US3832179A - Inhibition of fog in photographic color development - Google Patents
Inhibition of fog in photographic color development Download PDFInfo
- Publication number
- US3832179A US3832179A US00326353A US32635373A US3832179A US 3832179 A US3832179 A US 3832179A US 00326353 A US00326353 A US 00326353A US 32635373 A US32635373 A US 32635373A US 3832179 A US3832179 A US 3832179A
- Authority
- US
- United States
- Prior art keywords
- color
- fog
- photographic
- acid
- developer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011161 development Methods 0.000 title abstract description 24
- 230000005764 inhibitory process Effects 0.000 title description 4
- -1 NITRO-SUBSTITUTED BENZOIC ACID Chemical class 0.000 abstract description 27
- VYWYYJYRVSBHJQ-UHFFFAOYSA-N 3,5-dinitrobenzoic acid Chemical compound OC(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 VYWYYJYRVSBHJQ-UHFFFAOYSA-N 0.000 abstract description 20
- 238000012545 processing Methods 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 239000000975 dye Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 239000000839 emulsion Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 13
- 229910052709 silver Inorganic materials 0.000 description 12
- 239000004332 silver Substances 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000004989 p-phenylenediamines Chemical class 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- KAQBNBSMMVTKRN-UHFFFAOYSA-N 2,4,6-trinitrobenzoic acid Chemical compound OC(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O KAQBNBSMMVTKRN-UHFFFAOYSA-N 0.000 description 1
- UOMQUZPKALKDCA-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxymethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UOMQUZPKALKDCA-UHFFFAOYSA-K 0.000 description 1
- AFPHTEQTJZKQAQ-UHFFFAOYSA-N 3-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1 AFPHTEQTJZKQAQ-UHFFFAOYSA-N 0.000 description 1
- XTBFKMDOQMQYPP-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine;hydron;chloride Chemical compound Cl.CCN(CC)C1=CC=C(N)C=C1 XTBFKMDOQMQYPP-UHFFFAOYSA-N 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- BZORFPDSXLZWJF-UHFFFAOYSA-N N,N-dimethyl-1,4-phenylenediamine Chemical compound CN(C)C1=CC=C(N)C=C1 BZORFPDSXLZWJF-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- MPLZNPZPPXERDA-UHFFFAOYSA-N [4-(diethylamino)-2-methylphenyl]azanium;chloride Chemical compound [Cl-].CC[NH+](CC)C1=CC=C(N)C(C)=C1 MPLZNPZPPXERDA-UHFFFAOYSA-N 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical group 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001043 yellow dye Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/392—Additives
- G03C7/39208—Organic compounds
- G03C7/39236—Organic compounds with a function having at least two elements among nitrogen, sulfur or oxygen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/34—Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/407—Development processes or agents therefor
- G03C7/413—Developers
Definitions
- This invention relates in general to color photography and in particular to methods and compositions for color development. More specifically, this invention relates to the suppression of fog formation during development of multi-layer color photographic elements.
- Photographic elements of this description may be designed to produce a color negative for use in making positive color prints or transparencies or may be designed to yield a positive transparency directly by a reversal process.
- the photographic element is first developed with a black and white developing agent to form a negative silver image in each of the exposed emulsion layers.
- the colors of the dye images are determined by selectively and individually fogging the three emulsion layers and then subjecting each layer to a separate color development operation with a developer solution containing an appropriate color-forming coupler, i.e. a coupler adapted to form a dye of a color complementary to the predominant color sensitivity of the particular emulsion layer being treated.
- the red sensitive layer of a color photographic element is uniformly fogged, after black-and-white development, and then subjected to color development with a color developer containing a coupler compound capable of forming a cyan dye with the oxidation product of the color developing agent formed during development.
- the blue sensitive emulsion layer is fogged and subjected to color development with a color developer containing a yellow dye-forming coupler
- the green sensitive layer is uniformly fogged and subjected to color development with a developer containing a magenta dye-forming coupler.
- the silver images and any residual silver halide in the several emulsion layers are then removed by bleaching and fixing to produce a natural color positive transparency comprising the three superposed dye images.
- Another system of color photography employs the color development process to obtain a color negative.
- a different color-forming coupler compound is incorporated in each of the emulsion layers of the color photographic element as originally suggested by Fischer in U.S. Pat. 1,055,155.
- each of the three differently sensitized emulsion layers contains its own coupler adapted to form a dye complementary in color to the sensitivity of the emulsion layer, only one color development operation is needed to form the dye images in all of the emulsion layers simultaneously.
- Typical processes of this type are disclosed in Mannes and Godowsky U.S. Pats. 2,304,939 and 2,304,940 issued Dec. 15, 1942.
- nitro-substituted benzoicacids are effective as antifoggants for use in suppressing fog formation upon color development. They have been found to be especially effective in reducing magenta fog and yellow fog and, to a lesser extent, cyan fog.
- the nitro-substituted benzoic acids can be utilized as antifog gants with photographic elements which are designed to be processed in color developers containing couplers or with photographic elements which contain the coupler in the silver halide emulsion layers or in layers contiguous thereto. In either case, they are incorporated in a foginhibiting amount in the color developer solution in order to provide the desired suppression of fog formation.
- nitro-substituted benzoic acid antifoggants of this invention can contain one or more nitro group substituents. They can be represented by the formula:
- n is an integer having a value of at least one and preferably a value of two.
- nitro-substituted benzoic acids are 2,4-dinitrobenzoic acid 3,4-dinitrobenzoic acid 2,5-dinitrobenzoic acid 3,5-dinitrobenzoic acid o-nitrobenzoic acid m-nitrobenzoic acid p-nitrobenzoic acid 2,4,6-trinitrobenzoic acid,
- nitro-substituted benzoic acids can be used in any amount which is sufficient to inhibit fog formation. They are preferably employed in an amount of from about 0.01 to about 10 grams per liter of color developing solution and more preferably in an amount of from about 0.1 to about 1 gram per liter of color developing solution.
- the developing agent included in the color developing solution is a primary aromatic amino color developing agent such as a p-phenylenediamine.
- Developing agents of this type are usually used in the salt form, such as the hydrochloride or sulfate, as the salt form is more stable than the free amine, and are generally employed in concentrations of from about 0.1 to about 10 grams per liter of solution and more preferably from about 0.5 to about grams per liter of solution.
- These developing agents include p-phenylenediamine and N,N- dialkyl p phenylenediamines wherein the alkyl groups or the aromatic nucleus may be substituted, for example:
- Developing compositions containing nitro-substituted benzoic acids as antifoggants can also contain any of the various components that are ordinarily incorporated in color developing solutions, for example, materials such as alkalies, alkali metal sulfites, alkali metal bisulfites, alkali metal thiocyanates, alkali metal bromides, alkali metal iodides, thickening agents, water softening agents, and so forth.
- the pH of the developing solution is ordinarily above 7 and most typically about 10 to about 13.
- the photosensitive layers present in the photographic elements processed according to the method of this invention can contain any of the conventional silver halides as the photosensitive material, for example, silver chloride, silver bromide, silver bromoiodide, silver chlorobromide, silver chloroiodide, silver chlorobromoiodide, and mixtures thereof.
- the emulsion layers can contain conventional addenda and be coated on any of the photographic supports, such as, for
- cellulose nitrate film cellulose acetate film
- polyvinyl acetal film polycarbonate film
- polystyrene film polyethylene terephthalate film
- paper polymer-coated paper, and the like.
- the antifoggants of this invention are especially useful because they can be employed over a wide range of concentrations with etfective results and thus the process in which they are employed need not be precisely regulated with respect to concentration of the antifoggant. Unlike many prior art antifoggants which adversely affect speed they provide efifective antifoggant activity without such undesirable results. They reduce fog inherent to the silver halide emulsion as well as preventing or counteracting fog caused by contaminants in the developer solution.
- EXAMPLE 1 A multilayer color negative photographic film of composition and structure essentially as described in Example 5 of United States Pat. 2,860,974 and Example 2 of United States Pat. 3,034,892 was exposed through a multicolor 0.15 log E graduated-density step tablet and then processed at F. in the following sequence:
- test sample A One portion of the film, designated test sample A, was processed in the above sequence using a color developer, bleach-fix and stabilizer of the following compositions:
- test sample A Water to 1 liter A second portion of the film, designated test sample A, was processed under the same conditions and using the same processing solutions except that the color developer also contained 0.5 grams of 3,5-dinitrobenzoic acid per liter of solution.
- test samples A and A were sensitometrically evaluated by recording the characteristic curves of the developed yellow, magenta and cyan dye images.
- the characteristic curves for test sample A identified by the letters B, G, and R for the yellow, magenta and cyan dye images respectively, are shown in Figure 1 which is a plot of density versus exposure step number.
- the exposure step numbers 1 to 27 represent the series of steps of the 0.15 log E graduated-density step tablet through which the test samples were exposed prior to processing, step No. 1
- step No. 27 the lowest density levels in the step tablet.
- the characteristic curves for test sample A are also shown in FIG. 1 and are identified by the letters B, G and R' for the yellow, magenta and cyan dye images respectively.
- EXAMPLE 2 A multilayer color negative photographic film similar to that described in Example 1 except that the emulsion layers are of lesser thickness was processed in the same manner as described in Example 1 with the color developer solution containing varying amounts of 3,5-dinitrobenzoic acid.
- the characteristic curve of the yellow developed dye image is shown in FIG. 2 which is a plot of density versus exposure step number similar to that of FIG. 1.
- the curves designated by the letters A, B, C and D represent, respectively, zero, 0.2, 0.5- and 1.0 grams of 3,5-dinitrobenzoic acid per liter of color developing solution.
- the characteristic curve of the magenta dye image is shown in FIG.
- EXAMPLE 3 A two-week keeping test was carried out in which a multilayer color negative photographic film similar to that described in Example 1 was processed in the same manner as that described in Example 1 with 3,5-dinitrobenzoic acid in the color developer at a concentration of 0.5 grams per liter. In carrying out this test, the film was processed in fresh developer solution and in developer solution that had been kept for 14 days (referred to herein as aged developer). For control purposes, a test was also carried out using fresh developer that did not contain 3,5-dinitrobenzoic acid. The D values that were obtained for red density (cyan dye image), green density (magenta dye image) and blue density (yellow dye image) are as follows:
- the prebath was a carbonate solution designed for the removal of the antihalation rem jet backing from the film;
- the color developer solution was essentially the same as that described in Example 1 except that it contained no benzyl alcohol and had a pH of 10.2;
- the stop bath was a 3% solution of acetic acid;
- the bleach was a conventional ferric ethylenediaminetetraacetic acid bleach bath;
- the fix was a conventional thiosulfate fixing solution; and the stabilizer was the same as that described in Example 1.
- Characteristic curves for the developed yellow, magenta and cyan dye images were recorded for a film sample processed in color developer that contained no 3,5-dinitrobenzoic acid and for a film sample processed in color developer that contained 0.2 grams of 3,5-dinitrobenzoic acid per liter of solution. These curves are shown in FIG. 4 with the curves identified by the letters B, G and R representing the yellow, magenta and cyan dye images respectively for processing with no 3,5-dinitrobenzoic acid in the developer solution and the curves identified by the letters B, G and R' representing the yellow, magenta and cyan dye images respectively for processing with 0.2 grams of 3,5-dinitrobenzoic acid per liter of developer solution.
- EXAMPLE 5 The photographic film described in Example 4 was processed under the same conditions as described in Example 4 except that the color developing solution had been stored for five days at room temperature.
- the characteristic curves for this test are shown in FIG. 5 with curves B, G and R representing the yellow, magenta and cyan dye images for processing with color developer that contained no 3,5-dinitrobenzoic acid and had been stored five days and curves B, G and R representing the yellow, magenta and cyan dye images for processing with color developer that contained 0.2 grams per liter of 3,5-dinitrobenzoic acid and had been stored five days.
- the results shown in FIG. 5 illustrate the effectiveness of the antifoggants of this invention in stabilizing a color developing solution during storage.
- a method of suppressing the formation of fog in the color development of a silver halide multilayer photographic element which comprises color developing said element with a color developer solution containing a primary aromatic amino color developing agent and a foginhibiting amount of a nitro-substituted benzoic acid.
- a method as claimed in claim 1 wherein the amount of said nitro-substituted benzoic acid in said color developing solution is from about 0.01 to about 10 grams per liter of solution.
- a method as claimed in claim 1 wherein the amount of said nitro-substituted benzoic acid in said color developing solution is from about 0.1 to about 1 gram per liter of solution.
- An aqueous alkaline photographic developing solution comprising a primary aromatic amino color developing agent and a fog-inhibiting amount of a nitro-substituted benzoic acid.
- An aqueous alkaline photographic developing solution comprising a primary aromatic amino color developing agent and a fog-inhibiting amount of 3,.5-dinitrobenzoic acid.
- a developing solution as claimed in claim 5 wherein said color developing agent is 4-amino-3-methyl-N-ethyl- N-fl- (methanesulfonamido) ethylaniline.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00326353A US3832179A (en) | 1973-01-24 | 1973-01-24 | Inhibition of fog in photographic color development |
| CA188,047A CA998279A (en) | 1973-01-24 | 1973-12-12 | Inhibition of fog in photographic color development |
| GB220474A GB1444463A (en) | 1973-01-24 | 1974-01-17 | Photographic silver halide colour development process |
| IT19586/74A IT1003451B (it) | 1973-01-24 | 1974-01-18 | Inibizione dell annebbiamento nello sviluppo della fotografia a colori |
| DE2402899A DE2402899C2 (de) | 1973-01-24 | 1974-01-22 | Verfahren zum Unterdrücken der Schleierbildung in mehrschichtigen farbphotographischen Aufzeichnungsmaterialien bei der Farbentwicklung |
| FR7402170A FR2214910B1 (enExample) | 1973-01-24 | 1974-01-23 | |
| JP978574A JPS5712983B2 (enExample) | 1973-01-24 | 1974-01-24 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00326353A US3832179A (en) | 1973-01-24 | 1973-01-24 | Inhibition of fog in photographic color development |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3832179A true US3832179A (en) | 1974-08-27 |
Family
ID=23271852
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00326353A Expired - Lifetime US3832179A (en) | 1973-01-24 | 1973-01-24 | Inhibition of fog in photographic color development |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3832179A (enExample) |
| JP (1) | JPS5712983B2 (enExample) |
| CA (1) | CA998279A (enExample) |
| DE (1) | DE2402899C2 (enExample) |
| FR (1) | FR2214910B1 (enExample) |
| GB (1) | GB1444463A (enExample) |
| IT (1) | IT1003451B (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4132551A (en) * | 1971-09-17 | 1979-01-02 | Agfa-Gevaert N.V. | High temperature processing of photographic silver halide material |
| US4171976A (en) * | 1978-03-10 | 1979-10-23 | Eastman Kodak Company | Homopolymerization inhibition of photographic hardeners |
| US4256826A (en) * | 1978-08-14 | 1981-03-17 | Eastman Kodak Company | Bleach-fix sheets |
| US6312878B1 (en) | 1999-03-08 | 2001-11-06 | Eastman Kodak Company | Color photographic developer kit |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08272060A (ja) * | 1996-03-25 | 1996-10-18 | Konica Corp | ハロゲン化銀カラー写真感光材料用発色現像液 |
| FR2777094B1 (fr) * | 1998-04-03 | 2000-06-09 | Eastman Kodak Co | Kit pour revelateur photographique chromogene |
| FR2790841B1 (fr) * | 1999-03-08 | 2003-11-07 | Eastman Kodak Co | Procede pour renouveler un revelateur photographique chromogene |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1952253C3 (de) * | 1968-10-22 | 1979-03-22 | Fuji Photo Film Co., Ltd., Ashigara, Kanagawa (Japan) | Verfahren zum Entwickeln farbphotographischer Aufzeichnungsmaterialien |
| BE788687A (nl) * | 1971-09-17 | 1973-03-12 | Agfa Gevaert Nv | Ontwikkeling van zilverhalogenide-materiaal bij verhoogde temperatuur |
-
1973
- 1973-01-24 US US00326353A patent/US3832179A/en not_active Expired - Lifetime
- 1973-12-12 CA CA188,047A patent/CA998279A/en not_active Expired
-
1974
- 1974-01-17 GB GB220474A patent/GB1444463A/en not_active Expired
- 1974-01-18 IT IT19586/74A patent/IT1003451B/it active
- 1974-01-22 DE DE2402899A patent/DE2402899C2/de not_active Expired
- 1974-01-23 FR FR7402170A patent/FR2214910B1/fr not_active Expired
- 1974-01-24 JP JP978574A patent/JPS5712983B2/ja not_active Expired
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4132551A (en) * | 1971-09-17 | 1979-01-02 | Agfa-Gevaert N.V. | High temperature processing of photographic silver halide material |
| US4171976A (en) * | 1978-03-10 | 1979-10-23 | Eastman Kodak Company | Homopolymerization inhibition of photographic hardeners |
| US4256826A (en) * | 1978-08-14 | 1981-03-17 | Eastman Kodak Company | Bleach-fix sheets |
| US6312878B1 (en) | 1999-03-08 | 2001-11-06 | Eastman Kodak Company | Color photographic developer kit |
| AU769374B2 (en) * | 1999-03-08 | 2004-01-22 | Eastman Kodak Company | New color photographic developer kit |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2214910B1 (enExample) | 1977-06-10 |
| FR2214910A1 (enExample) | 1974-08-19 |
| JPS49106832A (enExample) | 1974-10-09 |
| DE2402899A1 (de) | 1974-07-25 |
| GB1444463A (en) | 1976-07-28 |
| DE2402899C2 (de) | 1982-12-30 |
| JPS5712983B2 (enExample) | 1982-03-13 |
| CA998279A (en) | 1976-10-12 |
| IT1003451B (it) | 1976-06-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0080896B1 (en) | Method for the formation of dye image | |
| JP2859965B2 (ja) | 写真要素の安定化方法 | |
| EP0304297A2 (en) | Color photographic element | |
| US4596765A (en) | Composition of a photographic color forming agent | |
| JPH068956B2 (ja) | ハロゲン化銀カラ−感光材料の処理方法 | |
| US4055426A (en) | Process for stabilizing a color developing solution | |
| US3832179A (en) | Inhibition of fog in photographic color development | |
| EP0530921B1 (en) | Photographic color developer formulation using an alpha amino acid for enhanced solution stability | |
| US4840879A (en) | Direct positive image-forming process | |
| US3489566A (en) | Magneta color developer solutions | |
| US4153459A (en) | Hybrid color photographic elements and processes for developing same | |
| JPH0648376B2 (ja) | ハロゲン化銀カラ−写真感光材料の処理方法 | |
| US4394440A (en) | Yellow-dye-forming photographic developing composition | |
| JPS6125148B2 (enExample) | ||
| US4952488A (en) | Silver halide color photographic material and processing process therefor | |
| JPH0675179B2 (ja) | ハロゲン化銀カラ−写真感光材料の処理方法 | |
| US3126282A (en) | Najcoj-hzo | |
| US3512979A (en) | Process for development of photographic silver halide color materials | |
| JPH0257297B2 (enExample) | ||
| US5945266A (en) | Dye image forming photographic element and processing to produce a viewable image | |
| JP2927374B2 (ja) | ハロゲン化銀カラー写真感光材料 | |
| JPS5981644A (ja) | カラ−写真感光材料の処理方法 | |
| US3552966A (en) | Color photographic development process | |
| JPS60162253A (ja) | ハロゲン化銀カラ−写真感光材料の処理方法 | |
| US5935767A (en) | Process of producing color negative image at shortened development times |