US3840284A - Portable telescope - Google Patents

Portable telescope Download PDF

Info

Publication number
US3840284A
US3840284A US00229341A US22934172A US3840284A US 3840284 A US3840284 A US 3840284A US 00229341 A US00229341 A US 00229341A US 22934172 A US22934172 A US 22934172A US 3840284 A US3840284 A US 3840284A
Authority
US
United States
Prior art keywords
telescope
polar
polar axis
axis shaft
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00229341A
Other languages
English (en)
Inventor
A Rand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00229341A priority Critical patent/US3840284A/en
Priority to GB909473A priority patent/GB1380373A/en
Priority to ES412049A priority patent/ES412049A1/es
Priority to DE2309487A priority patent/DE2309487C2/de
Priority to AU52612/73A priority patent/AU484536B2/en
Priority to CH275773A priority patent/CH563591A5/de
Priority to ZA731342A priority patent/ZA731342B/xx
Priority to IT20850/73A priority patent/IT979473B/it
Priority to BR731424A priority patent/BR7301424D0/pt
Priority to NL7302662A priority patent/NL7302662A/xx
Priority to AT171073A priority patent/AT346105B/de
Priority to JP48023028A priority patent/JPS48100148A/ja
Priority to FR7306790A priority patent/FR2173335B3/fr
Priority to IL41643A priority patent/IL41643A/xx
Priority to AR247074A priority patent/AR197981A1/es
Priority to US05/508,046 priority patent/US3942865A/en
Application granted granted Critical
Publication of US3840284A publication Critical patent/US3840284A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • G02B23/165Equatorial mounts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror

Definitions

  • a portable telescope assembly comprising a telescope mounted on portable support means.
  • the portable support means includes a polar axis shaft, means for aligning the polar axis shaft parallel to the polar axis of the earth, means for revolving the telescope about the polar axis shaft, and means for rotating the telescope about an axis normal to the polar axis shaft.
  • the polar axis shaft is balanced both torsionally and longitudinally with the telescope supported at one end and to one side of the polar axis shaft, with a fulcrum intermediate the ends of the polar axis shaft, and counterweights supported at the other end and on the other side of the polar axis shaft.
  • the portable support means includes an air suspension system so that the assembly can be transported between erection sites without substantial hazard of damage due to vibrations or shocks.
  • the larger telescopes have been designed for and erected at permanent latitudinal locations because of their large size and Weight and because of the difficulty of aligning and maintaining the polar axis of the telescope support assembly.
  • the large telescope installations usually include a massive amount of metal and concrete for the purpose of anchoring and 'supporting the telescope and its various associated components in a permanent location.
  • the present invention obviates the foregoing problems by providing a portable telescope assembly which can be transported to different locations on the earth to change the latitude location of the assembly, and the support system of the assembly can be expediently oriented to define a polar axis parallel to the earths polar axis and the telescope can revolve 360". about its polar axis so as to continuously track stars or other celestial objects without having to be repositioned.
  • the telescope of the assembly includes both a Cassegrain focus and a Newtonian focus, and the telescope housing is rotatable about its longitudinal sight axis so that the Newtonian focus can be oriented at a convenient position for the astronomer or his photographic equipment, etc.
  • the assembly is balanced so that the telescope is maintained in balance when in operation and when being transported between its sites of erection.
  • the polar axis shaft of the support system includes a sighting system wherein Polaris, the North Star, and its companion star can be viewed through the polar axis shaft.
  • FIG. 1 is a side elevational view of the telescope assembly, with parts shown in section for clarity.
  • FIG. 2 is an end view of the telescope assembly, with parts broken away.
  • FIG. 3 is a top view of the telescope assembly.
  • FIG. 4 is a detail illustration of the latitude adjustment section of the support system.
  • FIG. 5 is a side elevational view of a modified form of the invention.
  • FIG. 6 is a partial illustration of the modified form of the invention, showing the Polaris sighting system of DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 shows portable. telescope assembly 10 which generally includes telescope 11 and portable support system 12.
  • Portable support system 12 includes support frame 13 having a pair of spaced-apart parallel side support beams 15 and 16 (FIG. 3), and a plurality of connecting cross beams, such as end crossing beam I7 and middle crossing beam 18.
  • Support frame 13' is portably supported by support wheels 19, and when the telescope assembly is to be erected for sighting purposes, support feet 21 are lowered to engage the ground and support the support frame 13.
  • Support feet 21 comprise three support feet assemblies 21a, 21b and 210 (FIG. 3), and each of the support feet comprises a foot 22 for resting on the ground surface, and externally threaded leg 23 pivotally connected to its foot 22,
  • each lock ring 26 is rotated about its externally threaded leg 23 away from sleeve 24, and each elevating'ring 25 is rotated in the same direction so as to move up the leg, thus'causing its foot 22 to move in a downward direction away from the support frame 13.
  • each support foot When'the three support feet properly support the support frame, and when the support frame is level, the upper lock ring 26 of each support foot is threaded back in the opposite direction so as to engage and wedge against the upper end ofits sleeve 24, thus locking the support feet and the support frame will be held in a level attitude.
  • the angle of each leg 23 is such that the axes of all the legs come to an apex position above the center of gravity of the telescope assembly.
  • the wheels 19 are each connected at the ends of axles 28 and 29 which extend across and are spaced below support frame 13. As is illustrated in FIG. 1, axles 28 and 29 are connected at their ends to the horizontally extending legs of L-shaped pivot plates. such as pivot plates 30 and 31 in FIG. I. There is a pivot plate for each wheel 19, and each pivot plate is freely rotatable about its pivot pin. such as pivot pins 32 and 33 of FIG. 1. Compression bags such as compression bag 34 of FIG. 1 are positioned between the upwardly extending legs of the L-shaped pivot plates on each side of support frame 13. The compression bags are fabricated from a resilient material and filled with a fluid. such as air or water.
  • compression bags 34 function as a compressible fluid supporting means to support support frame 13.
  • middle longitudinal beams 35 extend between the middle crossing beams 18, and together with the middle crossing beams form a center framework 36.
  • a lower annular support ring 38 is supported by center framework 36 and is located about the vertical centerline of support frame 13.
  • Upper support ring 39 is positioned above lower support ring 38, and a plurality of compression bags 40 are interposed between support rings 38 and 39.
  • Compression bags 40 are fabricated from a resilient material and are filled with fluid, such as air or water, and the compression bags can be of doughnut or annular configuration, if desired.
  • a plurality of coil compression springs 41 are also interposed between the support rings 38 and 39, and rigidifying lock bolts extend through bothsupport rings.
  • Telescoping pier assembly 45 includes lower tubular pier member 46 which is rigidly connected to upper support ring 39, and upper inner tubular pier member 47. Upper pier member 47 is supported by lower pier member 46. Detachable jack is insertable inside lower pier member 46,-and its rod 52 is engageable with the upper horizontal platform 54 of upper pier member 47 so as to raise and lower the upper pier member 47 with respect to its lower pier member 46.
  • Telescope 11 comprises a housing 58 connected to declination axis shaft 59, the declination'axis shaft is housed in declination axis shaft case 60, and declination axis shaft case 60 is rigidly connected to one end of polar axis shaft 61.
  • Polar axis shaft 61 is supported in polar axis shaft case 62, and clevis assembly 64 is connected to polar axis shaft case 62.
  • Clevis assembly 64 composes a part of latitude adjustment section 68 and comprises a pair of spaced-apart flat plates 66 and 67 which are rigidly connected at their upper ends to polar axis shaft case and which protrude downwardly from polar axis shaft case toward telescoping assembly 45.
  • Latitude adjustment section 68 comprises lower sup port platform 69 and upper support platform 70.
  • Lower support platform 69 rests on upper platform 54 of telescoping pier assembly 45 and is rotatable thereon by means of bearing assembly 71.
  • Lock nut assembly 72 includes an externally threaded screw 73 extending upwardly from upper platform 54 of pier assembly 45 and lock nut 74 positioned on the top surface of lower support platform 69 of latitude adjustment section 68, so that upon tightening lock nut 74 about its screw 73, a frictional lock is formed between lower platform 69 of latitude adjustment section 68 and upper platform 54 of pier assembly 45.
  • lower platform 69 The peripheral surface of lower platform 69 is circular and gear teeth protrude therefrom so that the lower platform functions as a worm gear for driving motor 50 and worm 49.
  • Motor 50 is supported by upper pier member 47 and the rotation of its worm against worm gear or lower platform 69 provides a power assist to the rotation of the telescope about the vertical axis.
  • Upper support platform of latitude adjustment section 68 is hingedly connected to lower platform 69 by means of hinge assembly 75 which composes a part of fine adjustment assembly 78 and comprises a hinge pin 76 inserted through the openings in the mating hinge elements connected to the respective platforms.
  • Hinge assembly 75 is placed to the side of pier assembly 45.
  • fine adjustment assembly 78 includes externally threaded screw 79 connected at its upper end to upper support platform 70 and extending downwardly through lower platform 69.
  • Internally threaded elevating ring 80 surrounds externally threaded screw 79 and through its bearing 81 bears against lower support platform 69. Elevating ring 80 is also externally port platform 70 will move downwardly about hinge pin 76.
  • a pair of upstanding platform plates 84 and 85 extend upwardly from upper support platform 70 and are spaced apart so as to be received between plates 66 and 67 of clevis assembly 64.
  • Pivot pin 86 extends through aligned openings defined in plates 66, 67, 84 and 85, so
  • clevis assembly 64 is freely rotatable with respect to the upstanding plates 84 and 85.
  • At least one of the plates 66 and 67 of clevis assembly 64 defines a plurality of spaced-apart apertures oriented about pivot pin 86.
  • aperture 89a will be at the 1 12 /2 position
  • aperture 89b will be m the 122 /2 position
  • aperture 890 will be at the 132 /2 position, etc.
  • aperture 90a will be at the 205 position
  • aperture 90 b will be at the 215 position
  • aperture 900 will be at the 225 position, etc.
  • aperture 91a will be at the 297 W position
  • aperture 91b will be at the 307 /2 position
  • apertures '93, 94 and 95 are located at the 90, 180 and 270 positions.
  • apertures 96, 97, 98, and 99 are formed in at least one of the upstanding plates 84 and 85 of the upper support platform 70.
  • Apertures 96-99 are formed at the 0, 90, 180 and 270 positions about pivot pin 86.
  • the arrangement of the apertures of the plates of clevis assembly 64 and the plates of latitude adjustment section 68 are such that'when a positioning pin is inserted through aperture 96 of the inner plate 84 of upper support platform 70 and one of the apertures of the group 88, clevis assembly 64 will be tilted at an angle of or a multiple of 10 from the vertical. If the pin is inserted through aperture 97 and one of the apertures in the group 89, the clevis assembly 64 will be tilted 22 /2 or 22 /2 plus a multiple of 10 from the.
  • the clevis assembly 64 will be tilted 25 or 25 plus a. multiple of 10 from the vertical. If a positioning pin is inserted-through the aperture 99 and one of the apertures from the group 91, the clevis assembly 64 will be tilted 27 /z or 27 /2 plus a multiple of 10 from the vertical.
  • the mating plates of the clevis assembly and the latitude adjustment section form a coarse adjustment assembly for tilting clevis assembly 64 at predetermined angles, at intervals of 2 /2 about the center of pivot pin 86.
  • Polar axis shaft case 62 is slidable longitudinally through clevis assembly 64, while polar axis shaft 61 is rotatably received in polar axis shaft case 62.
  • Polar axis shaft ram 100 has its housing connected to clevis assembly 64, and its ramrod 101 is connected to a bracket 102. Bracket 102' is connected to polar axis shaft case 62 and polar axis shaft ram 100 thus functions as a moving means for moving polar axis shaft case 62 longitudinally through clevis assembly 64. If desired, additional lengths'of ramrod can be fastened to the ramrod 101'so that the polar axis shaft case 62 can be extended a further distance through the clevis assembly 64.
  • Polar axis shaft 61 is rotatable about its own longitudinal axis within shaft case 62.
  • Worm gear 104 is rigidly connected to the polar axis shaft 61, and motor driven worm 105 engages the worm gear 104 so that the polar axis shaft is provided with a power assist for its rotation.
  • Declination axis shaft case 60 is rigidly connected to polar axis shaft 61 and is therefore rotatable with the polar axis shaft with respect to the polar axis shaft case 62.
  • Declination axis shaft 59 is rotatably received within declination axis shaft case 60, and worm gear 106 and motor driven worm assembly 107 function to provide a power assist to the rotational movement of the declination axis shaft 59.
  • the telescope mounted on the portable support means can be constructed in accordance with various design arrangements, including those with the image of the object being projected parallel to the longitudinalsight axis of the telescope or through a side opening in housing 58 which rests in annular telescope seat assembly 109 at one end of declination axis shaft 59.
  • the bearing assembly within annular seat assembly 109 allows housing 58 to rotate about itslongitudinal sight axis 110.
  • Housing 58 is open at one end 111 and apertured primary mirror 112 is mounted in the other end 114.
  • Secondary mirror assembly 115 is located near end 111 of housing 58.
  • Secondary mirror assembly 115 includes two mirrors, the first mirror being a hyperbolic mirror for receiving the image from primary mirror'112 and directing it back through the center opening 116 of primary mirror 112 and'the opening 117 in the end 1140f housing 58 and focusing the image beyond the housing, thus creating a Cassegrain focus.
  • 1-10using58 also defines side opening 118, and mirror assembly 115 is adjustable to remove the hyperbolic mirror from its reflecting position and support a second mirror of flat elliptical configuration into its reflecting position so that the image from primary mirror 112 can be directed through side opening 118 to focus outside the side of the housing, thus providing a Newtonian focus'..Of a '1 course, various-optical attachments can be connected to housing 58 to receive the images from the telescope.
  • weights 119 are attached to the end of declination axis shaft 59 at a distance from the polar axis shaft so as to balance the telescope on the polar axis shaft.
  • the weights 119 can be threaded along the external threads at the ends of declination axis shaft 59 so as to move closer or further away from polar axis shaft 61, or one or more'of the weights can be taken away from or added to the weights 119.
  • weights 119 and the telescope are located to one side of clevis assembly 64, the telescope tends to tip or pivot downwardly about the clevis assembly. Weights 120 are therefore added to the end of added orreducednet weight of the telescope or its.
  • the declination axis shaft 134 is mounted on the surface of polar axis tube 130 by means of socket 135 surrounding the axis shaft 134.
  • Flange 136 at the end of axis shaft 134 adjacent polar axis tube 130 is located behind socket 135, and housing 138 and its hold-down rim 139 function to hold socket 135 in the position illustrated.
  • Declination axis shaft 134 is therefore free to rotate about an axis normal to the longitudinal axis of polar axis tube 130.
  • D'rive mechanism 137 which comprises a motor, worm and worm gear, is attached to and drives declination axis shaft 134.
  • declination axis shaft 134 is connected to a carriage assembly which includes a cradle 169 and a crescent-shaped saddle 170.
  • the telescope housing 174 is held by the saddle.
  • a slot 171 is formed in the bottom surface of said cradle 169 and extends along the length of said cradle.
  • a rectilinear key 172 protruding from the saddle 170 fits into and is movable along the length of the slot, and travel screw 173 is threaded through an internally threaded bore through the key.
  • travel screw 173 rotates, the saddle 170 moves parallel to the optical axis of the telescope.
  • the telescope-saddle movement construction causes the telescope housing 174 to be nonrotatably supported in its saddle
  • the forward portion 175 of housing 174 is constructed so as-to be rotatable with respect to the rest of the housing and the opening (not shown) for the Newtonian focus can be rotated to a convenient position.
  • Worm gear 140 is connected to polar axis tube 130 by one or more keys 141 placed in aligned grooves of the polar axis tube and the inner rim of the worm gear 140 so that worm gear 140 is non-rotatably held to polar axis tube. 130 but is slidable along the length of the polar axis tube.
  • Worm 142 which is driven by motor 143 functions to rotate worm gear 140 and polar axis tube 130 about the longitudinal axis of the polar axis tube and with respect to clevis assembly 145.
  • Motor 143 is mounted upon the clevis assembly 145, and polar axis tube 130 is free to rotate within the clevis assembly 145.
  • Counterweight assembly 147 is connected to polar axis tube 130 and can be moved along the length of a polar axis tube by means of a travel screw arrangement 149. While the counterweight assembly 147 is movable along the length of polar axis tube 130, mating slots in the supporting sleeve 148 of the counterweight .assembly and the external surface of the polar axis tube together with a key (not shown) inserted in the mating slots'prevent the counterweight assembly 147 from rotating with respect to the polar axis I tube.
  • the polar telescope assembly 151 is embodied as an I integral part of the polar axis tube 130.
  • Inner tube 150 which is conical shaped is located inside the polar axis tube and functions as the telescope housing.
  • a first large lens 152 is placed at the opening 154 of the inner tube whichis adjacent the decliantion axis shaft 134, and the second small corrector lens 153 is placed at the remote opening.
  • Inner tube 150 is supported at its end adjacent the clevis assembly by polar axis tube 130, and its remote end, which is smaller. is supported by bushings 154; thus, when polar axis tube bends or twists, inner tube will not be affected and will tend to remain rectilinear.
  • a flat lens 155 is positioned closely adjacent lens 153, and as illustrated in FIG. 7A, the flat lens 155 has a pair of circular scribe lines 156 and 157 and a compass rose imposed thereon.
  • Microscope assembly 158 is located behind flat lens 155 and has a measuring scale lens (not shown) which provides an image as illustrated in FIG. 7B.
  • Lens 153 and flat lens 155 are maintained in the end of the inner tube 150 and microscope support cylinder 160 mates with theend of inner tube 150 and holds the microscope assembly in its proper position.
  • Microscope support cylinder is rotatable with respect to inner tube 150 so that the microscope 161 can be revolved about flat lens 155 so as to determine right ascention of Polaris and its companion star.
  • Travel screw 162 provides for movement of the microscope 161 normal to the polar telescope.
  • Flat lens 155 is illuminated with an edge light 159 so that the scribe lines can be observed.
  • Polar telescope 151 is used to align the polar axis tube 130 with the polar axis of the earth and when the polar axis tube is aligned with the earth, the polar telescope functions as a sidereal clock. and a means for determining the right ascension of P0- laris and its companion star.
  • an alternate arrangement can be used to move the counterweight assembly 147 along the longitudinal axis of the polar axis shaft.
  • One of the longitudinal grooves 131 of the polar axis tube 130 has a travel screw 133 located therein so that the travel screw is recessed from the outside periphery of the polar axis tube 130.
  • the inwardly projecting key of the supporting sleeve 148 of the counterweight assembly 147 defines an internally threaded bore through which one end of the externally threaded travel screw 133 extends.
  • the opposite end of the travel screw 133 which has external threads of reverse pitch extends through an internally threaded bore of the declination axis shaft housing 138.
  • a central unceivedin a nonthreaded circular bore of sleeve or socket 182.
  • Sleeve 182 is confined in annular groove 184 which is defined on the internal surface of clevis assembly 145 and extends around polar axis tube 130.
  • the arrangement of the annular groove 184 is such that sleeve 182 is free to revolve about the longitudinal axis of the polar axis tube upon the rotation of polar axis tube 130 with respect to clevis assembly 145 in the confines of annular groove 184.
  • Travel screw 133 can be rotated by-any conventional means, as by crank 185, and upon its rotation, the supporting sleeve 148 of the counterweight assembly will be moved -in"one direction toward or away from the clevis assembly while the polar axis tube 130 will be moved in the opposite direction along its length through the clevis assembly.
  • the counterweight assembly will be moved in the opposite or offsetting direction.
  • the threads at one end of the travel screw are right-handed threads and at the other end are left-handed threads to cause movements in opposite directions by the counterweight assembly and polar axis tube, and the threads are also of different axial pitch so that the counterweight assembly 147 will move through a shorter distance than the polar axis tube 130.
  • This arrangement is desirable because of the difference in the weights and lever arm distances from the fulcrum ofthe clevis of the telescope housing and the counterweight assembly.
  • a cap 188 is provided to close the open end of the telescope housing.
  • a source of inert gas 189 such as nitrogen, is connectable to cap 188 and arranged to inject gas through an opening in the cap into the confines of the housing.
  • the air in the confines of the housing will tend to be displaced from the housing through the opening in the opposite end of the housing
  • the opening at the opposite end of the housing can-be closed to substantially seal the inert gas within the housing.
  • the absence of oxygen in the gas within the confines of the housing substantially reduced deterioration of the mirror surfaces and therefore significantly reduces the frequency of restoring the mirror surfaces.
  • the primary mirror of the disclosed embodiment of the telescope is 24 inches in diameter and the diameters of the primary mirror of other embodiments of the invention exceed 18 inches in diameter.
  • the mirror is therefore heavy and cumbersome and subject to damage by vibration or radical temperature changes, etc.
  • the reduction of the frequency of restoration of the mirror surfaces also reduces the exposure of the mirror to accidental damagedue to the extraction of the mirror from the telescope housing and transportation to and from the location where the mirror surfaces are to be restored.
  • the housing of the telescope preferably will be fabricated from nonmetallic material, such as molded fiberglass and resin, and the internal metal componentswithin the housing will be coated with a similar substance, such as chopped fiberglass mixed with resinous binder.
  • the material is selected for its insulating qualities so as to reduce the heat transfer due to conduction and radiation within the telescope. housing, thereby maintaining the image integrity.
  • Telescoping pier assembly 45 is retracted so that the are adjusted so'that they properly balance telescope 11 with respect to clevis assembly 64, and all movable elebetween the L-shaped pivot plates 30, and the compression bags-40 between the lower and upper support rings 38 and 39 function to isolate the shocks and vibrationsreceived in the lower portion of the telescope assembly.
  • support feet 21a, 21b and 21c are lowered by loosening lock rings 26 and rotating elevating rings 25 to urge the support feet downwardly against the ground and lift the support frame in an upward direction.
  • the support frame is leveled by finally adjusting the elevating rings 25 of the three support feet 21a, 21b and 21c,
  • Hydraulic jack 51 is positioned internally of the telescoping pier assembly 45, and whenoperated the jack shaft 52 extends upwardly through the telescoping pier assembly to lift the upper inner tubular pier member 47 with respect to the lower tubular pier member 46.
  • the supporting screw 55 When properly elevated, the supporting screw 55 can be inserted through the lower tubular pier member 47 to support the upper tubular pier member 46.
  • the latitude at which the telescope assembly is erected is known and the operator can choose the setting of clevis assembly 64 which is closest to the latitude of the particular site. For instance, if the latitude is 4l /2 North, the clevis assembly 64 is rotated until aperture 89c is aligned with aperture 97, which sets the polar axis shaft 61 at an angle with respect to the vertical which is 42 /2.
  • Motor driven worm gear 82 of fine adjustment assembly 78 is then operated to pivot 'upper support platform downwardly with respect to lower support platform 69 about hinge pin 76 until the setting of the polar axis shaft has been altered from 42 /2" to 41 /2".
  • Lower support platform 69 is then rotated by means of its motor driven worm 49 engaging and rotating lower support platform 69 which functions as a worm gear, until the polar axis shaft is trained around and is approximately parallel to the earths polar axis.
  • the fine setting of the polar axis shaft can be accomplished by sighting through the polar telescope 151 or hollow polar axis shaft telescope of that embodiment illustrated in FIGS. 5 and 6 or with an attached telescope (not shown) in the embodiment illustrated in FIGS.
  • the focal length of the polar telescope together with the radius of inner circle 157 of flat lens 155 is such that the radius of the circle 157 appears to be equal to the declination of Polaris 190 from true North at the focal length of the telescope.
  • Polaris 190 will appear at and appear to move along the inner scribe line 157 and the compass rose will provide a sidereal clock indication.
  • the companion star 191 is at a position angle of 217 from true North through Polaris.
  • the declination of the companion star is matched with the radius of the outer scribe circle 156 and the focal length of the polar telescope so that when the polar telescope is aimed at true North, the companion star 191 will be merged with and appear to move along the outer scribe line 156.
  • the polar axis shaft 130 is aligned with true North.
  • the current declination of Polaris can be determined, and since the apparent declination of inner scribe line 157 is known, the measuring scale of the microscope can be used to offset Polaris from the scribe line 157 the proper distance to align the polar axis shaft with true North.
  • the outer circular scribe line 156 will be at an apparent declination slightly greater than the greatest declination of the companion star 191.
  • the proper positioning of Polaris between the scribe lines 157 and 156 can also be determined by the distance of the companion star 191 from its scribe line 156.
  • a parallel line scale is illustrated in FIG. 7B as being the scale utilized for the foregoing purpose, it should be obvious that various other scale images can be imposed on the microscope.
  • the telescope 11 can be rotated or revolved about the polar axis during its. sighting and tracking moves.
  • - telescope ll'can rotate with declination axis shaft 59about an axis which intersects and is perpendicular with respect to thepolar axis of the telescope assembly by the operation of motor driven worm assembly 107 and its worm gear and the telescope can revolve about the polar axis by the operation of motor driven worm and its engagement with its worm gear 104 on the polar axis shaft.
  • the motors of the telescope assembly are variable speed motors.
  • the telescope will be counterbalanced about clevis assembly 64 by weight assembly 120.
  • the weight assembly 120 can be moved along the polar axis shaft 61 as necessary to counterbalance the added or reduced weight from the telescope 11.
  • additional weight can be added to the weight assembly 120, if desired.
  • housing 58 can then be rotated about its sight axis and the position of the Newtonian focus can be adjusted without interfering with the alignment of the Cassegrain focus or otherwise disturbing the position of the assembly.
  • a portable telescope assembly comprising a portable support means, a polar axis shaft mounted on said for indicating the apparent declination of the polar star from thepolar axis of the earth.
  • said means imposed on the lens of said polar telescope comprises a pair of concentric circular indicating means with the radius of the inner circular indicating means corresponding with the declination of a polar star from the polar axis of the earth, and the radius of the outer circular indicating means corresponding with the declination of a companion star from the polar axis of the earth.
  • said polar telescope comprises a conical casing fastened at its larger end to said polar axis shaft and supported by bushings at its smaller end from said polar axis shaft. whereby the shape of said conical casingwill be substantially free from rotational and longitudinal distortions from said polar axis shaft.
  • a portable telescope assembly comprising portable support means, a polar axis shaft mounted on said portable support means, means for rotating said polar axis shaft with respect to said portable support means about a vertical axis and for tilting said polar axis shaft intermediate its ends about a horizontal axis to orient the polar axis shaft parallel to the axis of rotation of the earth, a telescope mounted on one end portion of said polar axis shaft, means for revolving said telescope about said polar axis shaft and for rotating said telescope about an axis normal to said polar axis shaft.
  • a counterweight assembly mounted on said polar axis shaft on the side of said polar axis shaft opposite to said telescope and on an end portion of said polar axis shaft on the side of said horizontal axis opposite to said telescope to balance said telescope with respect to the longitudinal axis of said polar axis shaft and with respect to said horizontal axis and a polar axis telescope mounted internally of said polar axis shaft and aligned with the longitudinal axis of said polar axis shaft for aligning the polar axis shaft with the axis of rotation of the earth.
  • said means for tilting said polar axis shaft intermediate its ends comprises a horizontally extending support axle supported by said support means, said telescope being pivotally mounted on said support axle and arranged to pivot in a vertical plane, means for locking said telescope with respect to said support axle at predetermined angular elevations about said support axle, and means for revolving said support axle about an axis displaced from and parallel to said support axle to finely adjust the elevation of said telescope about 1 said support axle.
  • the portable telescope assemblyof claim 14 and support of the legs extend generally over the center of gravity of the telescope assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)
  • Basic Packing Technique (AREA)
US00229341A 1972-02-25 1972-02-25 Portable telescope Expired - Lifetime US3840284A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US00229341A US3840284A (en) 1972-02-25 1972-02-25 Portable telescope
GB909473A GB1380373A (en) 1972-02-25 1973-02-23 Portable telescope
ES412049A ES412049A1 (es) 1972-02-25 1973-02-24 Perfeccionamientos en conjuntos de telescopios portatiles.
FR7306790A FR2173335B3 (enrdf_load_stackoverflow) 1972-02-25 1973-02-26
CH275773A CH563591A5 (enrdf_load_stackoverflow) 1972-02-25 1973-02-26
ZA731342A ZA731342B (en) 1972-02-25 1973-02-26 Portable telescope
IT20850/73A IT979473B (it) 1972-02-25 1973-02-26 Telescopio portatile
BR731424A BR7301424D0 (pt) 1972-02-25 1973-02-26 Conjunto de telescopio portatil
DE2309487A DE2309487C2 (de) 1972-02-25 1973-02-26 Transportables Teleskop
AT171073A AT346105B (de) 1972-02-25 1973-02-26 Tragbare teleskopanordnung
JP48023028A JPS48100148A (enrdf_load_stackoverflow) 1972-02-25 1973-02-26
AU52612/73A AU484536B2 (en) 1972-02-25 1973-02-26 Portable telescope
NL7302662A NL7302662A (enrdf_load_stackoverflow) 1972-02-25 1973-02-26
IL41643A IL41643A (en) 1972-02-25 1973-02-28 Portable telescope
AR247074A AR197981A1 (es) 1972-02-25 1973-03-15 Un telescopio portatil
US05/508,046 US3942865A (en) 1972-02-25 1974-09-23 Portable telescope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00229341A US3840284A (en) 1972-02-25 1972-02-25 Portable telescope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/508,046 Continuation US3942865A (en) 1972-02-25 1974-09-23 Portable telescope

Publications (1)

Publication Number Publication Date
US3840284A true US3840284A (en) 1974-10-08

Family

ID=22860788

Family Applications (1)

Application Number Title Priority Date Filing Date
US00229341A Expired - Lifetime US3840284A (en) 1972-02-25 1972-02-25 Portable telescope

Country Status (14)

Country Link
US (1) US3840284A (enrdf_load_stackoverflow)
JP (1) JPS48100148A (enrdf_load_stackoverflow)
AR (1) AR197981A1 (enrdf_load_stackoverflow)
AT (1) AT346105B (enrdf_load_stackoverflow)
BR (1) BR7301424D0 (enrdf_load_stackoverflow)
CH (1) CH563591A5 (enrdf_load_stackoverflow)
DE (1) DE2309487C2 (enrdf_load_stackoverflow)
ES (1) ES412049A1 (enrdf_load_stackoverflow)
FR (1) FR2173335B3 (enrdf_load_stackoverflow)
GB (1) GB1380373A (enrdf_load_stackoverflow)
IL (1) IL41643A (enrdf_load_stackoverflow)
IT (1) IT979473B (enrdf_load_stackoverflow)
NL (1) NL7302662A (enrdf_load_stackoverflow)
ZA (1) ZA731342B (enrdf_load_stackoverflow)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260253A (en) * 1977-09-27 1981-04-07 Tuthill Roger W Precision celestial pole locator
US4436421A (en) 1980-09-03 1984-03-13 Asahi Kogaku Kogyo Kabushiki Kaisha Polaris axis finder
US4865424A (en) * 1983-06-30 1989-09-12 Atlantic Richfield Company Optical device with adjusting means
US5437427A (en) * 1994-01-25 1995-08-01 Johnson; Peter D. Binocular mounting assembly for astronomical observations
US5537250A (en) * 1992-12-10 1996-07-16 Masunaga; Shuichi Equatorial mount for a binocular reflecting telescope
US5956177A (en) * 1996-04-11 1999-09-21 Asahi Kogaku Kogyo Kabushiki Kaisha Converter for polar-axis telescope
US20030116684A1 (en) * 2001-05-01 2003-06-26 Vito Rotondi Telescope support stand system
USD506766S1 (en) * 2004-07-27 2005-06-28 Eastcolight (Hong Kong) Limited Telescope
FR2883076A1 (fr) * 2005-03-14 2006-09-15 Antoine Sarayotis Telescope astronomique convertible
US20090025530A1 (en) * 2007-07-27 2009-01-29 Dover Kent B Gyro-JIG apparatus for repairing a stringed musical instrument
US20120019642A1 (en) * 2010-07-19 2012-01-26 Hillis W Daniel Portable Telescope
US20150362694A1 (en) * 2013-02-01 2015-12-17 Newport Corporation Optical post mount system and method of use
CN105547240A (zh) * 2016-02-06 2016-05-04 南通斯密特森光电科技有限公司 一种组合式赤道仪之维度调节机构
US20220317435A1 (en) * 2021-04-02 2022-10-06 Nantong Schmidt Opto-Electrical Technology Co. Ltd. Elastic worm gear assembly and use thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612679U (ja) * 1984-06-08 1986-01-09 有限会社 荒川電機 赤道儀
JPS614972U (ja) * 1984-06-15 1986-01-13 カ−トン光学株式会社 赤道儀架台
JPS614971U (ja) * 1984-06-15 1986-01-13 カ−トン光学株式会社 赤道儀架台
JPS614973U (ja) * 1984-06-15 1986-01-13 カ−トン光学株式会社 赤道儀架台
JPS6124771U (ja) * 1984-07-19 1986-02-14 有限会社 荒川電機 赤道儀
JPS634508U (enrdf_load_stackoverflow) * 1986-06-27 1988-01-13
JPS63174010A (ja) * 1987-01-14 1988-07-18 Agency Of Ind Science & Technol レ−ザビ−ムチヨツパ
DE202010018132U1 (de) * 2010-12-03 2014-04-01 Rolf Stadler Anordnung für den Gewichtsausgleich eines Ständers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725783A (en) * 1951-12-08 1955-12-06 Pye Ltd Supports for cameras, particularly television cameras

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260253A (en) * 1977-09-27 1981-04-07 Tuthill Roger W Precision celestial pole locator
US4436421A (en) 1980-09-03 1984-03-13 Asahi Kogaku Kogyo Kabushiki Kaisha Polaris axis finder
US4865424A (en) * 1983-06-30 1989-09-12 Atlantic Richfield Company Optical device with adjusting means
US5537250A (en) * 1992-12-10 1996-07-16 Masunaga; Shuichi Equatorial mount for a binocular reflecting telescope
US5437427A (en) * 1994-01-25 1995-08-01 Johnson; Peter D. Binocular mounting assembly for astronomical observations
US5956177A (en) * 1996-04-11 1999-09-21 Asahi Kogaku Kogyo Kabushiki Kaisha Converter for polar-axis telescope
US20030116684A1 (en) * 2001-05-01 2003-06-26 Vito Rotondi Telescope support stand system
US7048238B2 (en) * 2001-05-01 2006-05-23 Vito Rotondi Telescope support stand system
USD506766S1 (en) * 2004-07-27 2005-06-28 Eastcolight (Hong Kong) Limited Telescope
FR2883076A1 (fr) * 2005-03-14 2006-09-15 Antoine Sarayotis Telescope astronomique convertible
US20090025530A1 (en) * 2007-07-27 2009-01-29 Dover Kent B Gyro-JIG apparatus for repairing a stringed musical instrument
US7605318B2 (en) * 2007-07-27 2009-10-20 Dover Kent B Gyro-JIG apparatus for repairing a stringed musical instrument
US20120019642A1 (en) * 2010-07-19 2012-01-26 Hillis W Daniel Portable Telescope
US9223126B2 (en) * 2010-07-19 2015-12-29 Applied Invention, Llc Portable telescope
US10078208B2 (en) 2010-07-19 2018-09-18 Applied Invention, Llc Portable telescope
US20150362694A1 (en) * 2013-02-01 2015-12-17 Newport Corporation Optical post mount system and method of use
US9678300B2 (en) * 2013-02-01 2017-06-13 Newport Corporation Optical post mount system and method of use
US10241290B2 (en) 2013-02-01 2019-03-26 Newport Corporation Optical post mount system and method of use
CN105547240A (zh) * 2016-02-06 2016-05-04 南通斯密特森光电科技有限公司 一种组合式赤道仪之维度调节机构
US20220317435A1 (en) * 2021-04-02 2022-10-06 Nantong Schmidt Opto-Electrical Technology Co. Ltd. Elastic worm gear assembly and use thereof
US11966039B2 (en) * 2021-04-02 2024-04-23 Nantong Schmidt Opto-Electrical Technology Co. Ltd. Elastic worm gear assembly and use thereof

Also Published As

Publication number Publication date
DE2309487C2 (de) 1983-01-20
FR2173335B3 (enrdf_load_stackoverflow) 1976-03-05
AR197981A1 (es) 1974-05-24
FR2173335A1 (enrdf_load_stackoverflow) 1973-10-05
CH563591A5 (enrdf_load_stackoverflow) 1975-06-30
JPS48100148A (enrdf_load_stackoverflow) 1973-12-18
ATA171073A (de) 1978-02-15
ES412049A1 (es) 1976-05-16
BR7301424D0 (pt) 1974-05-16
GB1380373A (en) 1975-01-15
IT979473B (it) 1974-09-30
IL41643A (en) 1975-12-31
IL41643A0 (en) 1973-04-30
NL7302662A (enrdf_load_stackoverflow) 1973-08-28
AT346105B (de) 1978-10-25
AU5261273A (en) 1974-08-29
DE2309487A1 (de) 1973-09-13
ZA731342B (en) 1974-03-27

Similar Documents

Publication Publication Date Title
US3942865A (en) Portable telescope
US3840284A (en) Portable telescope
US20100085638A1 (en) Equatorial Support for Telescope
US4585318A (en) Tracking device
US3751134A (en) Tracking mounts for celestial ray detecting devices
GB1194535A (en) Improvements relating to Satellite Tracking Arrangements
US4053239A (en) Axis definition apparatus
RU113878U1 (ru) Полноповоротная приемная зеркальная антенна
US3064547A (en) Tri-axial camera mount
JPS5926929B2 (ja) 望遠鏡用の取付け台
US4147414A (en) Sunlight concentrator for energy conversion
US3893746A (en) Tracking mounts for celestial ray detecting devices
KR102359546B1 (ko) 세 가지 형태로 추적방식을 변경할 수 있는 추적장치
US2693032A (en) Telescope mounting
US3090124A (en) Heliodon
GB2115148A (en) Sunshine simulator
US53115A (en) Improvement in altiscopes
US3006244A (en) Optical telescope mount
US2937560A (en) Optical square
RU2052895C1 (ru) Опорно-поворотное устройство
Hale A vertical coelostat telescope
CN215729082U (zh) 一种用于光学仪器的调节定位机构
Parsons VI. On some recent improvements made the mountings of the telescopes at Birr Castle
Fourakis et al. Low-profile heliostat design for solar central receiver systems
SU1365017A1 (ru) Устройство установки телескопов в азимутальном направлении