US3844675A - Plural shell axial turbine for operation with high pressure, high temperature steam - Google Patents
Plural shell axial turbine for operation with high pressure, high temperature steam Download PDFInfo
- Publication number
- US3844675A US3844675A US00350706A US35070673A US3844675A US 3844675 A US3844675 A US 3844675A US 00350706 A US00350706 A US 00350706A US 35070673 A US35070673 A US 35070673A US 3844675 A US3844675 A US 3844675A
- Authority
- US
- United States
- Prior art keywords
- housing
- pot
- inner shell
- shaped housing
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/26—Double casings; Measures against temperature strain in casings
- F01D25/265—Vertically split casings; Clamping arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/64—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
- F05D2230/642—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
Definitions
- the 415/ 219 4 inner shell is here designed so that it can be inserted into the pot-shaped housing which is also of integral [56] uNlTE g gg x rfE s giqrENTs construction, from the inlet side. 2,220,616 11/1940 Roder 415/138 5 Claims 1 Drawmg Figure PLURAL SHELL AXIAL TURBINE FOR OPERATION WITH HIGH PRESSURE, HIGH TEMPERATURE STEAM
- the invention relates to an axial turbine for operation with high pressure, high temperature steam and which has at least two shells, including a pot-shaped housing as an outer shell and an inner shell divided in the plane of the axis.
- Such a turbine usually is the high pressure section or stage of a plural section or stage turbine.
- the guide vane component and the shaft packing housing for the inlet side are structurally combined to form an inner shell which is not divided in the plane of the axis.
- the inner shell is designed so that it can be inserted into the pot-shaped housing from the inlet side.
- the pot-shaped outer housing is also of integral construction rather than being radially divided into respective inlet and outlet parts.
- the inner shell is supported at the outlet end in an axially movable manner against an inwardly projecting shoulder of the pot housing and is fixed axially and radially at the inlet end in the area of the shaft packing housing against corresponding shoulders of the pot housing by means of projections of the inner shell en- LII 2 gaging with corresponding slots in the pot housing.
- the outlet end of the inner shell may be kept pressure-tight by means of a cylindrical l-ring which is inserted in respective circular, coaxial grooves in the shoulder of the pot-shaped housing and in the inner shell.
- the inner shell is fixed axially and radially by a thrust ring which is screwed into the open end of the outer shell'and acts on the projections.
- a thrust ring which is screwed into the open end of the outer shell'and acts on the projections.
- an elastic U-ring seal is inserted at this side between the radial extension of the inner shell, carrying the projections, and a radial contact surface of the pot housing.
- the dimensions of the supports for the axial thrust are relatively small, as the thrust from the pressure differences in the different steam spaces now does not exceed 2,000,000 kg.
- the combination and arrangement of the sealing rings herein is selected for use with the relatively small support surfaces.
- the axial fixation point of the inner shell can be so placed through the combination of the inner shell and the arrangement of the I-ring, that the thermal expansion of the rotor and the inner shell is in the same direction. Therefore, a smaller amount of axial play is required.
- the end of the pot housing on the inlet side is merely closed off by a sealing cover put on in a steam-tight manner.
- the inner shell either as the inner housing having steam inlets connected thereto in a pressure-tight fashion and to provide relief holes to the annular space between the outer and the inner housing or as a guide vane carrier construction in which the full input steam pressure is in the annular space.
- the drawing is a horizontal cross section through the turbine in the axial plane in which the inner shell is divided.
- the shaft 1 of the illustrated high-pressure section of a turbine is equipped with axially spaced rotor blade rings 2 axially alternated with axially spaced guide vane rings 3.
- the guide vane rings 3 are held by the axially divided inner shell 4 of the turbine.
- the illustrated embodiment is a throttle-controlled turbine, in which the steam flows to the high-pressure blades of the rings 2 from the annular recess 5.
- the guide vane carrier 6 containing the inlet plenum 5 is combined, according to the invention, with the inlet side shaft packing housing 26 to form a structural unit.
- the inner shell 4 and the outer shell or pot-shaped housing 7 of the turbine are designed in such a manner that the inner shell 4 can be inserted into the housing 7 from the inlet side of the housing 7. It is thereby made possible to design also housing 7 integrally, so that a radial dividing plane, which has heretofore customary in the outlet region of the turbine, becomes unnecessary.
- the resulting onepiece housing 7 also includes a structural unit therewith the steam outlet connection 8 at the outlet part of the housing 7 and the live steam inlet connection 9 at the inlet part of the housing 7.
- the inner shell 4 is supported and secured in the housing 7 as follows.
- the inner shell 4 has at the shaft packing housing 26 section thereof four projections 35 which are uniformly spaced around the circumference and which engage in corresponding axial slots 36 in the housing 7.
- the radial contact surfaces 37 of the projections 35 rest against the corresponding radial shoulders 38 of the housing 7.
- the inner shell 4 is locked by means of a thrust ring 22, which is screwed into the open inlet end 21 of the housing 7 and rests essentially against the outer end faces 39 of the projections 35, braced against the housing 7, and is thereby supported and secured axially and radially.
- an elastic, U-shaped ring seal 20 is inserted between the extension l9 carrying the projections 35 of the inner shell 4 and a further radial contact surface 17 of the housing 7.
- the housing 7 has a radially inwardly extending shoulder 10, which is closer to the axis than the shoulders 38 on the inlet side.
- An annular slot 12 is machined into the radial contact surface 11 of the shoulder facing the inlet side.
- the inner shell correspondingly has at its outer periphery a radial extension 13, the radial contact surface 14 of which is likewise provided with an annular slot 15.
- a cylindrical, l-shaped seal ring 16 is inserted, which permits axial expansion of the inner shell in the direction of the exhaust steam connection and essentially performs the sealing of the outlet end of the annular space 33.
- the inner shell 4 is held on the outlet side, as it is on the inlet side, by means of projections 41 on the radial extension 13 of the inner shell 4, which engage with corresponding axial slots 42 in the housing shoulder 10.
- the mounting on the inlet side therefore, constitutes the fixation point for the axial expansion of the inner shell 4.
- the shaft 1 has its point of fixation on the inlet side of the turbine at the annular recess 23, at which a journal bearing is located, the inner shell 4 and the shaft 1, therefore, expand in the same direction. Only a small amount of axial play between the two parts need, therefore, be considered in this design, which reduced the construction cost considerably.
- the inner shell 4 can be inserted axially into the housing 7 from the inlet side.
- the guide vane carrier 6 and the inlet shaft packing housing 26 only one support for the inner shell 4 on the inlet side is necessary.
- the dimensions of this support are relatively small, as the thrust from the pressure differences in the different steam spaces does not exceed approximately 2,000,000 kg.
- the combination and arrangement of the sealing rings herein is selected for use with the relatively small support.
- the shaft packing housing 27 and the sealing cover 28 are inserted from the outside into corresponding recesses of the housing 7.
- the illustrated embodiment is based on the premise that the live-steam inlets 31 (shown by dashed lines, as the inlets are not situated in the horizontal plane) are brought directly up to the inlet connections 32 of the inner shell by means of conventional, steam-tight angle ring connection 30.
- the inner shell fulfills the function of an inner housing, which may further have relief holes 34 to the annular space 33 between the housing 7 and the inner housing 4 for the purpose of pressure relief.
- the inner shell At lower pressures (up to 220 kg/cm however, it is also possible to construct the inner shell as a guide vane carrier, in which case a steam-tight connection between the steam inlet connection and the inner shell becomes unnecessary and the full pressure of the live steam is in the ring space 33.
- an inner shell of this kind which comprises the guide vane carrier section and the shaft packing housing for the inlet side and has supports and seals of small dimensions, and through the elimination of the radial flange on the outer housing, only relatively small wall thicknesses are necessary, which can be kept approximately the same everywhere. This has a beneficial effect on the rate of the temperature changes and, therefore, on the cost of the high-pressure section of the turbine. Due to the favorable location of the sealing rings 16 and 20 over the entire area of the inner housing 4, the surfaces in the parting plane and the parting plane screws 40 can, furthermore, be kept small.
- Axial turbine for operation with high pressure, high temperature steam comprising a pot-shaped housing having inlet and outlet means for the steam, the location of the steam inlet means in the axial direction of the housing being adjacent one side of the housing and the steam outlet means in the axial direction of the housing being adjacent the other side of the housing, a shaft, the shaft being mounted in the housing coaxially therewith for rotation therein, a packing housing for the shaft, said packing housing being mounted around the coaxially therewith in the pot-shaped housing adjacent the inlet side of the pot-shaped housing, and means for carrying guide vanes, said guide vane carrying means being integral with the packing housing and extending toward the other end of the pot-shaped housing, the guide vane carrying means and the packing housing forming an inner shell within the pot-shaped housing, said inner shell being integral in the axial direction of the housing and divided in a plane of the housing axis, a radially inwardly extending shoulder formed in the pot-shaped housing adjacent the steam outlet side thereof, said shoulder abutting and radially supporting
- Axial turbine according to claim 1 further comprising a radial surface formed on the inner shell facing a surface of the radially inwardly extending shoulder formed in the pot-shaped housing, formed in each of the facing surfaces a like circular slot coaxial with the housing, and a cylindrical I-ring received in the slots.
- Axial turbine according to claim 1 further comprising a thrust ring screwed into the housing at the steam inlet side thereof and abutting against the projections thereby locking the inner shell axially and radially.
- Axial turbine according to claim 3 further comprising a radially outward extension formed on the shaft packing housing portion of the inner shell adjacent the steam inlet side of the pot-shaped housing and defining a radial surface, the projections being carried prising a sealing cover closing the steam inlet end of the pot-shaped housing, the sealing cover being mounted on the steam inlet end of the pot-shaped housing in a steam-tight manner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722218500 DE2218500B2 (de) | 1972-04-17 | 1972-04-17 | Mehrschaliges gehaeuse einer dampfturbine fuer hohe dampfdruecke und dampftemperaturen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3844675A true US3844675A (en) | 1974-10-29 |
Family
ID=5842203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00350706A Expired - Lifetime US3844675A (en) | 1972-04-17 | 1973-04-13 | Plural shell axial turbine for operation with high pressure, high temperature steam |
Country Status (8)
Country | Link |
---|---|
US (1) | US3844675A (de) |
JP (1) | JPS5514890B2 (de) |
CH (1) | CH553915A (de) |
DE (1) | DE2218500B2 (de) |
GB (1) | GB1391166A (de) |
IT (1) | IT983740B (de) |
NL (1) | NL7304561A (de) |
SE (1) | SE383015B (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4098558A (en) * | 1976-08-23 | 1978-07-04 | Worthington Pump, Inc. | Preassembled unit or cartridge for multi-stage barrel type centrifugal pumps |
US5350276A (en) * | 1992-04-17 | 1994-09-27 | Gec Alsthom Electromecanique Sa | High pressure modules of drum rotor turbines with admission of steam having very high characteristics |
US6213710B1 (en) * | 1996-04-11 | 2001-04-10 | Siemens Aktiengesellschaft | Method and apparatus for thrust compensation on a turbomachine |
US20070297899A1 (en) * | 2006-06-22 | 2007-12-27 | Steven Sebastian Burdgick | Methods and systems for assembling a turbine |
US20080260529A1 (en) * | 2004-06-30 | 2008-10-23 | Kabushiki Kaiisha Toshiba | Turbine Nozzle Support Device and Steam Turbine |
EP2101044A1 (de) * | 2008-03-13 | 2009-09-16 | Siemens Aktiengesellschaft | Dampfturbine mit geteiltem Innengehäuse |
EP2101042A1 (de) * | 2008-03-10 | 2009-09-16 | Siemens Aktiengesellschaft | Dampfturbine mit Schrumpfringen |
US20140017076A1 (en) * | 2012-07-12 | 2014-01-16 | General Electric Company | Turbine Shell Support Arm |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918526B2 (ja) * | 1979-04-23 | 1984-04-27 | 三井造船株式会社 | 二重ケ−シングタ−ビン |
US7497658B2 (en) * | 2005-11-11 | 2009-03-03 | General Electric Company | Stacked reaction steam turbine stator assembly |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB290255A (en) * | 1927-05-11 | 1928-09-06 | Ljungstroms Angturbin Ab | Arrangements in axial flow steam turbines |
DE500077C (de) * | 1928-06-29 | 1930-06-18 | Escher Wyss Maschf Ag | Befestigung von Leitvorrichtungen an Dampf- und Gasturbinen, insbesondere solchen mit axial ungeteiltem Gehaeuse |
US2220616A (en) * | 1936-02-29 | 1940-11-05 | Roder Karl | Packing for steam turbines |
DE944313C (de) * | 1950-01-14 | 1956-07-19 | Siemens Ag | Axialturbine mit eingesetztem vielkraenzigem Leitschaufeltraeger |
GB764501A (en) * | 1953-07-10 | 1956-12-28 | Licentia Gmbh | A high-pressure steam or gas turbine |
CA571681A (en) * | 1959-03-03 | Brennecke Carl | Turbine construction | |
CA612835A (en) * | 1961-01-17 | G. And J. Weir Limited | Centrifugal pumps |
-
1972
- 1972-04-17 DE DE19722218500 patent/DE2218500B2/de active Granted
-
1973
- 1973-03-23 CH CH423573A patent/CH553915A/de not_active IP Right Cessation
- 1973-04-02 NL NL7304561A patent/NL7304561A/xx not_active Application Discontinuation
- 1973-04-10 IT IT22794/73A patent/IT983740B/it active
- 1973-04-13 US US00350706A patent/US3844675A/en not_active Expired - Lifetime
- 1973-04-13 SE SE7305275A patent/SE383015B/xx unknown
- 1973-04-16 JP JP4298873A patent/JPS5514890B2/ja not_active Expired
- 1973-04-17 GB GB1854273A patent/GB1391166A/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA571681A (en) * | 1959-03-03 | Brennecke Carl | Turbine construction | |
CA612835A (en) * | 1961-01-17 | G. And J. Weir Limited | Centrifugal pumps | |
GB290255A (en) * | 1927-05-11 | 1928-09-06 | Ljungstroms Angturbin Ab | Arrangements in axial flow steam turbines |
DE500077C (de) * | 1928-06-29 | 1930-06-18 | Escher Wyss Maschf Ag | Befestigung von Leitvorrichtungen an Dampf- und Gasturbinen, insbesondere solchen mit axial ungeteiltem Gehaeuse |
US2220616A (en) * | 1936-02-29 | 1940-11-05 | Roder Karl | Packing for steam turbines |
DE944313C (de) * | 1950-01-14 | 1956-07-19 | Siemens Ag | Axialturbine mit eingesetztem vielkraenzigem Leitschaufeltraeger |
GB764501A (en) * | 1953-07-10 | 1956-12-28 | Licentia Gmbh | A high-pressure steam or gas turbine |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4098558A (en) * | 1976-08-23 | 1978-07-04 | Worthington Pump, Inc. | Preassembled unit or cartridge for multi-stage barrel type centrifugal pumps |
US5350276A (en) * | 1992-04-17 | 1994-09-27 | Gec Alsthom Electromecanique Sa | High pressure modules of drum rotor turbines with admission of steam having very high characteristics |
US6213710B1 (en) * | 1996-04-11 | 2001-04-10 | Siemens Aktiengesellschaft | Method and apparatus for thrust compensation on a turbomachine |
US20080260529A1 (en) * | 2004-06-30 | 2008-10-23 | Kabushiki Kaiisha Toshiba | Turbine Nozzle Support Device and Steam Turbine |
US20070297899A1 (en) * | 2006-06-22 | 2007-12-27 | Steven Sebastian Burdgick | Methods and systems for assembling a turbine |
US7722314B2 (en) * | 2006-06-22 | 2010-05-25 | General Electric Company | Methods and systems for assembling a turbine |
EP2101042A1 (de) * | 2008-03-10 | 2009-09-16 | Siemens Aktiengesellschaft | Dampfturbine mit Schrumpfringen |
EP2101044A1 (de) * | 2008-03-13 | 2009-09-16 | Siemens Aktiengesellschaft | Dampfturbine mit geteiltem Innengehäuse |
WO2009112299A1 (de) * | 2008-03-13 | 2009-09-17 | Siemens Aktiengesellschaft | Dampfturbine mit geteiltem innengehäuse |
US20140017076A1 (en) * | 2012-07-12 | 2014-01-16 | General Electric Company | Turbine Shell Support Arm |
US9200539B2 (en) * | 2012-07-12 | 2015-12-01 | General Electric Company | Turbine shell support arm |
Also Published As
Publication number | Publication date |
---|---|
DE2218500A1 (de) | 1973-10-31 |
IT983740B (it) | 1974-11-11 |
DE2218500C3 (de) | 1978-02-02 |
SE383015B (sv) | 1976-02-23 |
JPS4915803A (de) | 1974-02-12 |
GB1391166A (en) | 1975-04-16 |
DE2218500B2 (de) | 1974-01-31 |
JPS5514890B2 (de) | 1980-04-19 |
NL7304561A (de) | 1973-10-19 |
CH553915A (de) | 1974-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2591399A (en) | Power plant frame structure having air-cooling means for turbine rotors and exhaust frame struts | |
US3647311A (en) | Turbine interstage seal assembly | |
US3841787A (en) | Axial flow turbine structure | |
US4687412A (en) | Impeller shroud | |
US3529904A (en) | Diaphragm seal structure | |
US3754833A (en) | Device for radially centering turbine housings | |
US3746463A (en) | Multi-casing turbine | |
US3844675A (en) | Plural shell axial turbine for operation with high pressure, high temperature steam | |
GB705150A (en) | Improvements in and relating to variable guide blade arrangements for high temperature turbines | |
GB1306575A (en) | Segmented seal assembly for axial flow turbines | |
US4557664A (en) | Control of steam turbine shaft thrust loads | |
US2496897A (en) | Bearing and seal assembly for turbines | |
GB1010300A (en) | Elastic-fluid turbines with multiple casings | |
JPH04269304A (ja) | 熱式タービン機械の支承装置 | |
JPH0457849B2 (de) | ||
US3937589A (en) | High pressure double flow turbine construction | |
JP5638696B2 (ja) | コンプレッサおよびこれに関連したガスタービン | |
US3408048A (en) | Diaphragm sealing structure | |
US2671406A (en) | Centrifugal pump | |
US2917275A (en) | Turbo machines having adjustable guide blades | |
GB867759A (en) | Stator vane assemblies for axial-flow compressors or turbines | |
US2655307A (en) | Gas turbine rotor arrangement | |
KR20000005303A (ko) | 터보 머신의 스러스트 보상 방법 및 장치_ | |
GB1123886A (en) | Double opposed axial-flow elastic fluid turbines | |
GB1018168A (en) | Improvements in stator assembly |