00335419 A US 00335419A US 33541973 A US33541973 A US 33541973A US 3848579 A US3848579 A US 3848579A
- Authority
- US
- United States
- Prior art keywords
- valve
- blood
- cavity
- cannula
- hub means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005070 sampling Methods 0.000 title claims description 15
- 210000004369 blood Anatomy 0.000 claims abstract description 124
- 239000008280 blood Substances 0.000 claims abstract description 123
- 241001631457 Cannula Species 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 9
- 210000003743 erythrocyte Anatomy 0.000 claims abstract description 8
- 230000008590 mechanical hemolysis Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 72
- 210000003462 vein Anatomy 0.000 claims description 43
- 238000010276 construction Methods 0.000 claims description 35
- 229920003023 plastic Polymers 0.000 claims description 27
- 239000004033 plastic Substances 0.000 claims description 20
- 230000017531 blood circulation Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 13
- 230000035515 penetration Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 210000004204 blood vessel Anatomy 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000003467 diminishing effect Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000002349 favourable effect Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000002028 premature Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 230000003389 potentiating effect Effects 0.000 claims 9
- 239000006096 absorbing agent Substances 0.000 claims 1
- 230000001447 compensatory effect Effects 0.000 claims 1
- 230000004927 fusion Effects 0.000 claims 1
- 230000002949 hemolytic effect Effects 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 230000035939 shock Effects 0.000 claims 1
- 230000007246 mechanism Effects 0.000 abstract description 35
- 230000000007 visual effect Effects 0.000 abstract description 10
- 230000001413 cellular effect Effects 0.000 abstract description 7
- 238000013461 design Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 206010018910 Haemolysis Diseases 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000008588 hemolysis Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010241 blood sampling Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 206010015866 Extravasation Diseases 0.000 description 1
- 241001387976 Pera Species 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/15003—Source of blood for venous or arterial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150221—Valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150389—Hollow piercing elements, e.g. canulas, needles, for piercing the skin
- A61B5/150404—Specific design of proximal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150473—Double-ended needles, e.g. used with pre-evacuated sampling tubes
- A61B5/15048—Details of construction of proximal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150473—Double-ended needles, e.g. used with pre-evacuated sampling tubes
- A61B5/150488—Details of construction of shaft
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150473—Double-ended needles, e.g. used with pre-evacuated sampling tubes
- A61B5/150496—Details of construction of hub, i.e. element used to attach the double-ended needle to a piercing device or sampling device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150732—Needle holders, for instance for holding the needle by the hub, used for example with double-ended needle and pre-evacuated tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150946—Means for varying, regulating, indicating or limiting the speed or time of blood collection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/153—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
- A61B5/154—Devices using pre-evacuated means
- A61B5/1545—Devices using pre-evacuated means comprising means for indicating vein or arterial entry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150503—Single-ended needles
- A61B5/150511—Details of construction of shaft
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150503—Single-ended needles
- A61B5/150519—Details of construction of hub, i.e. element used to attach the single-ended needle to a piercing device or sampling device
Definitions
- VACUTAINER SYSTEM re quires the following basic items:
- Each tube is a self-aspirating specimen collector and container that is generally made of transparent glass. One end of the tube is closed by the glass structure itself, while the other end is plugged by a flanged rubber stopper.
- Each VACUTAINER tube had been preevacuated of its internal gaseous contents so that we can refer to it as a pre-evacuated sample tube. It is, considerably, physically empty, and that this condition creates a favorably effective negativity of pressure which provides the VACUTAINER tube with an excellent power for aspirating fluidic specimens such as blood samples when used in coordination with the aforementioned VACU- TAINER SYSTEM.
- a VACUTAINER HOLDER which is preferably constructed of rigid plastic material, having a tubular shape, open at its entrant end, and, accommodating within the tubular limits of its internal diameter the external circular borders of even the largest utilizable VACUTAINER tube used for this particular purpose.
- Each collecting tube can slidably be engaged or disengaged, one at a time, within the tubular extent of the barreled holder, allowing each vial to be interconnected with, or disconnected from the hind portion of the cannula.
- VACUTAINER HOLDER provides a closure with a central external enlargement having an axially running screw threaded bore that furnishes a suitable means through which the correspondingly adaptable screw form part of the axially alignable hypodermic needle can be firmly attached.
- a hypodermic needle that has two beveled ends-the forward beveled end and the rearward beveled end; the former having been designed for the purpose of puncturing the skin and the immediate underlying tissues including the vein, and the latter, utilizable for the penetration of the diaphragmatic area of the rubber stopper that plugs each VACUTAINER tube.
- a fluid source such as venous blood source with which the hypodermic needle is connected in relation to the evacuated sample tube.
- hypodermic needle has a tubular rubber sleeve that snugly fits around the hind portion of the cannula. This sleeve envelops the external area of that said portion of the cannula and covering the laterally situated hole found just a little measure from the hindmost piercing portion of the device.
- the lateral hole is uncovered by the rubber sleeve that has been pushed forward by the rubber stopper of the VACUTAINER tube.
- the said lateral hole comes in direct communication with the vein through the common bore of the cannula, thereby, blood is aspirated automatically into the connected collection tube.
- the temporarily compressed rubber sleeve springs back to attain its orriginal lengthwise hole-covering position.
- the lateral hole becomes actually plugged from exposure to the ambient environment. Because of this feature, the blood drip is prevented from occurring during the process of multi-sampling of blood involving a single venipuncture.
- the extra-strenous requirement may possibly alter the optimal location of the said needle in relation to the said vein.
- the initial quick forward push exerted upon the VACUTAINER tube in order to effectively compress the elastic tubular structure of the rubber sleeve so as to shrink its lengthwise occupancy of the exterior surfaces of the hind portion of the cannula may be inefficiently transmitted to the forward beveled end of the hypodermic needle; such undesired forcetransmission when not effectively balanced by a corresponding magnitude of counter-force exerted by the other hand, may essentially cause a dual venous-wall puncturing, culminating to a greater injury upon the somatic constitution of the blood vessel including the immediate surrounding tissues.
- the rear-part cannula is then pushed forward slideably by the mass of the forwardly directed rubber stopper of the VACUTAINER tube.
- the frontal sector of the rear-part cannula pierces the intermediary rubber plate at its material break.
- This situation brings forth a resultant blood flow from the venous side propagated through the cannular bores of both the front-part and the rear-part cannulas soon as the rubber stopper of the said tube has been substantially penetrated by the rearward beveled edge of the rear-part cannula. Having thus achieved a physical continuity between the venous side and the vacuum of the collecting vial, blood specimen is then transported into the said container.
- the movable feature of such rear cannular part enables it to move along the rearward direction of the now-beingdisengaged rubber stopper while still being pierced by that rear cannular part, until the rearmost slideability limitations of the rear-part cannulas has been reached, at which point, the rubber plate becomes completely unpierced by the said frontal sector of that rear-part cannula, and that, the material break of the rubber plate attains its normally close position, thus blocking blood flow from the venous side. This is how blood drip is prevented during intertubular replacement of collection tubes.
- hypodermic needle versions are not equipped with any visual indicator which would enable the operator to correctly determine whether or not the desired blood flow from the vein through the cannula had already ensued.
- the absence of such a visual indicator will, at times, result in a trial-and-error premature exposure of the vacuum contained within the collection tube. Since the aspirating power of the VACUTAINER tube is directly proportional to the degree of vacuum or negativity of pressure contained therein, the improper location or wrong angular positioning of the front beveled end of the hypodermic needle in relation to the actual lumen of the vein can result in some loss of the pre-evacuted vials aspirating power.
- This invention pertains to a novel blood-drawing device particularly utilizable for the effective extraction of either singular volume or several quantities'of separate blood samples collectible into one or'more evacuated sample tubes, respectively, and achieving an advantageous reduction of mechanical hemolysis of the red blood cells as well as possibly decreasing the danger of disintegration of other cellular elements suspended in the plasma caused by high shear forces in conjunction with the use of pre-evacuated sample tubes, and, at the same time allowing the convenient multisampling of blood, attainable with a single venipuncture and without resulting in blood drip or spatter; said new device provided with a built-in automatically actuateable elasto-valvular mechanism or component with special configurations and other valvular characteristics and properties pre-tested to achieve gradations of reactive sensitivity to pressure differential changes that trigger, in a much more automatic fashion, the opening and closing responses of such valve; said elasto-valvular component situated in between a pair of internal chambers or pre-formed cavities that
- the aperture sizes of the valve are relative to the degree of pressure diffferentials between the venous blood source and the aspirating evacuated sample tube in correspondingly direct proportionality to one another in each pair of conditions, after the initial opening peak has been achieved.
- the said elasto-valvular mechanism achieves its efficient role in preventing the transport of the blood quantities across it due to the inherent prevalvular stiffness.
- a considered weak' pressure differential that cannot open the valve is the pressure differential existing between the precalculated range of venous pressures varying from individual to individual, and, the range of allowable atmospheric pressures varying according to depth as well as height relative to sea level pressure.
- This feature positively prevents the occurrence of blood drip from the venous side into the ambient environment while the needle is connected with the lumen of the said vein; such prevention of blood drip being specifically important firstly prior to the installation of the initial pre-evacuated sample tube, and secondly during the span of time while changing one blood-filled tube with another unused one until several tubes, in sequential order, have collected the necessary amounts of separate quantities of blood specimens during the process of multi-sampling involving s single venipuncture.
- This new type of hypodermic needle being provided with a preferably transparent hub for visual indication purposes; said device having certain finger-grippable exterior surface contours for its easy installation and disengagement with the corresponding inter-linking part of the VACUTAINER TUBE HOLDER; said device having a rear externally threaded screw form or other locking means adaptable to firmly link it, in a stable fashion, with the VACUTAINER TUBE HOLDER; said device being simple in construction can be economically massproducible; said device attaining medical praiseworthiness through the maintenance of a clinically presterilized condition in packaging; said device to be made disposable after a single use to avoid crosscontamination.
- One object is to avail several designs or models of the new kind of hypodermic needle, which by virtue of the advantangeous structural designs and detailed internal configurations would facilitate the drawing of singular sample as well as multisample collection of blood specimens to be contained into a plurality of VACU- TAINER tubes, offering a relative ease on the performance of the technologist, technician, nurse or physician during the execution of the proper method of intratubular blood specimen filling.
- Another object is the provision of a novel means to effect an automatic blood specimen flow and control of such flow within the said device by the use of a built-in elasto-valvular mechanism or component that can bring forth the efficient inter-tubular substitution of VACUTAINER tubes during multi-sample collection of said specimens without blood drip or spatter.
- Another object is to procure a much more adaptable device characterized by having a better capability of achieving a more flexible range and degree of aperture size variability as effected by the proper functional responses of the elastovalvular component relative to the pressure differential gradients existing between the venous pressure on one side and the aspirating vacuum of the VACUTAINER tube, on the other side.
- This actuateable variability in aperture size accomplished in a more streamlined and automatic fashion will greatly eliminate the hemolysis of red blood cells as well as possibly prevent the disintegration of other cellular elements suspended in the plasma during the whole bloods passage through the poly-sample hypodermic needle.
- a further object is to endure a greater possibility of diminishing the occurrence of venous wall collapse that happens more predominatly with the use of the currently manufactured hypodermic needles applicable to the VACUTAINER SYSTEM of drawing blood. Again, from the biophysical standpoint, this object may be carried out well because of the gradual opening characteristics of the elasto-valvular component during the first phase of vacuum-triggered fluidic-mass transport of the blood volume from the vein into the aspirating system, thus affording a less abrupt shock-wave propagation as compared to the constant aperture size of the current hypodermic needles that do not have a shockabsorbing mechanism.
- Another object is to provide the operator with some visual means inherent in their structural constitutions so as for him to effectively tell whether or not the favorable blood flow from the vein has already ensued through the front cannula and into the fore cavity of the main supporting part before he exposes the vacuum of the first VACU- TAINER tube.
- This feature would prevent the premature exposure of the negativity of pressure of the said first collecting container.
- With the transparency of the main supporting part moreover, it would permit the operators visual knowledge about the functional efficiency of the eIasto-valvuar mechanism during the collection of blood samples.
- Still a further object is to present a more-superior hypodermic needle in the light of enhancing greater automaticity of operation while offering a steadier device to handle as compared to the other hypodermic needles used in the field.
- This advantage highly diminishes the patient's or donors pre-disposition to the multilating physical injuries to the venous wall and the surrounding tissues that result in unsightly extravasation of blood, a condition which is sometimes encountered more preva- Iently and in a more extensive degree with the utulization of the cruder, in fact, partially mechanically manipulated inferior hypodermic needles used these days.
- FIG. 1 is an enlarged longitudinal section of Model A of the invention.
- FIG. 2 is an enlarged longitudinal section of Model B of the invention.
- FIG. 3 is an enlarged longitudinal section of Model C of the invention.
- FIG. 4 is a more magnified longitudinal section in fragmentary form centering on the middle fundamental components of the Model A of the invention.
- F IG. 5 is another more magnified longitudinal section.
- FIG. 6 is an enlarged central cross-sectional view of Type 1 of the elasto-valvular mechanism or component.
- FIG. 7 is an enlarged central cross-sectional view of Type II of the elasto-valvular mechanism or component.
- FIG. 8 is an enlarged central cross-sectional view of Type III of the elasto-valvular mechanism or component.
- FIG. 9 is an enlarged end view of the elasto-valvular mechanism or component of the Type I shown in FIG. 6.
- FIG. 10 is an enlarged end view of the elasto-valvular mechanism or component of the type II shown in FIG. 7.
- FIG. 11 is an enlarged front view of the elastovalvular mechanism or component of the Type III shown in FIG. 8.
- FIG. 12 is an enlarged pictorial illustration of the relationship between the blood flow and control of such flow, the vein, the presently applied for poly-sample hypodermic needle shown attached to the plastic VACU- TAINER HOLDER all of which are drawn in central longitudinal views in an inter-connecting fashion.
- the VACUTAINER tube is drawn in a side elevational view and unattached to the hypodermic needle.
- FIG. 13 is a much more magnified pictorial illustration of the relationship between the blood flow and control of such flow, the vein, the poly-sample hypodermic needle which is attached to the VACUTAINER HOLDER shown only in its frontal fragmentary form. All these basic components are drawn as interconnected to one another and shown in the central longitudinal sectional view.
- FIG. 14 is another enlarged pictorial illustration of the relationship between the blood flow and the propa-' gation of such flow, the vein, the poly-sample hypodermic needle attached to the VACUTAINER HOLDER. All these important components are drawn in an interconnected central longitudinal sectional view.
- the VACUTAINER tube is shown properly engaged in the aspirating position, wherein the diaphragm of the rubber stopper plugging the said VACUTAINER tube has been pierced correctly by the hind portion of the rear cannula.
- the said tube is presented as partly drawn in the central longitudinal sectional view and partly in the side elevational view.
- FIG. 15 is another enlarged pictorial illustration of the relationship between the blood flow and the inhibition or stopping of such continous flow within the device without removing the hypodermic needles intravenous engagement, and, without resulting in an undesirable blood drip or spatter even though the filled-in sample tube had already been pulled away from its connection with the rear cannula.
- the elasto-valvular mechanism or component is shown in the closed position and the poly-sample hypodermic needle is still firmly installed with the internally threaded bore of the tube holder.
- FIG. 6 is a side elevation drawing of a typical VACU- TAINER tube that has been pre-evacuated and ready to be substituted into the barrel of the VACUTAINER HOLDER as soon as the preceding blood-filled collection tube has been completely cleared away'from the barreled holder.
- FIG. 17 is another side elevation drawing-of an unused VACUTAINER tube, next in line and to be utilized during the process of venous blood multisampling.
- FIG. 18 is an enlarged end view of the elasto-valvular mechanism or component of the Type I shown in FIG. 9, but this time, the valvular lips are in the open position. Surrounding its outermost circumference is a circular cross-section of the enveloping main supporting transparent plastic material.
- FIG. 19 is an enlarged end view of the elasto-valvular mechanism or component of the Type II as shown in FIG. 10. However, the valvular lips are now illustrated in the open position. Fitted around the outermost circumferential border of the elasto-valvular structure is an enveloping cross-section of the main supporting transparent plastic material.
- FIG. 20 is an enlarged frontal view of the elastovalvular mechanism or component of the Type III as shown in FIG. 11. Instead of the valvular lips drawn in the normally closed fashion, they are illustrated in the open position.
- FIG. 21 is an enlarged central longitudinal sectional view of still another kind of poly-sample hypodermic needle herein designated as the Model D of the present invention.
- FIG. 22 is a much more magnified central longitudinal sectional view of the Model D poly-sample hypodermic needle that is in the continously aspirating position.
- the hypodermic needle is also shown as interconnected with the VACUTAINER HOLDER, and, having completely pierced the diaphragm of the rubber stopper plugging the collection tube with the rear cannulas hindmost sharpened edge, while on the forward side, part of the front cannula is shown in the correct intra-venous position.
- the front cannula, the rear cannula, the VACUTAINER HOLDER and the VACU- TAINER tube are all drawn in the longitudinal section, and, partially in fragmentary form.
- the vein is illustrated in longitudinal section with the blood sample flowing from the venous lumen through the relevant internal structures of the hypodermic needle, and then transported into the evacuated collection tube.
- FIG. 23 reveals an enlarged end view of the elastovalvular mechanism or component of the Type IV which is shown in the close position. Enveloping the outermost borders of the said component is a crosssection of the main supporting material made of plastic composition.
- FIG. 24 illumines an enlarged end view of the elastovalvular mechanism or component of the Type IV as shown in FIG. 23, but this time the valvular lips are shown in the open position. Like FIG. 23, the enveloping main supporting transparent material is seen fitted around the elasto-valvular component.
- FIG. 25 is an enlarged cross-sectional view taken from lines 30 and 30 along the direction of arrow m and m of FIG. 21.
- FIG. 26 is an enlarged cross-sectional view taken from lines 32 and 32 as seen along the direction of arrows q and q of FIG. 21.
- FIG. 27 is an enlarged cross-sectional view taken from lines 34 and 34 as perceived along the direction of arrows s and s of FIG. 21.
- FIG. 28 is an enlarged central longitudinal section, partly in fragmentary form, of another alternative version of the same invention, herein assigned as the Model E, and, focussing on still a further type of elastovalvular mechanism or component known as the Uni- Lip Elasto-Valve Type V.
- the drawing illustrates the elasto-valvular mechanism or. component in both its close and open position.
- FIG. 29 is an enlarged central longitudinal section, partly in fragmentary form, of a sixth version of the poly-sample hypodermic needle, herein designated as the Model F, and, centering on a sixth possible type of elasto-valvular mechanism or component called the Mono-Oval Elasto-Valve Type VI which is illustrated in both its close and open positions.
- FIGS. 1, 2 and 3 the following numerals and letters refer to specifically detailed parts of the first three models of the Euclidean Automatic Elasto-Valvular Poly-Sample Hypodermic Needle.
- Numeral 1 is the frontal beveled end of the front cannula that is useful for the proper penetration of the skin and the immediate underlying tissues, as well as the wall of the blood vessel preferably a vein, 2 is the exposed extension or shaft of the front cannula, 3 is the bore that runs axially through the front cannula.
- the rear part of 2 designated as 4 is centrally and firmly held in the straight position by the front segment 6 of the main supporting material
- 5 is the rearmost extent of the axially running bore 3 of the front cannula
- 6 partially supports the elasto-valvular component 8 and internally having a centrally located cavity X that borders between 5 and 8
- 7 is the junction in the main supporting material that integrates 6 with 10 which is the rear segment of the main supporting material that centrally holds the frontal part of the rear cannula in an inflexibly straight longitudinal position.
- junction 7 completes the firm support for the outer circular margins of the elasto-valvular component; both 6 and 10 compose the main supporting material joining at 7; 9 is the foremost extension of the axially running bore of rear cannula 13 that communicates with cavity Y of the structure 10, and, such cavity Y frontally bordering at the hind face of the elasto-valvular component; 11 is the unexposed portion of the rear cannula that is held firmly by the central rear part of 10; 12 is the externally threaded screw form adapter which is a rear extension of 10, and which is so constructed to be adaptable with the corresponding internally threaded central bore of the VACUTAINER TUBE HOLDER; 14 is the rear cannular bore; 13 is the exposed hind extension or shaft of the rear cannula; l5 and 16 are both lateral holes of the rear cannula that link bore 14 with the outside; 17 is the point-ending sharply piercing hindmost extension of rear cannula 13.
- FIGS. 1, 2 and 3 respectively represent the first three models of the present invention designated as Models A, B and C, respectively, chiefly rest upon the varying configurations as well as upon either the transparency or the nontransparency of the main supporting material that holds the front and the rear cannulas including the elastovalvular component in place, variations in the shapes of cavities X and Y found therein as far as their respective internal configurations are concerned, and, structural variations relevant to the functional capabilities of the elasto-valvular components.
- the main supporting material isshown as transparent, and, preferably constructed of strong solid again, preferably made of strong solid plastic material.
- the advantages of this transparency of the main supporting material are: 1) the allowance of a visual means of checking the functional efficiency of the elastovalvular component situated therein, and 2) the inherent property of the enveloping main supporting material of enabling the operator to gain a positive visual knowledge as to whether or not the optimal blood flow has already ensued from the vein through the bore of the front cannula by watching for the inflow of blood into the cavity X, just before pre-exposing the vacuum of the first collection tube prior to proceeding in the sequence of venous blood multi-sampling.
- the main supporting material may be constructed of non-transparent constitution, which may be of opaque plastic, aluminum or any other preferable metals.
- non-transparent constitution which may be of opaque plastic, aluminum or any other preferable metals.
- FIG. 4 which is a more magnified longitudinal section in fragmentary form of the middle fundamental components of the Model A of the present invention, the following numerals, letters or letter-numeral combinations are given to the various parts:
- the numeral 2 is part of the exposed portion of the front cannula; 3 is the axially running bore of the same cannula; 5 is the rearmost extension of the axially running bore 3; 4 is the unexposed portion of the front cannula that is firmly held in the straight position by 6 which is the front segment of the main supporting material; X is the cavity formed centrally and internally within 6; 18a is the symmetrically and smoothly converging borders of the cavity X; 7a is the junctioning part of 6 and materially joining with the outer sector of 7b which is the foremostjunctioning portion of the rear segment 10 of the main supporting transparent material.
- elastovalvular mechanism or component shown in the normally closed-lip position is designated as 8, and, its different parts are represented by the following letters:
- d is the outermost part of the said component; a is the flanged portion that fits into the socket built in 7b; e is the flat part that rests snugly against the inner portion of 7a; f is the flat surface at the hind face of the said component that tightly presses against the innermost sector of 7b; b and b are the valvular lips, and, c is the valvular slit.
- Y is the rear cavity formed centrally and internally within the structure of the rear segment 10 of the main supporting material; 18b is the symmetrically and smoothly converging borders of cavity Y that ends rearwardly at 9 which is the foremost extension of the axially running bore 14 of the rear cannula; 11 is the unexposed part of the rear cannula that is held firmly and straightly by the central rear sector of the rear segment 10 of the main supporting material; 12 is part of the rear segment 10 which is an externally threaded screw form adapter.
- FIG. 5 which is another more magnified longitudinal section in fragmentary form of Model C of the same invention, the middle features are brought into a more detailed attention, viewing how the different parts are structurally and functionally inter-related to one another from the standpoint of fittable pre-fabricated components on one hand and in the light of a more practical and economical method for mass production.
- 2 is the exposed portion or shaft of the front cannula as seen partly in fragmentary form
- 6b is the flanged foremost sector of the front segment of the main supporting material
- 6a is the inner unflanged portion of the same;
- 7a is part of a circumferentially molded recess at the rearmost outer sector of the front segment of the main supporting material wherein the flanged part of the elastovalvular component, designated in the drawing as letter a, is to be snugly fitted;
- d is the outermost part of the said component that is to be tightly pressed against the outermost borders of the circularly running recess 7b of the rear segment 10 of the main supporting material;
- f is that part of the said elastovalvular component that must rest against the rearmost borders of 6a;
- b and b are both elasto-valvular lips, and
- c is the elastovalvular slit.
- cavity Y which is the centrally located internal pre-molded cavitation of 10
- X is the tubular fore cavity that runs longitudinally and symmetrically within the borders of 180 found at the central part of the front segment 6a of the main supporting material, and that the said cavity X is axially aligned and in direct communication with the rearmost extent of the front cannular bore represented as 3
- 18b is the smoothly converging internal physical limitations of the rear segment 10
- 9 is the foremost extent of the rear cannular bore 14, and which is in direct space-continuum with cavity Y
- 11 is the frontal portion of the rear cannula that is held firmly and straightly in an axial way by the hind central part of the rear segment 10
- 12 is a portion of the externally thread
- the external contour defined by the combination of 6a bordered by the rear part of 6b and the foremost extent of 10 can be very well utilized as the finger-grippable part, such part rendering a convenient shape during the quick installation and subsequent disengagement of the polysample hypodermic needle in relation to the internally threaded bore of the plastic VACUTAINER HOLDER through which 12 is made adaptable.
- FIG. 6 which is an enlarged section of the elastovalvular component that had been centrally sliced in a straight sidewise manner, the following letters are used to represent the different elaborate parts of this Type I of elasto-valvular component:
- Letters (1, e, a and f are the outer portions of the said component that engage with 7a and 7b of the front and rear segments of the main supporting material which have been previously named and described in FIG. 4.
- part g which is merely a flat, hindly situated, broadly running circumferential indentation from the flat surfaces off, and the basic function of this is merely to decrease the material thickness of that part preparatory to the concave abrupt indentation 111 that is of narrow width and, again, circumferentially running when seen from the end-view, and found just before the valvular lips take form within the confines of the hind face of the said elasto-valvular component.
- hl The main function of hl is to allow the valvular lips with the easy bending characteristics in their rearward swing during the attainment of the opening phase while the VACUTAINER tube is in the process of aspirating the necessary blood volume from the vein through the poly-sample hypodermic needle.
- the purpose of the hl cbficavirysmeaavamageous diminution of the rubber material along that area which, in effect, will offer more pliability on the part of the automatically actuatable valvular lips, a necessity in this particularly stiffer constitution of the elast-valvular component to make such actuateable valvular lips much more sensitive to pressure differential gradients.
- the part 112 is the corresponding cancave abrust indentation opposite hl and located at the fore-face of the elasto-valvular component; h2, likewise is narrow in width, and, located just before the start of the outer formation of the valvular lips, and also running circumferentially when seen from its front view; b2 also adds to the desired pliability of the elasto-valvular lips due to the effects of re-calculated material decrement along its extent resulting in less stress that would otherwise cause greater resistance to the rearward swing of the elasto-valvular component.
- This condition triggers the valvular lips to achieve relative optimal apertural sizes in direct proportion to the pressure differential changes; the valvular lips opening activity at the site of the valvular slit 0 brings forth the flow of blood specimen for optimal transport from cavity X to cavity Y and then into the said VACUTAINER tube through bore 14 of the hind cannula.
- FIG. 7 similarly, the different letter designations as given to the elasto-valvular component illustrated in FIG. 4, are basically the same, and that the functions of the different parts are also the same.
- the valvular lips b and b are structurally shaped to show a more forwardly inclined contour in relation to the perpendicular outlines of configurations e and f. Also apparent is the characteristically larger area of elliptical swing of b and b. This design may prove to be favoring the use of a softer structural property of material as an essential factor in the construction of this particular type of elasto-valvular component.
- FIG. 8 which illustrates the Type III of the elastovalvular component
- the letter-designated parts a, d and e correspond to the engageable configuration that is made to be adaptable to the pre-fabricated recesses 7a and 7b seen in FIG. 5; the part f is made flat to snugly press against the flattened hindmost border of the front segment of the main supporting material 6a and 6b shown in FIG. 5.
- a pair of right-angled fore and hind indentations opposite each other start the structural configurations that finally form the valvular lips b and b;
- j and j are the sites where the hind face of the valvular lips b and b begin to bulge in material thickness to form i and i which are actually thickened edges of the elasto-valvular lips, and which form a streamlined circularly running bulge across which the valvular slit or slits are made.
- FIG. 9 which is an enlarged end view of the Type I of the elasto-valvular component, the portion occupied by part a, which is seen in the side sectional view in FIG. 6, is illustrated clearly as extending around the outermost margin of the component, and, that which runs circularly and flatly.
- Parts f and g respectively are shown occupying the next two inner portion of the same component, both partsf and g, likewise, running circularly, flatly; 121 which is the hindly situated circularly running narrow groove is illustrated bordering the outermost extensions of the valvular slits c1, c2 and 03 that form the corresponding valvular lips b1, b2 and b3.
- FIG. 10 which is the enlarged end view of the Type II of the elasto-valvular component, vividly shows the circularly and flatly running contours defined by parts a and f, and that b continues, materially, towards the center and actually forming the four symmetrically arranged valvular lips bl, b3, b3, and b4 after the valvular slits c1 and c2 criss-cross straightly across the center, each slit dimension being equal and starting the physical break equi-distantly from the inner border off, and just a few measure centrally within the confines of b.
- FIG. 11 which is the enlarged front view of the Type III of the elasto-valvular component, the flatly and circularly running areas of parts a and fcan be seen; within the scope ofb can be observed the equally dimensioned valvular slits cl, c2, and 03 which confluence and cross the center up to their correspondingly opposite limits in relation to their respective starting points.
- the resultant ofthis slitting method is the actual formation of the equi-angular shapes of the respective valvular lips b1, b2, b3, b4, b5 and b6.
- FIG. 12 which is the enlarged pictorial representation of the relationship between the vein, the blood, the polysample hypodermic needle and the VACU- TAINER HOLDER as drawn inter-connectedly in the central longitudinal section, vividly illustrates the following labeled parts:
- the numeral 1 is the forward beveled sector of the front cannula 2, and, which is presently shown having made the optimal penetration of the venous wall 19 at point 21, and that, part of the blood flowing through the vessels lumen is transported through the bore of the front cannula and filling the cavity X formed within the confines of 6', 8 is the elasto-valvular component; the cavity Y which is formed within the confines of 10 is shown still unoccupied by blood; 12 is the externally threaded screw form adapter of the poly-sample hypodermic needle that has been firmly positioned by 22 which is the foremost central structural enlargement of the VACUTAINER HOLDER, such structural enlargement having a central internally threaded bore, preformed to fit l2; lateral holes 15 and 16 of the rear cannula are shown located near the point-ending piercer 17 of the rear cannula; 24 is the section of the tubular body of the plastic VACUTAINER HOLDER, and 23 is the barrel within its internal confine
- the blood flow from the vein into the said cavity X has been brought about because of the existing pressure differential between the venous side and the lesser pressure inside cavity X.
- Whatever volume of air previously occupying the said cavity is of considerably negligible quantity, for in the actual scale of cavity X, the space is only of a small dimension, enough to accommodate just a minute amount of blood ensuing into it from the venous side through the bore of the front cannula; such small blood quantity perceivable by the operator due to the transparency of the enveloping plastic material of the front segment of the main supporting material, thus indicating positively whether or not the proper venous penetration has been made before exposing the vacuum of the initial pre-evacuated sample tube.
- valve cannot be actuated to widen considerably in aperture size so as to permit the characteristic viscous-quality transport of blood due to the biophysically based reason that the pressure differential between the venous side and the ambient condition is inhibited by the pre-calculated structural stiffness of the selected construction of the elasto-valvular mechanism. Hence, no blood would be coming outfrom the rear cannula, even though the correct puncture of the vein has already been made, for the initial VACUTAINER tube is still unlinked with the needle.
- the elastovalvular mechanism cannot achieve the open position in conjunction with the actual process of venous blood extraction, since the negativity of pressure of the vacuum of the said sample tube has not yet been connected with the bore of the rear cannula that would have caused the valve to open allowing blood transport from cavity X into cavity Y then through the rear cannular bore.
- FIG. 12 Included in FIG. 12 is the said first or initial VACU- TAINER tube that is still unconnected to the hind portion of the rear cannula; such container tube is viewed in the side elevation and shown partly inserted into the barrel of the holder 24.
- Numeral 26 is the flanged rubber stopper of the VACUTAINER tube 27, and that, the rubber stopper has not yet been pierced by 17, thereby, the vacuum contained inside the said container tube is still unexposed.
- the said tube in this case, as can be seen, is yet devoid of any blood contents.
- FIG. 13 is a much more magnified pictorial illustration of the relationship referred to in FIG. 2, except that the VACUTAINER tube is ommitted in the drawing.
- the blood 20 is shown flowing from the vein l9, and partially transmitted through the bore 3 of the front cannula 2, having passed through the front cannulas rear exit 5 to fill cavity X.
- the blood has been transported from the venous lumen because the foremost open beveled end of the front cannula has made an optimal penetration of venous wall 19 at site 21, and that, the said beveled portion is properly positioned inside the vein.
- the blood is made to pass through the said bore 3 into X because of the existing substantial pressure differential between the venous side and the cavity X, however, due to the precalculated stiffness of the elasto-valvular component enabling it to resist the range of possible venous pressure fluctuations from individual to individual, there can be no blood volume transfer from cavity X to cavity Y until the pressure differential becomes greater as can be achieved when the VACUTAINER tube has already been installed at the opposite side. Notice that, by looking at the unwidened view of the valvular slit 0, and, noticing the unswung valvular lips b and b, the elasto-valvular mechanism is still substantially in the normally close position.
- the numeral 7 represents the junction line between the front and the rear segments 6 and 10 of the main supporting material.
- cavity Y is yet devoid of blood contents.
- the blood inside cavity X can be seen by the operator, thereby indicating to him when the vein had already been properly punctured and the initial blood flow from the vein through bore 3 had already ensued.
- the operator can, at this time decide to link the vacuum of the said container tube into the system without any trial-and-error method.
- the vacuum capacity of the pre-evacuated sample tube cannot be prematurely exposed.
- the numeral 9 is the rear cannular entrance that communicates cavity Y through bore 14 to the ambient environment when the poly-sample hypodermic needle is not linked with the tube or, to the vacuum of the container tube when the said poly-sample hypodermic needle is connected with the said pre-evacuated vial.
- the parts and functions represented by the numerals 12, 22, l5, l6, l7 and 24 have already been previously mentioned in FIG. 12.
- FIG. 14 which is another enlarged pictorial illustration showing the relationship between the interconnec'ted important components included in the VACU- TAINER METHOD of blood specimen extraction vividly illustrates the propagation of blood flow through the now open elasto-valvular component, after the VACUTAINER tube has been installed with the system.
- the causative factor for the opening of the valvur lar component 8, causing blood transport across its opened valve, from cavity X into cavity Y, and, propgated through the bore of the rear cannula into the aspirating sample tube, after exiting through the lateral holes 15 and 16, is the creation of the automatically actuating greater pressure differential that now exists between the positive pressure inherent in the venous side, and the negative pressure characteristic of the vacuum contained within the evacuated collecting vial on the other side.
- This abrupt increment of the said pressure differential as a result on the installation of the said tube, triggering the valvular lips to swing rearwards, permitted the widening of the valvular slits, thus allowing blood to flow through the entire device.
- the arrows r1 and r2 indicate the direction of the blood quantities being aspirated from lateral holes 15 and 16, respectively, during the collection of specimen into the said VACUTAINER tube.
- Part 26a is the flanged portion of the rubber stopper plugging the container tube
- 26b is the diaphragm of the same rubber stopper that has now been pierced by the point-ending piercer of the rear cannula. All the other parts represented by the other numerals in this figure have been previously named and described in FIG. 12.
- FIG. 15 which is another enlarged pictorial representation, drawn partly in central longitudinal section, includes the relationship between the aforementioned important components, but, this time, the VACU- TAINER tube filled with collected blood specimen, is shown to have been disengaged or pulled away from its physical connection with the poly-sample hypodermic needle. It is of utmost importance to note that, due to the inherent elasticity of the elasto-valvular mechanism 8, the corresponding valvular lips had sprung back to their original close position as an after-effect of the tubes having been pulled away from its cannular linkage.
- the next pre-evacuated sample tube shown in FIG. 16 can now be installed into the barrel of the said holder, and then, connected again with the same system by forwardly pushing the tube 27 at its base with the thumb or palm of the hand, so that the rubber stopper can be properly pierced at its diagphragmatic area by the pointed sector of the rear cannula.
- valves aperture is not constant because the valvular opening and closing responses are relative to the pressure differential gradients between the venous side and the degree of negativity of pressure of the collection tube.
- the valvular lips are readily swung rearwards from their close position, towards the direction of the aspirating medium, widening to the largest attainable aperture size depending upon the intensity of the vacuum, which, of course, would also depend upon the diameter and length of the VACUTAINER tube used.
- the basic design of the inter-paced lateral holes and 16 may prove as an essential deactuating means which can optimally cause the easy snapping of the valvular lips towards the close position. This advantage is brought about because the two inter-paced lateral holes become sequentially blocked by the solid mass of rubber that constitutes the pierced disphragm of such rubber stopper during the slow pulling of the sample tube away from its connection with the rear cannula.
- inter-pacing of the lateral holes does not have to be exactly in the same proportion as illustrated; such interpacing of the lateral holes can be made farther apart as far as the longitudinal relationship to one another is concerned provided that better efficiency of the device is achieved.
- the easy, yet quick enough closure of the said valve as the operator gently pulls away such sample tube will prevent the occurrence of blood drip during the span of time between inter-tubular changing in the course of multi-sampling from the vein.
- FIG. 18 which is the enlarged end view of the elasto-valvular component of the Type I, it is fully illustrated how the valvular lips attain their completely open position at the height of the vacuums aspirating power.
- This fully open position of the valve is achieved at the time when the pressure differential between the venous side and the said vacuum is at the greatest value.
- the valvular lips appear to have reacted in such an orderly manner due to the presence of the pre-set equal length and equi-angularly arranged valvular slits c1, c2 and c3, which are originally illustrated in the closed position in FIG. 9.
- This allows the corresponding valvular lips the freedom of displacement reactivity that can variably achieve the adjustable aperture sizes relative to the aforementioned pressure differential gradients.
- the parts a, f and hl correspond to the parts already named in FIG. 9, and can be seen almost identically except for the following (1)
- the valvular lips are swung rearwards thus attaining the open position (2)
- hl is seen to be more narrowed secondary to the compressing action of the rearward swing of the valvular lips b1, b2 and b3 (3)
- the presence of 10 which is a crosssection of the transparent plastic solid material that supports and envelopes the elasto-valvular component (4)
- the presence of :1, t2, t3 and t4 seen as equidistantly placed inverted V-shaped protrusions at the outer edge of 10; the purpose of such protrusions being to provide an adequate structural means to increase traction or finger-grippability so necessary for the effective installation and subsequent disengagement of the adaptable end of the poly-sample hypodermic needle to the respective internally threaded bore of the VACUTAINER HOLDER.
- FIG. 19 is the enlarged end-view of the Type II of the elasto-valvular component as it appears being enveloped around its outermost circumference by the cross-section of the transparent solid plastic material 10.
- the valve is shown in the fully open position after it has abeen automatically actuated to open by the pressure differential between the venous side and the vacuums negativity of pressure.
- the valvular lips b1, b2, b3 and b4 had been swung rearwards by the aspirating action of the said vacuum. It is through this open valve that the blood is made to pass from the venous side into the VACUTAINER side.
- the parts a and f of the elasto-valvular component are shown to be running circularly and flatly as in FIG. 10.
- the valvular slits cl and 02 are well widened, and only the outermost borders of the said slits can be seen in the drawing.
- the exterior of the enveloping plastic material 10 that firmly holds the elasto-valvular component in proper place can be observed to have fingergrippable arc-like edges, again, for the purpose mentioned similarly in the discussions involved in FIG. 18.
- the said traction edges are represented by the letter t.
- FIG. 20 is an enlarged frontal view of the elastovalvular component of the Type III as shown in FIG. 11, but this time, the valve is in the open position; the valvular lips having been swung rearwards cannot be fully sen. Only the outlines of internal bases of the valvular lips bl, b2, b3, b4, b and b6 are seen as they are viewed frontally; inter-paced between the bases of the six valvular lips are the outermost borders of the widened valvular slits cl, c2 and c3; parts a and f are seen running circularly and flatly which are similarly shown in the same fashion in FIG. 11.
- FIG. 21 which is the enlarged central longitudinal section of Model D of the present invention the numerals 1, 2, 3, 4 and 5 that represent the different parts of the front cannula, are of the same names and functions as those similar numerals in the previously discussed models of this currently applied for poly-sample hypodermic needle.
- the elasto-valvular mechanism or component is situated between the front and the rear segments of the main supporting materials as indicated by the central cross-section of the said mechanism shown to be sandwiched between 6 and 10.
- the borders of the said elasto-valvular component are firmly placed in position permitting the normally close elasto-valvular lips bl and b2, to separate cavity X from cavity Y and also allowing the optimal freedom of such eIasto-valvular lips in responding to the relevant pressure differential sensitivity range.
- the numeral 40 is a streamlined internal contour of the rear segment of the main supporting material, and, as is evident, the purpose is to allow a pre-calculated space for the accommodation of the allowable limits of the rearward swing of the elasto-valvular lips during the opening phase of the valve.
- Numeral 7 is the junction between the front and the rear segments of the main supporting material, and, at this site, the perpendicular lines 30 and 30 are drawn straightly; the rearwardly pointing arrows m and m, and the forwardly pointing arrows p and p are indicated in relation to whatever particular view is taken with respect to lines 30 and 30 of FIG. 21.
- Perpendicular lines 32 and 32 are drawn and seen touching the front segment 6 of the main supporting material, and, arrows q and q are illustrated as rearward-pointing.
- Perpendicular lines 34 and 34 are shown touching the rear segment 10 of the main supporting material, and, the forwardly pointing arrows s and s are illustrated relating to the forward view with respect to lines 34 and 34.
- the numeral 12 is the externally threaded screw form adapter which appears similar to that same part in all the previously illustrated models.
- FIG. 22 is a more magnified central longitudinal sectional view, partly in fragmentary form of the model D of the present invention in so far as its relationship with the other pertinent items or factors of the VACU- TAINER SYSTEM are concerned as applied during the actual process of blood drawing.
- the numeral 20 represents a blood quantity shown flowing and originating from the vein, and, hereby illustrated to have been transported through the cannular bore 3 of the front cannula 2, after the forward beveled end 1 has correctly punctured one side of the venous wall 19 at site 21; and that blood 20 having already entered cavity X after exiting from 5, and, having passed through the open valve of the elasto-valvular component 8, and then propagated in its flow through cavity Y as well as through cannular bore 14 and into the interior of the installed fragmentarily drawn VACUTAINER tube, after having exited axially from the end of the rear cannula 13 in the direction of arrow r.
- the elasto-valvular mechanism responds to the pressure differential gradients existing betwen the venous side and the VACUTAINER side, by means of opening its valvular lips to allow the passage of blood through the device. This is due to the pre-calculated functional reactivity of the actuatable structural designs as well as density, elasticity, resistance, configuration streamlining and thickness of the elasto-valvular mechanism.
- 6a is an external enlargement of the front segment 6 of the main supporting material, and, that 6a had been constructed for the purpose of allowing the necessary material support so as to enable the lengthwise extent of the elasto-valvular component of this Type IV to be properly and symmetrically enclosed, and, firmly sandwiched in place between the front and the rear segments of the main supporting material.
- the rubber stopper plugging the sample tubes entrant end has been completely pierced by the rear cannula 13 at the site of the rubber stoppers diagphragm 26b shown to be centrally thinner in structural dimension.
- the flanged part 26a of the rubber stopper is shown to be thicker in sectional construction.
- the entire poly-sample hypodermic-needle is-firmlyinterconnected with, the plastic VACUTAI-N ER I-IOLDER and this has been echieved bythe correct fitting afforded by 22 which is' the central external enlargement of the holder; 22 having an internally threaded bore through which the externally threaded screw form adapter 12 of the poly-sample hypodermic needle suitably and firmly fits.
- FIG. 23 which is the enlarged cross-sectional view of the poly-sample hypodermic needle taken from lines 30 and 30 and seen in the direction of arrows p and p, the entire hind-face view of the elasto-valvular mechanism or component represented by numeral 8 of the Type IV known as the Dual-Lip Polygonal Elasto- Valve, is properly illustrated, and the outer lengthwise margins of the said component are shown to be flatly secured against the correspondingly flat depression that conforms with the polygonal shape and dimension of the said component; such depression being located centrally and at the rearmost end of 6a as well as that of part 6.
- the hind-face of the said elasto-valvular component is basically flattened except at the edges of wherein the structure had been contoured inwardly and slightly of convex nature.
- the valvular slit 0 is only a singular straight slit or incision across the middle part of the said component, and that which runs at right angles relative to the perpendicular symmetrically arranged equally dimensioned incisions jl and j2 that are situated correspondingly to each lateral region of the said component.
- the eIasto-valvular component 8 having an I-I-shaped inter-connected incision-complex as defined by the combination of valvular slit 0 and the laterally located incisions jl and j2, is illustrated in the normally closed position.
- the left and the right lateral margins kl and k2 are material continuities of the said component for definite manufacturing advantage, namely, to be able to form the said component into a singular piece without altering the proposed basic functional feature of the l-I-shaped incision-complex.
- the circular dotted lines, bisected by valvular slits C, and, labeled as X is actually the unscaled representation of the circular borders of cavity X of the front segment of the main supporting material; said circular borders that axially ends at the fore-face of the elasto-valvular component cannot be seen when the valve is in the closed position as indicated by the appearance of the unswung valvular lips b1 and b2.
- Shown to be enveloping the entire polygonal borders of the elasto-valvular component is the transparent cross-section of the oval-shaped enlargement 6a; the ovality of the said enlargement can be very well utilized in providing an excellent finger-grippability necessary for the fast installation and easy disengagement of the poly-sample hypodermic needle to and from the respective inter-linking part of the plastic VACUTAINERl-IOLDER.
- FIG. 24 which is an enlarged cross-section of the same poly-sample hypodermic needle, also taken from lines 30 and 30 and along the direction of arrows p and p of FIG. 21, the same hind-face view of the Type IV Dual-Lip Polygonal Elasto-Valve seen in FIG. 23, is vividly shown, but, this time, the valve itself is illustrated in the open position. It can be observed by the clarified definitions of the shadings in this particular drawing that the valvular lips [11 and b2 have been flipped rearwardly so that the valvular slit c which has been clearly visualized in FIG.
- FIG. 25 which is the enlarged cross-sectional view of the poly-sample hypodermic needle, taken from lines 30 and 30, but, this time along the direction of arrows m and m as seen in FIG. 21, the elasto-valvular mechanism cannot be visualized.
- the cross-section of cavity Y is shown to be centrally located, and around it is 40 which is a marginal circularly running-convexly contouring structure that opens innerly into Y and wedges outerly with the flat foremost central circular borders of 6a of the rear segment 10 of the main supporting material.
- the use of 40 permits a precalculated space allowing the optimal rearward swing of the valvular lips, and therefore, since the elastovalvular components fore-face is actually the one that completely covers the rearmost extent of cavity X, the elasto-valvular components hind-face does not necessarily have to cover the entire extent of 40 to prevent the blood from leaking into cavity Y from cavity X when the valve is in the closed position.
- FIG. 26 which is the enlarged cross-sectional view taken from lines 32 and 32 along the direction of arrows q and q as seen in FIG. 21, the circular borders of front segment 6 of the main supporting material are seen externally and internally. Inside the cross-section of the said transparent structure 6, the central area occupied by cavity X is clearly shown.
- FIG. 27 which is the enlarged cross-sectional view takne from line 34 and 34 along the direction of arrows s and s as seen in FIG. 21, the circular borders of the transparent-structured rear segment 10 of the main supporting material are seen exteriorly and interiorly. Inside this structure, the central area defining cavity Y is vividly illustrated.
- FIG. 28 which is an enlarged central longitudinal view in sectional and in partly fragmentary form of yet another alternative version assigned here as the Model E or called the Euclidean Automatic Uni-Lipped Elasto-Valvular Poly-Sample I-Iypodermic Needle, the Model E or called the Euclidean Automatic Uni-Lipped Elasto-Valvular Poly-Sample I-Iypodermic Needle, the
- the. valve would at- 25 tain the open position in gradations of rearward swing depending upon the pressure differential between the venous side and the aspirating vacuum at the VACU- TAINER side.
- the valve gradually closes secondary to its inherent structural elasticity.
- Both segments are joined together at site 7, and, sandwiched between the said two segments is the upper portion of the elastovalvular component that is held firmly in place, while the lower portion of such elastovalvular mechanism is free to move rearwardly and back to its original close position.
- the botton portion of the component optimally rests upon a groove formed at the medial part of the joint structure of the two segments of the main supporting material.
- This internally located groove furnishes a suitable configuration to permit the corresponding contour of the said bottom portion of the said elastovalvular component so as to be able to physically separate cavities X and Y from each other when such valve is in the completely close position.
- the front cannula has a foremost beveled edge 1 which is utilizable for the puncturing of the blood vessel wall and other tissues superficially situated in relation to the said blood vessels wall; such cannula being provided with a longitudinally running bore 3 exiting at 5 into the cavity X.
- the rear cannula has a point-ending piercer 17 which is utilizable for the easy puncturing of the diaphragm of the rubber stopper of the VACUTAINER tube.
- a leteral hole is provided and which communicates cavity Y with the vacuum of the VACUTAINER tube through nono-oval 8 op, which is illustrated as it can be visualized in the open position whereby the valve has been caused to be dislodged from its originally closed, plugging position represented by the area 8cp bordered by the broken line curvature.
- the valve is centrally found and supported by a pair of elastic connectors 8es on each lateral part, and that such connectors linking the ball-like valve with the correspondingly firm gripping portions within the internal structure of the main supporting material.
- the structural makeup of the monooval valve should preferably be of light-weight less dense rubber material having pre-calculated or pretested capability of optimally responding to the required sensitivity values of pressure differentials governing the chief principles of operations of this invention.
- the elastic connectors 8es are also pre-tested in their elasticity range so as to be capable of allowing the dislodgment and engagement of the ball-like valve relative to the changes of pressures. In the closed position, the blood cannot enter from cavity X to cavity Y, but, in the open position the blood can be transported from the venous side into the properly attached preevacuated sample tube. All the other numerals represent the same parts as in FIG.
- both lateral holes are aimed for the establishment of communication between the cavity Y and the aspirating vacuum of the said sample tube.
- both lateral holes 15 and 16 are aimed for the establishment of communication between the cavity Y and the aspirating vacuum of the said sample tube.
- the longer length of both the lateral holes 15 and 16 for the purpose of creating an instantly greater sucking action when the rear cannula has established communication with the vacuum of the collection tube; such greater equi-aspirating action of the dimensionally equal and non-inter-paced oppositely placed lateral holes would cause a balanced dynamically favorable displacement of the ball-like valve without considerable linear deviation of the said valve in relation to the centrally situated rearmost extent of cavity X, and, at the same, preventing any possible vibrational flutter of the dislodged balllike valve that could interrupt the optimally smooth flow of specimen across the valve during the whole blodds passage along such open medium.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Vascular Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00335419A US3848579A (en) | 1973-02-23 | 1973-02-23 | Automatic elasto-valvular hypodermic sampling needle |
JP2061874A JPS5310798B2 (enrdf_load_stackoverflow) | 1973-02-23 | 1974-02-22 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00335419A US3848579A (en) | 1973-02-23 | 1973-02-23 | Automatic elasto-valvular hypodermic sampling needle |
Publications (1)
Publication Number | Publication Date |
---|---|
US3848579A true US3848579A (en) | 1974-11-19 |
Family
ID=23311697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00335419A Expired - Lifetime US3848579A (en) | 1973-02-23 | 1973-02-23 | Automatic elasto-valvular hypodermic sampling needle |
Country Status (2)
Country | Link |
---|---|
US (1) | US3848579A (enrdf_load_stackoverflow) |
JP (1) | JPS5310798B2 (enrdf_load_stackoverflow) |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977403A (en) * | 1975-02-24 | 1976-08-31 | The Kendall Company | Catheter adapter |
DE2835101A1 (de) * | 1977-08-10 | 1979-02-22 | Becton Dickinson Co | Blutentnahmeeinrichtung |
US4150089A (en) * | 1977-09-06 | 1979-04-17 | Linet Michael S | Multi-chamber test tube |
US4212308A (en) * | 1977-12-27 | 1980-07-15 | Becton, Dickinson And Company | Parallel-flow one-way blood sampling device |
US4244378A (en) * | 1978-05-30 | 1981-01-13 | The West Company | Pressure responsive one-way valve for medical systems |
US4244379A (en) * | 1979-08-02 | 1981-01-13 | Quest Medical, Inc. | Check valve for blood drawing apparatus |
US4295477A (en) * | 1979-08-15 | 1981-10-20 | Becton, Dickinson And Company | Multiple sampling device having molded valve and hub |
US4305406A (en) * | 1980-06-13 | 1981-12-15 | Becton, Dickinson And Company | Needle assemblies with anti-backflow features |
US4307731A (en) * | 1978-06-15 | 1981-12-29 | Becton, Dickinson And Company | Multiple sampling needle having one-way valve |
US4326541A (en) * | 1980-03-24 | 1982-04-27 | Arnold M. Heyman | Blood sample taking device |
US4333479A (en) * | 1979-10-01 | 1982-06-08 | Shiplee Iii Lewis D | Disposable needle assembly |
US4387879A (en) * | 1978-04-19 | 1983-06-14 | Eduard Fresenius Chemisch Pharmazeutische Industrie Kg | Self-sealing connector for use with plastic cannulas and vessel catheters |
US4421123A (en) * | 1981-11-30 | 1983-12-20 | Becton Dickinson And Company | Multiple sample needle valve |
US4481008A (en) * | 1981-10-08 | 1984-11-06 | Bioresearch Inc. | Apparatus and method for relieving excess negativity in a drainage device |
US4492634A (en) * | 1982-09-28 | 1985-01-08 | Emde Medical Research | Pre-evacuated blood collection tube with anti-hemolysis baffle system and centrifugation propelled filtration disc and efficient serum-from cells separator |
EP0379177A1 (en) * | 1989-01-18 | 1990-07-25 | Nihon Medi-Physics Co., Ltd. | Double-sided needle assembly |
US5049133A (en) * | 1989-01-24 | 1991-09-17 | Villen Pascual Joee A | Single-use safety syringe |
US5125903A (en) * | 1991-08-01 | 1992-06-30 | Medtronic, Inc. | Hemostasis valve |
US5154699A (en) * | 1988-03-01 | 1992-10-13 | Ryan Medical, Inc. | Safety winged needle device for use with fistulas |
US5273546A (en) * | 1991-08-01 | 1993-12-28 | Medtronic, Inc. | Hemostasis valve |
US5626567A (en) * | 1994-06-21 | 1997-05-06 | Gmeiner; Wilhelm | Syringe assembly |
US5743861A (en) * | 1996-01-23 | 1998-04-28 | Abbott Laboratories | Blood collection device |
WO1998044970A1 (en) | 1997-04-08 | 1998-10-15 | Injectimed, Inc. | Method and apparatus for collecting blood |
US5843046A (en) * | 1997-05-29 | 1998-12-01 | Paul J. Motisi | Catheter apparatus |
WO1999048425A1 (en) | 1998-03-25 | 1999-09-30 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin | Sample collection device |
US6627156B1 (en) * | 2000-06-22 | 2003-09-30 | Beckman Coulter, Inc. | Cap piercing station for closed container sampling system |
US6641782B1 (en) * | 2000-11-15 | 2003-11-04 | Polaroid Corporation | Apparatus for performing diagnostic testing |
EP1407820A1 (en) * | 2003-05-22 | 2004-04-14 | Agilent Technologies Inc., A Delaware Corporation | flap septum |
US20050257631A1 (en) * | 1996-08-22 | 2005-11-24 | Mayeaux Donald P | Devices for obtaining cylinder samples of natural gas or process gas, and methods therefore |
US20080145933A1 (en) * | 2006-12-18 | 2008-06-19 | Patton Richard G | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US20090155838A1 (en) * | 2007-11-28 | 2009-06-18 | Smart Tube, Inc. | Devices, systems and methods for the collection, stimulation, stabilization, and analysis of a biological sample |
US7874221B1 (en) * | 1996-08-22 | 2011-01-25 | A+ Manufacturing, Llc | Devices for obtaining cylinder samples of natural gas or process gas, and methods therefore |
US20120010631A1 (en) * | 2007-03-19 | 2012-01-12 | Dubois Brian | Device and Method for Harvesting and Implanting Follicular Units |
US20130178760A1 (en) * | 2012-01-09 | 2013-07-11 | Becton, Dickinson And Company | Use of Automatic Flow Regulators for Flow Modulation During Blood Collection |
US8535241B2 (en) | 2011-10-13 | 2013-09-17 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US20130338608A1 (en) * | 2003-08-29 | 2013-12-19 | Angiodynamics, Inc. | Valved Catheters Including High Flow Rate Catheters |
US20140305196A1 (en) * | 2013-04-15 | 2014-10-16 | Becton, Dickinson And Company | Biological Fluid Collection Device and Biological Fluid Separation and Testing System |
US8864684B2 (en) | 2011-10-13 | 2014-10-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
WO2014185904A1 (en) * | 2013-05-15 | 2014-11-20 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
WO2014185905A1 (en) * | 2013-05-15 | 2014-11-20 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
US8904886B1 (en) | 1996-08-22 | 2014-12-09 | A+ Manufacturing LLC | Devices for obtaining cylinder samples of natural gas or process gas and methods therefore |
US9022951B2 (en) | 2012-05-30 | 2015-05-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9044541B2 (en) | 2005-12-02 | 2015-06-02 | C. R. Bard, Inc. | Pressure activated proximal valves |
US9060724B2 (en) | 2012-05-30 | 2015-06-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9067023B2 (en) | 2011-11-21 | 2015-06-30 | University Of Louisville Research Foundation, Inc. | Ergonomic syringe and adaptor |
US9149576B2 (en) | 2012-10-11 | 2015-10-06 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US9155495B2 (en) | 2012-11-30 | 2015-10-13 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US9204864B2 (en) | 2012-08-01 | 2015-12-08 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9447892B2 (en) | 2008-05-21 | 2016-09-20 | Angiodynamics, Inc. | Pressure activated valve for high flow rate and pressure venous access applications |
US20170164882A1 (en) * | 2015-12-09 | 2017-06-15 | Uneeka Canty | (sscd) device - safety syringe collection device |
US9788774B2 (en) | 2013-03-12 | 2017-10-17 | Magnolia Medical Technologies, Inc. | Methods and apparatus for selectively occluding the lumen of a needle |
US9895524B2 (en) | 2012-07-13 | 2018-02-20 | Angiodynamics, Inc. | Fluid bypass device for valved catheters |
US9950084B2 (en) | 2015-09-03 | 2018-04-24 | Magnolia Medical Technologies, Inc. | Apparatus and methods for maintaining sterility of a specimen container |
US10123783B2 (en) | 2014-03-03 | 2018-11-13 | Magnolia Medical Technologies, Inc. | Apparatus and methods for disinfection of a specimen container |
US10130750B2 (en) | 2004-01-29 | 2018-11-20 | Angiodynamics, Inc. | Pressure activated valve with high flow slit |
US10251590B2 (en) | 2012-12-04 | 2019-04-09 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US10500329B2 (en) | 2003-06-27 | 2019-12-10 | Angiodynamics, Inc. | Pressure actuated valve with improved biasing member |
EP3613452A1 (en) * | 2013-05-15 | 2020-02-26 | Becton, Dickinson and Company | Manual flow regulation for blood collection |
US10610678B2 (en) | 2016-08-11 | 2020-04-07 | Angiodynamics, Inc. | Bi-directional, pressure-actuated medical valve with improved fluid flow control and method of using such |
US10772548B2 (en) | 2012-12-04 | 2020-09-15 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
WO2021096734A1 (en) * | 2019-11-13 | 2021-05-20 | Becton, Dickinson And Company | Vacuum tube receiver for drawing blood through a peripheral iv catheter |
US11076787B2 (en) | 2017-09-12 | 2021-08-03 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11234626B2 (en) | 2015-06-12 | 2022-02-01 | Magnolia Medical Technologies, Inc. | Devices and methods for syringe-based fluid transfer for bodily-fluid sampling |
US11253180B2 (en) | 2016-03-16 | 2022-02-22 | Dignity Health | Methods and apparatus for reducing contamination in blood draw samples |
US20220151527A1 (en) * | 2018-05-31 | 2022-05-19 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11419531B2 (en) | 2017-12-07 | 2022-08-23 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11446170B2 (en) | 2004-09-08 | 2022-09-20 | Limflow Gmbh | Minimally invasive surgical apparatus and methods |
US11471262B2 (en) | 2013-03-08 | 2022-10-18 | Limflow Gmbh | Methods for targeting a body passage to effect fluid flow |
US11478614B2 (en) * | 2018-10-09 | 2022-10-25 | Limflow Gmbh | Method for accessing pedal veins for deep vein arterialization |
US11612734B2 (en) | 2009-07-13 | 2023-03-28 | Angiodynamics, Inc. | Method to secure an elastic component in a valve |
US11612397B2 (en) | 2019-11-01 | 2023-03-28 | Limflow Gmbh | Devices and methods for increasing blood perfusion to a distal extremity |
US11744494B2 (en) | 2017-02-10 | 2023-09-05 | Kurin, Inc. | Blood contaminant sequestration device with one-way air valve and air-permeable blood barrier with closure mechanism |
US11786155B2 (en) | 2019-02-08 | 2023-10-17 | Magnolia Medical Technologies, Inc. | Devices and methods for bodily fluid collection and distribution |
US11826504B2 (en) | 2017-04-10 | 2023-11-28 | Limflow Gmbh | Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature |
US11832944B2 (en) | 2015-07-24 | 2023-12-05 | Kurin, Inc. | Blood sample optimization device |
US11857321B2 (en) | 2019-03-11 | 2024-01-02 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11974846B2 (en) | 2013-04-15 | 2024-05-07 | Becton, Dickinson And Company | Biological fluid transfer device and biological fluid sampling system |
US12383174B2 (en) | 2019-04-01 | 2025-08-12 | Kurin, Inc. | Non-venting bodily fluid sample optimization device and system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106497A (en) * | 1977-02-04 | 1978-08-15 | Becton, Dickinson And Company | Multiple sample needle assembly with indicator means |
US4340068A (en) * | 1980-06-18 | 1982-07-20 | Becton, Dickinson And Company | Multiple sample needle with vein entry indicator |
JPS61100421U (enrdf_load_stackoverflow) * | 1984-12-07 | 1986-06-26 | ||
JP2005287955A (ja) * | 2004-04-02 | 2005-10-20 | Sekisui Chem Co Ltd | 真空採血管用栓体及び真空採血管 |
KR102550508B1 (ko) * | 2021-06-22 | 2023-07-11 | 유원에프에이 주식회사 | 회전각을 이용한 스크러버의 습식 탱크용 수위 측정장치 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1607993A (en) * | 1925-12-11 | 1926-11-23 | Raymond G F Loewy | Container tube |
AT129280B (de) * | 1931-02-19 | 1932-07-25 | Saechsisches Serumwerk Ag | Vorrichtung zur Injektion bzw. Entnahme von Flüssigkeiten. |
US2897835A (en) * | 1956-02-29 | 1959-08-04 | Imp Brass Mfg Co | Vacuum breaker |
US2941544A (en) * | 1955-09-27 | 1960-06-21 | Renault | Fluid control devices and elastic pressure-responsive valves |
FR1278387A (fr) * | 1961-01-19 | 1961-12-08 | Dispositif pour prélever des liquides, et en particulier pour prises de sang, fonctionnant par l'effet du vide | |
US3089490A (en) * | 1960-03-14 | 1963-05-14 | Graham Chemical Corp | Disposable cartridge type hypodermic syringes |
US3091240A (en) * | 1958-12-29 | 1963-05-28 | Robert K Mcconnaughey | Hypodermic syringe and ventable closure means |
US3245428A (en) * | 1963-11-08 | 1966-04-12 | Berg Mfg & Sales Co | Flexible seal for use in a gladhand assembly |
US3295547A (en) * | 1964-02-10 | 1967-01-03 | Scaramucci Domer | Foldable check valve |
US3301443A (en) * | 1965-02-01 | 1967-01-31 | United States Steel Corp | Feeding mechanism and valve used therein |
US3557778A (en) * | 1968-11-18 | 1971-01-26 | Elbert L Hughes | Blood specimen collection assembly |
US3659587A (en) * | 1970-06-30 | 1972-05-02 | Affiliated Hospital Prod | Valved connector arrangement |
US3710794A (en) * | 1971-06-16 | 1973-01-16 | W Shields | Recessed diaphragm with annular grooves for hypodermic syringes |
-
1973
- 1973-02-23 US US00335419A patent/US3848579A/en not_active Expired - Lifetime
-
1974
- 1974-02-22 JP JP2061874A patent/JPS5310798B2/ja not_active Expired
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1607993A (en) * | 1925-12-11 | 1926-11-23 | Raymond G F Loewy | Container tube |
AT129280B (de) * | 1931-02-19 | 1932-07-25 | Saechsisches Serumwerk Ag | Vorrichtung zur Injektion bzw. Entnahme von Flüssigkeiten. |
US2941544A (en) * | 1955-09-27 | 1960-06-21 | Renault | Fluid control devices and elastic pressure-responsive valves |
US2897835A (en) * | 1956-02-29 | 1959-08-04 | Imp Brass Mfg Co | Vacuum breaker |
US3091240A (en) * | 1958-12-29 | 1963-05-28 | Robert K Mcconnaughey | Hypodermic syringe and ventable closure means |
US3089490A (en) * | 1960-03-14 | 1963-05-14 | Graham Chemical Corp | Disposable cartridge type hypodermic syringes |
FR1278387A (fr) * | 1961-01-19 | 1961-12-08 | Dispositif pour prélever des liquides, et en particulier pour prises de sang, fonctionnant par l'effet du vide | |
US3245428A (en) * | 1963-11-08 | 1966-04-12 | Berg Mfg & Sales Co | Flexible seal for use in a gladhand assembly |
US3295547A (en) * | 1964-02-10 | 1967-01-03 | Scaramucci Domer | Foldable check valve |
US3301443A (en) * | 1965-02-01 | 1967-01-31 | United States Steel Corp | Feeding mechanism and valve used therein |
US3557778A (en) * | 1968-11-18 | 1971-01-26 | Elbert L Hughes | Blood specimen collection assembly |
US3659587A (en) * | 1970-06-30 | 1972-05-02 | Affiliated Hospital Prod | Valved connector arrangement |
US3710794A (en) * | 1971-06-16 | 1973-01-16 | W Shields | Recessed diaphragm with annular grooves for hypodermic syringes |
Cited By (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977403A (en) * | 1975-02-24 | 1976-08-31 | The Kendall Company | Catheter adapter |
DE2835101A1 (de) * | 1977-08-10 | 1979-02-22 | Becton Dickinson Co | Blutentnahmeeinrichtung |
US4150089A (en) * | 1977-09-06 | 1979-04-17 | Linet Michael S | Multi-chamber test tube |
US4212308A (en) * | 1977-12-27 | 1980-07-15 | Becton, Dickinson And Company | Parallel-flow one-way blood sampling device |
US4387879A (en) * | 1978-04-19 | 1983-06-14 | Eduard Fresenius Chemisch Pharmazeutische Industrie Kg | Self-sealing connector for use with plastic cannulas and vessel catheters |
US4244378A (en) * | 1978-05-30 | 1981-01-13 | The West Company | Pressure responsive one-way valve for medical systems |
US4307731A (en) * | 1978-06-15 | 1981-12-29 | Becton, Dickinson And Company | Multiple sampling needle having one-way valve |
US4244379A (en) * | 1979-08-02 | 1981-01-13 | Quest Medical, Inc. | Check valve for blood drawing apparatus |
US4295477A (en) * | 1979-08-15 | 1981-10-20 | Becton, Dickinson And Company | Multiple sampling device having molded valve and hub |
US4441951A (en) * | 1979-08-15 | 1984-04-10 | Becton Dickinson And Company | Multiple sampling device having molded valve and hub |
US4333479A (en) * | 1979-10-01 | 1982-06-08 | Shiplee Iii Lewis D | Disposable needle assembly |
US4326541A (en) * | 1980-03-24 | 1982-04-27 | Arnold M. Heyman | Blood sample taking device |
US4305406A (en) * | 1980-06-13 | 1981-12-15 | Becton, Dickinson And Company | Needle assemblies with anti-backflow features |
US4481008A (en) * | 1981-10-08 | 1984-11-06 | Bioresearch Inc. | Apparatus and method for relieving excess negativity in a drainage device |
US4421123A (en) * | 1981-11-30 | 1983-12-20 | Becton Dickinson And Company | Multiple sample needle valve |
US4492634A (en) * | 1982-09-28 | 1985-01-08 | Emde Medical Research | Pre-evacuated blood collection tube with anti-hemolysis baffle system and centrifugation propelled filtration disc and efficient serum-from cells separator |
US5154699A (en) * | 1988-03-01 | 1992-10-13 | Ryan Medical, Inc. | Safety winged needle device for use with fistulas |
EP0379177A1 (en) * | 1989-01-18 | 1990-07-25 | Nihon Medi-Physics Co., Ltd. | Double-sided needle assembly |
US5112327A (en) * | 1989-01-18 | 1992-05-12 | Nihon Medi-Physics Co., Ltd. | Double-sided needle assembly |
AU627264B2 (en) * | 1989-01-18 | 1992-08-20 | Nihon Medi-Physics Co., Ltd. | Double-sided needle assembly |
US5049133A (en) * | 1989-01-24 | 1991-09-17 | Villen Pascual Joee A | Single-use safety syringe |
US5125903A (en) * | 1991-08-01 | 1992-06-30 | Medtronic, Inc. | Hemostasis valve |
US5273546A (en) * | 1991-08-01 | 1993-12-28 | Medtronic, Inc. | Hemostasis valve |
US5626567A (en) * | 1994-06-21 | 1997-05-06 | Gmeiner; Wilhelm | Syringe assembly |
US5743861A (en) * | 1996-01-23 | 1998-04-28 | Abbott Laboratories | Blood collection device |
US7481125B2 (en) * | 1996-08-22 | 2009-01-27 | Mayeaux Donald P | Devices for obtaining cylinder samples of natural gas or process gas, and methods therefore |
US8904886B1 (en) | 1996-08-22 | 2014-12-09 | A+ Manufacturing LLC | Devices for obtaining cylinder samples of natural gas or process gas and methods therefore |
US20050257631A1 (en) * | 1996-08-22 | 2005-11-24 | Mayeaux Donald P | Devices for obtaining cylinder samples of natural gas or process gas, and methods therefore |
US7874221B1 (en) * | 1996-08-22 | 2011-01-25 | A+ Manufacturing, Llc | Devices for obtaining cylinder samples of natural gas or process gas, and methods therefore |
WO1998044970A1 (en) | 1997-04-08 | 1998-10-15 | Injectimed, Inc. | Method and apparatus for collecting blood |
US5843046A (en) * | 1997-05-29 | 1998-12-01 | Paul J. Motisi | Catheter apparatus |
WO1999048425A1 (en) | 1998-03-25 | 1999-09-30 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin | Sample collection device |
US6627156B1 (en) * | 2000-06-22 | 2003-09-30 | Beckman Coulter, Inc. | Cap piercing station for closed container sampling system |
US6641782B1 (en) * | 2000-11-15 | 2003-11-04 | Polaroid Corporation | Apparatus for performing diagnostic testing |
US20040234423A1 (en) * | 2003-05-22 | 2004-11-25 | Bernhard Dehmer | Dispensing volumes of liquids using a flap septum |
US7473399B2 (en) | 2003-05-22 | 2009-01-06 | Agilent Technologies, Inc. | Dispensing volumes of liquids using a flap septum |
EP1407820A1 (en) * | 2003-05-22 | 2004-04-14 | Agilent Technologies Inc., A Delaware Corporation | flap septum |
US10500329B2 (en) | 2003-06-27 | 2019-12-10 | Angiodynamics, Inc. | Pressure actuated valve with improved biasing member |
US11628243B2 (en) | 2003-06-27 | 2023-04-18 | Angiodynamics, Inc. | Pressure actuated valve with improved biasing member |
US20130338608A1 (en) * | 2003-08-29 | 2013-12-19 | Angiodynamics, Inc. | Valved Catheters Including High Flow Rate Catheters |
US10130750B2 (en) | 2004-01-29 | 2018-11-20 | Angiodynamics, Inc. | Pressure activated valve with high flow slit |
US11446170B2 (en) | 2004-09-08 | 2022-09-20 | Limflow Gmbh | Minimally invasive surgical apparatus and methods |
US9943678B2 (en) | 2005-12-02 | 2018-04-17 | C. R. Bard, Inc. | Pressure activated proximal valves |
US9044541B2 (en) | 2005-12-02 | 2015-06-02 | C. R. Bard, Inc. | Pressure activated proximal valves |
US11305102B2 (en) | 2005-12-02 | 2022-04-19 | C. R. Bard, Inc. | Pressure activated proximal valves |
US10045724B2 (en) | 2006-12-18 | 2018-08-14 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US10028688B2 (en) | 2006-12-18 | 2018-07-24 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US9855001B2 (en) | 2006-12-18 | 2018-01-02 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US9861306B2 (en) | 2006-12-18 | 2018-01-09 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US8876734B2 (en) | 2006-12-18 | 2014-11-04 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US9872645B2 (en) | 2006-12-18 | 2018-01-23 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US8197420B2 (en) | 2006-12-18 | 2012-06-12 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US20080145933A1 (en) * | 2006-12-18 | 2008-06-19 | Patton Richard G | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US10028687B2 (en) | 2006-12-18 | 2018-07-24 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US8337418B2 (en) | 2006-12-18 | 2012-12-25 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US8231546B2 (en) | 2006-12-18 | 2012-07-31 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US10052053B2 (en) | 2006-12-18 | 2018-08-21 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US9855002B2 (en) | 2006-12-18 | 2018-01-02 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US8647286B2 (en) | 2006-12-18 | 2014-02-11 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US10299713B2 (en) | 2006-12-18 | 2019-05-28 | Magnolia Medical Technolgies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US10028689B2 (en) | 2006-12-18 | 2018-07-24 | Magnolia Medical Technologies, Inc. | Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination |
US20120010631A1 (en) * | 2007-03-19 | 2012-01-12 | Dubois Brian | Device and Method for Harvesting and Implanting Follicular Units |
US8562627B2 (en) * | 2007-03-19 | 2013-10-22 | Restoration Robotics, Inc | Device and method for harvesting and implanting follicular units |
US20090155838A1 (en) * | 2007-11-28 | 2009-06-18 | Smart Tube, Inc. | Devices, systems and methods for the collection, stimulation, stabilization, and analysis of a biological sample |
US11679248B2 (en) | 2008-05-21 | 2023-06-20 | Angiodynamics, Inc. | Pressure activated valve for high flow rate and pressure venous access applications |
US9447892B2 (en) | 2008-05-21 | 2016-09-20 | Angiodynamics, Inc. | Pressure activated valve for high flow rate and pressure venous access applications |
US11612734B2 (en) | 2009-07-13 | 2023-03-28 | Angiodynamics, Inc. | Method to secure an elastic component in a valve |
US10039483B2 (en) | 2011-10-13 | 2018-08-07 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US10265007B2 (en) | 2011-10-13 | 2019-04-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US8864684B2 (en) | 2011-10-13 | 2014-10-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9060725B2 (en) | 2011-10-13 | 2015-06-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US8535241B2 (en) | 2011-10-13 | 2013-09-17 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9067023B2 (en) | 2011-11-21 | 2015-06-30 | University Of Louisville Research Foundation, Inc. | Ergonomic syringe and adaptor |
US20130178760A1 (en) * | 2012-01-09 | 2013-07-11 | Becton, Dickinson And Company | Use of Automatic Flow Regulators for Flow Modulation During Blood Collection |
US10064574B2 (en) * | 2012-01-09 | 2018-09-04 | Becton, Dickinson And Company | Use of automatic flow regulators for flow modulation during blood collection |
US11819329B2 (en) | 2012-05-30 | 2023-11-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US10736554B2 (en) | 2012-05-30 | 2020-08-11 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US10433779B2 (en) | 2012-05-30 | 2019-10-08 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US11395611B2 (en) | 2012-05-30 | 2022-07-26 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9022951B2 (en) | 2012-05-30 | 2015-05-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US11998332B2 (en) | 2012-05-30 | 2024-06-04 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US10292633B2 (en) | 2012-05-30 | 2019-05-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9022950B2 (en) | 2012-05-30 | 2015-05-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US11395612B2 (en) | 2012-05-30 | 2022-07-26 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US12193816B2 (en) | 2012-05-30 | 2025-01-14 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9060724B2 (en) | 2012-05-30 | 2015-06-23 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US12186080B2 (en) | 2012-05-30 | 2025-01-07 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US10912506B2 (en) | 2012-05-30 | 2021-02-09 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9895524B2 (en) | 2012-07-13 | 2018-02-20 | Angiodynamics, Inc. | Fluid bypass device for valved catheters |
US9204864B2 (en) | 2012-08-01 | 2015-12-08 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US10881343B2 (en) | 2012-08-01 | 2021-01-05 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9931466B2 (en) | 2012-10-11 | 2018-04-03 | Magnolia Medical Tehnologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US10220139B2 (en) | 2012-10-11 | 2019-03-05 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US10596315B2 (en) | 2012-10-11 | 2020-03-24 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US12133968B2 (en) | 2012-10-11 | 2024-11-05 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US9149576B2 (en) | 2012-10-11 | 2015-10-06 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US11890452B2 (en) | 2012-10-11 | 2024-02-06 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US11607159B2 (en) | 2012-11-30 | 2023-03-21 | Magnolia Medical Technologies, Inc. | Bodily-fluid transfer system for bodily fluid sampling |
US9999383B2 (en) | 2012-11-30 | 2018-06-19 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US11660030B2 (en) | 2012-11-30 | 2023-05-30 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US11317838B2 (en) | 2012-11-30 | 2022-05-03 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US11311218B2 (en) | 2012-11-30 | 2022-04-26 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US9155495B2 (en) | 2012-11-30 | 2015-10-13 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US11589786B2 (en) | 2012-11-30 | 2023-02-28 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US10206613B2 (en) | 2012-11-30 | 2019-02-19 | Magnolia Medical Technologies, Inc. | Syringe-based fluid diversion mechanism for bodily fluid sampling |
US10251590B2 (en) | 2012-12-04 | 2019-04-09 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US11737693B2 (en) | 2012-12-04 | 2023-08-29 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US10772548B2 (en) | 2012-12-04 | 2020-09-15 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US11259727B2 (en) | 2012-12-04 | 2022-03-01 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US12150763B2 (en) | 2012-12-04 | 2024-11-26 | Magnolia Medical Technologies, Inc. | Sterile bodily-fluid collection device and methods |
US11471262B2 (en) | 2013-03-08 | 2022-10-18 | Limflow Gmbh | Methods for targeting a body passage to effect fluid flow |
US9788775B2 (en) | 2013-03-12 | 2017-10-17 | Magnolia Medical Technologies, Inc. | Methods and apparatus for selectively occluding the lumen of a needle |
US10478109B2 (en) | 2013-03-12 | 2019-11-19 | Magnolia Medical Technologies, Inc. | Methods and apparatus for selectively occluding the lumen of a needle |
US9788774B2 (en) | 2013-03-12 | 2017-10-17 | Magnolia Medical Technologies, Inc. | Methods and apparatus for selectively occluding the lumen of a needle |
US11439332B2 (en) | 2013-03-12 | 2022-09-13 | Magnolia Medical Technologies, Inc. | Methods and apparatus for selectively occluding the lumen of a needle |
US10080516B2 (en) * | 2013-04-15 | 2018-09-25 | Becton, Dickinson And Company | Biological fluid collection device and biological fluid separation and testing system |
US12082931B2 (en) | 2013-04-15 | 2024-09-10 | Becton, Dickinson And Company | Blood sampling transfer device |
US20140305196A1 (en) * | 2013-04-15 | 2014-10-16 | Becton, Dickinson And Company | Biological Fluid Collection Device and Biological Fluid Separation and Testing System |
US11974846B2 (en) | 2013-04-15 | 2024-05-07 | Becton, Dickinson And Company | Biological fluid transfer device and biological fluid sampling system |
AU2013389306B2 (en) * | 2013-05-15 | 2017-03-16 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
AU2013389305B2 (en) * | 2013-05-15 | 2018-06-21 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
WO2014185905A1 (en) * | 2013-05-15 | 2014-11-20 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
CN109602427B (zh) * | 2013-05-15 | 2022-05-27 | 贝克顿·迪金森公司 | 在血液采集期间所使用的真空压力调节器 |
US11395613B2 (en) | 2013-05-15 | 2022-07-26 | Becton, Dickinson And Company | Manual flow regulation for blood collection |
US10357192B2 (en) | 2013-05-15 | 2019-07-23 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
CN109602427A (zh) * | 2013-05-15 | 2019-04-12 | 贝克顿·迪金森公司 | 在血液采集期间所使用的真空压力调节器 |
US20160081606A1 (en) * | 2013-05-15 | 2016-03-24 | Becton, Dickinson And Company | Vacuum Pressure Regulators for Use During Blood Collection |
WO2014185904A1 (en) * | 2013-05-15 | 2014-11-20 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
EP3725346A1 (en) * | 2013-05-15 | 2020-10-21 | Becton, Dickinson and Company | Vacuum pressure regulators for use during blood collection |
CN105307707A (zh) * | 2013-05-15 | 2016-02-03 | 贝克顿·迪金森公司 | 在血液采集期间使用的真空压力调节器 |
CN105307707B (zh) * | 2013-05-15 | 2018-07-27 | 贝克顿·迪金森公司 | 在血液采集期间使用的真空压力调节器 |
EP3613452A1 (en) * | 2013-05-15 | 2020-02-26 | Becton, Dickinson and Company | Manual flow regulation for blood collection |
JP2016523591A (ja) * | 2013-05-15 | 2016-08-12 | ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company | 採血時に使用するための真空圧調整器 |
US10888262B2 (en) | 2013-05-15 | 2021-01-12 | Becton, Dickinson And Company | Vacuum pressure regulators for use during blood collection |
US11589843B2 (en) | 2014-03-03 | 2023-02-28 | Magnolia Medical Technologies, Inc. | Apparatus and methods for disinfection of a specimen container |
US10123783B2 (en) | 2014-03-03 | 2018-11-13 | Magnolia Medical Technologies, Inc. | Apparatus and methods for disinfection of a specimen container |
US11234626B2 (en) | 2015-06-12 | 2022-02-01 | Magnolia Medical Technologies, Inc. | Devices and methods for syringe-based fluid transfer for bodily-fluid sampling |
US11963769B2 (en) | 2015-07-24 | 2024-04-23 | Kurin, Inc. | Blood sample optimization system and blood contaminant sequestration device and method |
US12390137B2 (en) | 2015-07-24 | 2025-08-19 | Kurin, Inc. | Blood sample optimization device |
US12357209B2 (en) | 2015-07-24 | 2025-07-15 | Kurin, Inc. | Blood sample optimization device |
US12138052B1 (en) | 2015-07-24 | 2024-11-12 | Kurin, Inc. | Blood sample optimization device |
US11832944B2 (en) | 2015-07-24 | 2023-12-05 | Kurin, Inc. | Blood sample optimization device |
US10624977B2 (en) | 2015-09-03 | 2020-04-21 | Magnolia Medical Technologies, Inc. | Apparatus and methods for maintaining sterility of a specimen container |
US9950084B2 (en) | 2015-09-03 | 2018-04-24 | Magnolia Medical Technologies, Inc. | Apparatus and methods for maintaining sterility of a specimen container |
US12083234B2 (en) | 2015-09-03 | 2024-09-10 | Magnolia Medical Technologies, Inc. | Apparatus and methods for maintaining sterility of a specimen container |
US20170164882A1 (en) * | 2015-12-09 | 2017-06-15 | Uneeka Canty | (sscd) device - safety syringe collection device |
US11253180B2 (en) | 2016-03-16 | 2022-02-22 | Dignity Health | Methods and apparatus for reducing contamination in blood draw samples |
US10610678B2 (en) | 2016-08-11 | 2020-04-07 | Angiodynamics, Inc. | Bi-directional, pressure-actuated medical valve with improved fluid flow control and method of using such |
US12257051B2 (en) | 2017-02-10 | 2025-03-25 | Kurin, Inc. | Blood contaminant sequestration device with one-way air valve and air-permeable blood barrier with closure mechanism |
US11744494B2 (en) | 2017-02-10 | 2023-09-05 | Kurin, Inc. | Blood contaminant sequestration device with one-way air valve and air-permeable blood barrier with closure mechanism |
US11826504B2 (en) | 2017-04-10 | 2023-11-28 | Limflow Gmbh | Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature |
US11076787B2 (en) | 2017-09-12 | 2021-08-03 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11903710B2 (en) | 2017-09-12 | 2024-02-20 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11653863B2 (en) | 2017-09-12 | 2023-05-23 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11529081B2 (en) | 2017-09-12 | 2022-12-20 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US12290363B2 (en) | 2017-09-12 | 2025-05-06 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11903709B2 (en) | 2017-09-12 | 2024-02-20 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11419531B2 (en) | 2017-12-07 | 2022-08-23 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US20220304601A1 (en) * | 2018-05-31 | 2022-09-29 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US20220151527A1 (en) * | 2018-05-31 | 2022-05-19 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US20220151526A1 (en) * | 2018-05-31 | 2022-05-19 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11850379B2 (en) | 2018-10-09 | 2023-12-26 | Limflow Gmbh | Devices and methods for catheter alignment |
US11478614B2 (en) * | 2018-10-09 | 2022-10-25 | Limflow Gmbh | Method for accessing pedal veins for deep vein arterialization |
US11786155B2 (en) | 2019-02-08 | 2023-10-17 | Magnolia Medical Technologies, Inc. | Devices and methods for bodily fluid collection and distribution |
US11857321B2 (en) | 2019-03-11 | 2024-01-02 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US12383174B2 (en) | 2019-04-01 | 2025-08-12 | Kurin, Inc. | Non-venting bodily fluid sample optimization device and system |
US12096938B2 (en) | 2019-11-01 | 2024-09-24 | Limflow Gmbh | Devices and methods for increasing blood perfusion to a distal extremity |
US11612397B2 (en) | 2019-11-01 | 2023-03-28 | Limflow Gmbh | Devices and methods for increasing blood perfusion to a distal extremity |
WO2021096734A1 (en) * | 2019-11-13 | 2021-05-20 | Becton, Dickinson And Company | Vacuum tube receiver for drawing blood through a peripheral iv catheter |
EP4321124A3 (en) * | 2019-11-13 | 2024-03-20 | Becton Dickinson & Company | Vacuum tube receiver for drawing blood through a peripheral iv catheter |
Also Published As
Publication number | Publication date |
---|---|
JPS5310798B2 (enrdf_load_stackoverflow) | 1978-04-17 |
JPS5025084A (enrdf_load_stackoverflow) | 1975-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3848579A (en) | Automatic elasto-valvular hypodermic sampling needle | |
US3886930A (en) | Blood collecting assembly | |
US3494352A (en) | Apparatus for taking multiple samples | |
EP0049591B1 (en) | Single sample needle with vein entry indicator | |
US5450856A (en) | Phlebotomy needle attachable to a vacuum container with a vent to preclude blood flashback | |
US4212308A (en) | Parallel-flow one-way blood sampling device | |
US3469572A (en) | Apparatus for taking multiple fluid samples | |
US5254312A (en) | Apparatus for collecting a blood sample from a sealed tube | |
EP2285277B1 (en) | Flashback blood collection needle | |
US5531672A (en) | Blood aspiration assembly components and blunt needle aspirators | |
US3766916A (en) | Y stylet catheter placement assembly | |
US4393882A (en) | Method and device for collecting, transporting, and delivering micro samples of blood | |
US4149535A (en) | Catheter holding device | |
DE4000968C1 (en) | Blood sampling apparatus - has blood observation chamber mounted in sampling vessel stopper | |
US3753432A (en) | Hypodermic syringe for blood tests | |
EP2254472B1 (en) | Flashback blood collection needle | |
EP0409650A2 (en) | Apparatus for discharging contents of a sealed container | |
US3877465A (en) | Fluid collection device | |
JPH08505696A (ja) | 血液や他の流体の多室試料容器 | |
US2689564A (en) | Blood donor assembly | |
US3433216A (en) | Self-evacuating fluid sampling device | |
US2689562A (en) | Blood donor assembly | |
DE2605291A1 (de) | Infusionsspritze | |
US3730170A (en) | Apparatus for distributing a sample of blood to a plurality of cultures | |
US4305406A (en) | Needle assemblies with anti-backflow features |