US3823697A - Multicylinder motor or engine with double-acting pistons - Google Patents
Multicylinder motor or engine with double-acting pistons Download PDFInfo
- Publication number
- US3823697A US3823697A US00244499A US24449972A US3823697A US 3823697 A US3823697 A US 3823697A US 00244499 A US00244499 A US 00244499A US 24449972 A US24449972 A US 24449972A US 3823697 A US3823697 A US 3823697A
- Authority
- US
- United States
- Prior art keywords
- piston
- housing
- bores
- cylinders
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims description 19
- 239000002826 coolant Substances 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 abstract description 13
- 238000007906 compression Methods 0.000 abstract description 7
- 230000006835 compression Effects 0.000 abstract description 6
- 239000000446 fuel Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- LFEUVBZXUFMACD-UHFFFAOYSA-H lead(2+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O LFEUVBZXUFMACD-UHFFFAOYSA-H 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/26—Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
- F02B75/265—Engines with cylinder axes substantially tangentially to a circle centred on main-shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/002—Double acting engines
Definitions
- motor has a fixed central shaft formed with [52] 123/43 23/44 2 7 a sun gear, and a housing rotatable around the shaft.
- This housing is formed with a plurality of bores each [58] Fieid 417 subdivided into two compression chambers by a dou- 91/472 ble-acting piston which is displaceable along an axis 7 parallel or transverse to the shaft axis.v Each piston is connected by a crankto a pinion which acts as a [56] References Cited planet gear meshing with the sun gear so that recipro- UNITED STATES PATENTS cation of the piston causes the planet gear to rotate, l,242,l97 10/1917 Johnson 123/43 R thereby entraining the housing about the fixed shaft.
- the device may be driven mechanically 1,380,404 6/1921 Miller 123 43 R to Operate it a pump 2,244,438 6/l94l Wilkerson 123/43 R ll/l943 Talbot 123/43 R.
- Another object is the provision of such a multipiston machine which avoids the disadvantages of the priorart systems mentioned earlier.
- Yet another object is the provision of an improved internal-combustion engine wherein power is delivered especially uniformly to the output or drive shaft.
- fixed gear is a ring gear (and supplants to the sun gear), or the housing is fixed while the sun or ring gear is rotated.
- the cylinders and their pistons have axes which lie parallel to the rotation axis of the motor or engine or spaced from and at right angles to this axis.
- the central body or shaft is advantageously fixed and formed with axially extending intake and exhaust passages having radially opening orifices which register with holes in the housing'for operation of the engine.
- each piston may be double-acting in the sense that the oppositesides of the piston are alternately subjected to the expansion force to drive the rotating member of the assembly.
- the pistons and the associated cylinders are angularly equispaced about the axis of rotation and the stationary shaft.
- the cylinders may be wholly confined between a pair of parallel planes perpendicular to-the shaft and rotation axes.
- the cylinder axes are generally transverse to the shaft and rotation axes, I prefer to provide the cylinders in parallel-cylinder pairs, the cylinders of each pair being-disposed symmetrically with respect to an axial plane through the system.
- the central shaft is provided with duct means and ports registering with the cylinders for delivering and/or removing the power fluid from the working compartments of the cylinders on opposite sides of the respective pistons.
- the power fluid may be a combustible fuel/air mixture when the machine is operated as an internal combustion engine, or a vaporizable fluid or a fluid under pressurewhen the machine is a fluid machine as defined above.
- the duct system provided in the shaft allows the housing to be formed with cooling ribs or fins which increase the het exchange with the surrounding air as the housing rotates.
- the shaft is preferably provided with passages for a liquid coolant which may be circulated by the enginecooling pump through the shaft and a radiator connected in circuit therewith.
- the internal combustion engine may be operated as a four-stroke engine or a two-stroke engine in accordance with gasoline-engine principles generally. In the latter case it has been found to be advantageous to provide a feed pump for charging a fuel/air mixture into the cylinders.
- the shaft orbited by the housing may be provided with distributing or valving ports, slots or channels which eliminate the need for other valve structures.
- a roller arrangement may be provided between this formation and the groove wall to reduce frictional engagement while preventing play.
- the cylinders although receiving independent pistons, may be interconnected or provided with fuel or other channels common to two or more such pistons.
- the gear arrangement mentioned earlier it is possible to operate the pistons of two adjoining and interconnected cylinders so that the pistons move generally away from one another or toward one another synchronously in the expansion and compression strokes respectively.
- the cylinder bores and pistons are so constructed and arranged as to distribute the forces uniformly on opposite sides of the shaft axis thereby minimizing stress and vibration.
- FIGS. 1-3 are diagrammatic perspective views showing cylinder layouts for engines representing three embodiments of the present invention
- FIG. 4 is an axial section through an eight-cylinder machine with a cylinder layout similar to FIG. 1;
- FIG. 5 is an end view, partly broken away and in section 1 of the engine of FIGS. 1 and 4;
- FIG. 6 is a section taken along line VI-VI of FIG. 5;
- FIG. 7 is a detail of FIG. 6 in enlarged scale
- FIG. 8 is a schematic diagram illustrating the operating cycle of the engine of FIGS. 1 and 4-7;
- FIGS. 9 and 10 are views corresponding to FIGS. 4 and 5, respectively, showing the embodiment of the present invention partially illustrated in FIG. 2;
- FIG. 11 is a view similar to FIG. 9 showing the embodiment of the invention seen in FIG. 3;
- FIGS. 12, 13 and 14 are, respectively, top, top axial sectional, and side views of a piston usable in the present invention
- FIG. 15 is a section taken along line XV-XV of FIG. 13;
- FIG. 16 is a cross section through an embodiment of the present invention similar to that of FIGS. 1 and 4-8 (and using the piston type of FIGS. 12-15);
- FIG. 17 is a sectional view showing the carburetion and exhaust system of the embodiment of FIG. 16;
- FIG. 18 is a schematic diagram similar to FIG. 8 showing four-cycle operation of the engine of FIGS. 16-17;
- FIG. 19 is a diagram similar to FIG. 18 illustrating two-cycle operation of the engine of FIGS. 16-17.
- SPECIFIC DESCRIPTION F IG. 1 shows a basically cruciform housing or rotor G rotatable about a fixed shaft 3 and formed with cylinder bores 1 extending through the arms of the rotor at right angles to and spaced from the rotation axis A. Secondary bores 2 cross the cylinder bores 1 and, as described below, serve to receive the cranks.
- an eightcylinder motor has a cylinder housing 10 formed with four cylinder bores 29 (1) and foursecondary bores 12 (2) destined to receive the cranks.
- the housing is provided with external cooling ribs 13 and with a jacket 11 for guiding cooling air overthese ribs.
- Four cylinder heads 28 give the cruciform housing 10 a circular shape.
- the housing 10 is connected to a bearing housing 14 constituting effectively a planetary-gear carrier as will be seen below.
- the half 14 of the housing is rotationally linked by means of a flange 15 to an output shaft 16 that constitutes the motor drive shaft.
- the housing 10 is also covered by a disk 17 which is formed with external gear teeth 18 adapted to be engaged'by a starting motor (not shown) and which rides via a bearing 45 on the shaft 19.
- the bodies 10, 14, 15, 17, and 28 are interconnected by bolts and rotatable as a unit about a fixed axial shaft 19 (3) which itself is supported on a fixed support plate 20.
- a sun gear 21 is provided on the end of the shaft 19 away from the support 20 and is also nonrotatable with respect to axis A.
- the engine is provided with a carburetor 22, a pair of exhaust pipe 23, a spark-distribution ring 24 fixed on the axis 19, a set of points 25, a pair of ignition coils 26, and spark plugs 27 passing through the disk 17.
- the housing 10 is formed with four pairs of holes 30 which open tangentially in opposite directions into one of the four cylinder bores 29. The holes 30 open on the inner periphery of the housing 10 next to each other.
- the points 25, which operate bothignition coils 26, are operated by a cam 46 which is carried on a shaft 47 connected to the output shaft 16 and passing axially through the center of the motor and supported in the fixed plate 20 by a ball bearing 48.
- the carburetor 22 is of the conventional type operated by an accelerator.
- Each piston 31 is sealed by means of rings 31a in its respective bore 29 and forms therein a pair of compression chambers 29a and 29b.
- a short crankshaft 34 rotatable in the bore 12 transverse to the bore 29 has a crank 33 engaging in a cutout 32 formed with a trans verse groove 35 in the side of the piston 31, as seen in FIG. 6.
- This groove 35 is U-shaped in cross section and extends at right angles to the pistons displacement axis A.
- a two-part hardened lining 36 is provided in the groove 35 in which two needle-bearing mounted rollers 37 ride.
- the lining 36 is slightly stepped so that it has one surface 36' (see FIG.
- roller 38 in constant contact on one side with one roller 37 and another surface 36" on the other side in contact with the other roller for constant contact free from play.
- An axial groove 38 is formed in the opposite side of the piston and is similarly provided with a hardened lining 40 that receives a roller 39 mounted on the housing 10 and held in place by disk 17 to prevent rotation of the piston 31 in its bore 29.
- the roller 38 could be doubled and used with a stepped lininglike the rollers 3, if desired.
- crankshaft 34 is carried in roller bearings 41 and 42 in the housings 10 and 14.
- a spur-gear pinion 43 is keyed to the shaft 34 and is formed with a counterweight 44 opposite the crank 33.
- Each pinion 43 meshes with the sun gear 21 and has one quarter as many spur-gear teeth as this sun gear so that it must rotate four times for each single revolution of the output shaft 16.
- Cooling water is circulated through longitudinal holes 54 in the shaft 19. This coolant is fed in by a pump 54a through a ring 55 formed in the plate 20, then passes axially in bores 54 in one direction through the shaft to its end where it is reversed by a rubber gland 56 and flows axially back in the other direction for collection in a groove 57 formed in the plate 20 within the circular groove 55.
- Air is drawn into the engine through a pair of diametric'ally opposite and axially extending intake channels 58 in the shaft 19 which are formed with radially opening orifices 58a. Exhaust is expelled by diametrically opposite and axially extending exhaust passages 59 opening at respective orifices 59a.
- the exhaust passages 59 are offset by 90 to the intake passages 58.
- FIG. 8 shows the operation of the motor.
- the control orifices 58a and 59a of the fixed shaft 19 are shown respectively dotted and cross-hatched.
- the entire surface of the shaft 19 and the four cylinders are shown in a planar arrangement although actually they are arrayed around the axis A. It can be seen that the entire 360 rotation of the housing is divided into eight regions l/2 U, with U being equal to one full 360 rotation of a crank 34.
- each crank will turn four times, thereby causing each piston 31 to perform two'compression strokes and two power strokes.
- the arrows show the relative directions of the shaft 19 and the housing 10. So it can be seen how one set of holes 30 will pass through overlapping intake and exhaust regions, then a region where they are closed during which ignition and the power stroke takes place, and finally into another such cycle for two complete Otto cycles per revolution of housing 10. Two oppositely directed tangential holes 30 are provided in conjunction with slightly overlapping intake and exhaust orifices 58a and 59a in order that good scavenging of the useless exhaust gases with clean air will take place for best efficiency.
- One such engine haseight cylinders each with 25 cubic centimeters of displacement to give a total displacement of 200 cc.
- the bore is 41.5 millimeters and the stroke 20 millimeters.
- the small cranks turn at four times this rate, or l2',000 rpm.
- This crank rotation rate appears high, but since the stroke is only 20 millimeters, the piston speed is only around 8 meters per second, which is entirely within nonnal machine capacities.
- the engine exhibited minimal throw, and generated only a hum, more pronounced of an electric motor than an intemal-combustion engine.
- the device will function as a pump.
- the housing 10 can be fixed and the shaft 19 driven, to reverse the operation of the machine.
- the rotor comprises a pair of mutually orthogonal housings G and G carried on the shaft 3 and each formed with two cylinder bores 1 both defining a plane orthogonal to the motor axis A and extending transverse to the shaft 3 and with two crank bores 2 extending parallel thereto.
- each housing G and 101 (G has four cylinders 129 (1) defined by pistons 131.
- a sungear 102 is formed between housings 100- and 101 on the shaft 107 and is engaged by the pinion planet gears 134 of the crankshafts 103.
- These crankshafts 103 are set in bearings 141 in theirrespective housings and in bearings 110 seated in the cylinder head 104 of the opposite housing.
- the control orifices 109 in the shaft 107 are offset at 22.5 intervals.
- Th principal advantage to the embodiment shown in FIGS. 2 and 9 and 10 is that the cylinder heads 104' have flat, planar surfaces that can be very securely bolted to the respective housings. At the same time very. heavily ribbed cylinder heads 104 can be used for most efficient heat dissipation. Another one or two housings can be mounted on the same shaft in a similar manner to, produce a 12 orl6-cylind er engine.
- the spark plugs 105 extend axially from the cylinder heads 104. Only one of the spark distributors 106 need be mounted on the shaft 107. The other distributors 108 may be fastened on the inside of the air guide (11 in FIG. 4).
- FIG. 11 shows the arrangement seen in FIG. 3 wherein a two-part housing 0., is formed with cylinder bores 1 extending parallel to the shaft 3, with the crank holes 2 extending radially therefrom.
- Each rotor half 200 has cores 202 (1) extending parallel to the fixed shaft 201 (3) and housing pistons'2l2.
- a conical sun gear 203 is formed on the fixedshaft 201 and meshes with similar bevel planet gears .204 carried on cranks 205.
- the motor has six such bores 202 to make it a 12- cylinder engine.
- a spark distributing ring 206, an intake conduit 207, and an exhaust conduit 209 are provided at the front of the device.
- a fixed mounting plate 209 is provided at 210 with connections for cooling water. The points are housed at 211. g
- the gear ratio is 1 to 6 between the pinion 205 and sun gear 203 so that each crank makes six revolutions for each revolution fo the cylinder housing around the fixed axis.
- the fixed axis is provided with two sets of control passages each having three pairs of control orifices.
- such an engine requires three ignition coils since three cylinders will fire simultaneously rather than just two.
- eight bores and similar changes could be made for a l6-cylinder engine.
- Such engine is ideally employed for use at low speeds, and for heavy loads to prevent the rotation rate of the cranks froni growing excessively. It is similarly possible to provide an arrangement of control orifices that would, with proper doubling of ignition time, allow the engine to be operated as a two-cycle engine, in which case an oil-gas mixture could be used as fuel or fluid medium to drive it and to lubricate it.
- FIGS. 12-15 show a piston arrangement usable in any of the above-described motors where considerable power is to be transmitted. More specifically the crank 201' rotates to impart a stroke H to the piston 302. The crank 301 is connected via a connecting rod 303 to the piston which can assume the positions shown at 303' and 303" in FIG. 14. The piston 302 is cutaway at 305 on both sides to allow such movement and is even cut away at 304 to save weight.
- a nose 306 is provided on the inside of the piston 302 and carries a piston bolt 307.
- the connecting rod is mounted. on the bolt 307 by means of a needle bearing 308 and on the end 310 of the crank 301' by means of a similar needle bearing 309.
- the piston is hollowed out at 311 to clear the rod 303 and is similarly hollowed out at 312 on its opposite end to make the piston weigh the same at both ends.
- Each end of the piston is formed with a circumferential groove 313 adapted to receive a pair of rings 314.
- FIGS. 16-18 there is shown an arrangement similar to that of FIG. 1 wherein the pistons all have axes A lying in a common plane orthogonal to the rotation axis A of the engine.
- the cylinder bores carry respective pistons 404 which subdivide them into chambers 437 which are covered over by triangularsection cylinder heads 401.
- These heads 401 each carry a single spark plug, however, and neighboring chambers 437 are interconnected so that this is a fourcylinder engine.
- Each double chamber 437 is connected via a single hole 405 or 406 to the inner periphery of the housing 403.
- the holes 405 are axially offset from the holes 406 to allow their respective cylin-' I ders to have overlapping intake and exhaust cycles.
- a support plate carries a carburetor 414 and its air filter and another air filter 415 so that, depending on the position of a flap valve 416 in a conduit 413 downstream of the carburetor 414, a mixture of air and some gas can be sucked in by the intake passage 407 or only air can be inspired.
- Another intake passage 408 is provided which will inspire a rich gas-air mixture
- the shaft 409 is further formed with an exhaust passage 412, all of the passages 407, 408, and 412 opening into different manifold grooves 411 formed on the support plate 410. In this manner a stratified mixture can be supplied to the two piston chambers 437 in order to achieve most efficient combustion and peak perform-' ance.
- FIG. 18' shows the operation of the engine.
- the orifices 407a, 408a, and 412a on the shaft 409 can register with the openings 405 and 406 of the chambers 437.
- Each double cylinder 437 for one cycle first takes in vibration-free so that they wear very little.
- Such engines can be used in automotive vehicles to good results since they can be expanded to considerable size for any type of load.
- the principles described above can be applied to the manufacture of rotary motors and pumps featuring the same considerable advantages.
- FIG. 19 shows an engine identical to that of FIGS. 16-18 except that it is set up as a' two-stroke or -cycle engine. More specifically the pistons 504 define chambers 537 having spark plugs 521. Each chamber 537 is, however, provided with two ports 505 and 506. The former continuously communicate with an exhaust groove 50% formed on the shaft 509, and the latter with an intake groove-509a also formed on the shaft 509 and communicating with a fan 506a which forces a gas-oil/air mixture into the chambers 537 when the pistons are near the bottom of their strokes.
- the holes 506 and 505 can open tangentially in'opposite directions into the chambers 537 as shown in FIG. 4 for best scavenging.
- the chambers 537 can also each have their own spark plugs if desired.
- Such an embodiment combines extreme simplicity with a highly uniform torque output. This is due to the fact that every displacement of any piston is the result of a power stroke, the engine firing thereby sixteen times per revolution of the drive shaft.
- a multiple cylinder machine comprising:
- annular housing rotatable about said axle and formed with at least one chamber
- first bores formed in said axle and extending axially therealong for conducting a drive medium to said cylinders
- third bores formed in said axle and extending axially therealong for circulating a coolant therethrough, said housing being formed with passages selectively communicating between said cylinders and said first and second bores;
- crankshaft having a crank connected to said piston whereby reciprocation of said piston rotates said crankshaft
- said gears being spur gears.
- piston is one of an array of such pistons each having a respective crank, crankshaft, planet gear, and piston axis, said piston axes being coplanar.
- crankshaft having a crank connected to said piston whereby reciprocation of said piston rotates said cranksahft;
- cranks, crankshafts, planet gears, and reciprocation axes arrayed about the rotation axis of said housing with said reciprocation axes lying in a common plane orthogonal to said rotation axis, each chamber communicating with the adjacent chamber of the adjacent piston, said gears being arranged to reciprocally displace adjacent pistons in opposite directions on rotation of said housing.
- passages and bores include at least one exhaust passage and bore, and two independent inlet bores with respective independent bores, said machine further comprising means for feeding a rich gas-air mixture to one of said inlet bores and a less rich gas-air mixture to the other inlet bore, said gas-air mixtures being combustible fluids constituting said fluid medium, whereby said machine has stratified carburation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydraulic Motors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1692171 | 1971-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3823697A true US3823697A (en) | 1974-07-16 |
Family
ID=4421375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00244499A Expired - Lifetime US3823697A (en) | 1971-11-18 | 1972-04-17 | Multicylinder motor or engine with double-acting pistons |
Country Status (2)
Country | Link |
---|---|
US (1) | US3823697A (enrdf_load_stackoverflow) |
CH (1) | CH545910A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058088A (en) * | 1975-04-03 | 1977-11-15 | Brown Jesse C | Oscillating piston engine |
US4598628A (en) * | 1984-05-21 | 1986-07-08 | 4 Square Motors | Rotary hydraulic engine having oppositely disposed pistons in a scotch yoke assembly |
US5347967A (en) * | 1993-06-25 | 1994-09-20 | Mcculloch Corporation | Four-stroke internal combustion engine |
US6634871B2 (en) * | 2001-08-27 | 2003-10-21 | Kazumasa Ikuta | Suction-discharge device for fluids comprising a piston within a rotating inner tube and a plurality of suction and discharge holes |
US20120237383A1 (en) * | 2011-01-03 | 2012-09-20 | Soilmec S.P.A. | Hydraulic motor or pump with tangential pistons with annular or sectional shape on ordinary or planetary gear for high torque, and power performance and hydraulic and mechanical efficiency |
JP2015514908A (ja) * | 2012-04-18 | 2015-05-21 | スチュアート,マーティン,エー. | 多角形振動ピストンエンジン |
CN109026379A (zh) * | 2018-08-01 | 2018-12-18 | 重庆交通大学 | 双转子变循环稳燃活塞发动机 |
US20190284993A1 (en) * | 2016-12-02 | 2019-09-19 | Yanmar Co., Ltd. | Engine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1242197A (en) * | 1916-04-12 | 1917-10-09 | Albert F Richardson | Rotary internal-combustion engine. |
US1341332A (en) * | 1918-10-16 | 1920-05-25 | Mcdonald Alexander | Rotary engine |
US1380404A (en) * | 1919-04-10 | 1921-06-07 | Rufus E Miller | Rotary internal-combustion engine |
US2244438A (en) * | 1938-08-09 | 1941-06-03 | Wilkerson Rotary Engine Ltd | Rotating cylinder internal combustion engine |
US2334655A (en) * | 1942-01-14 | 1943-11-16 | Joseph M Nolan | Rotary internal combustion engine |
US2432426A (en) * | 1945-05-21 | 1947-12-09 | Joseph E E Kolb | Rotary internal-combustion engine |
US2460192A (en) * | 1946-09-20 | 1949-01-25 | George F Pieper | Rotary diesel engine |
US2886017A (en) * | 1957-12-23 | 1959-05-12 | Basil H Dib | Rotary internal combustion engine |
US2990820A (en) * | 1958-05-01 | 1961-07-04 | Saijo Genzo | Rotating mechanism of main shaft of oil engine |
US3431894A (en) * | 1967-03-08 | 1969-03-11 | Von D Allred | Rotary device |
-
1971
- 1971-11-18 CH CH1692171A patent/CH545910A/xx unknown
-
1972
- 1972-04-17 US US00244499A patent/US3823697A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1242197A (en) * | 1916-04-12 | 1917-10-09 | Albert F Richardson | Rotary internal-combustion engine. |
US1341332A (en) * | 1918-10-16 | 1920-05-25 | Mcdonald Alexander | Rotary engine |
US1380404A (en) * | 1919-04-10 | 1921-06-07 | Rufus E Miller | Rotary internal-combustion engine |
US2244438A (en) * | 1938-08-09 | 1941-06-03 | Wilkerson Rotary Engine Ltd | Rotating cylinder internal combustion engine |
US2334655A (en) * | 1942-01-14 | 1943-11-16 | Joseph M Nolan | Rotary internal combustion engine |
US2432426A (en) * | 1945-05-21 | 1947-12-09 | Joseph E E Kolb | Rotary internal-combustion engine |
US2460192A (en) * | 1946-09-20 | 1949-01-25 | George F Pieper | Rotary diesel engine |
US2886017A (en) * | 1957-12-23 | 1959-05-12 | Basil H Dib | Rotary internal combustion engine |
US2990820A (en) * | 1958-05-01 | 1961-07-04 | Saijo Genzo | Rotating mechanism of main shaft of oil engine |
US3431894A (en) * | 1967-03-08 | 1969-03-11 | Von D Allred | Rotary device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058088A (en) * | 1975-04-03 | 1977-11-15 | Brown Jesse C | Oscillating piston engine |
US4598628A (en) * | 1984-05-21 | 1986-07-08 | 4 Square Motors | Rotary hydraulic engine having oppositely disposed pistons in a scotch yoke assembly |
US5347967A (en) * | 1993-06-25 | 1994-09-20 | Mcculloch Corporation | Four-stroke internal combustion engine |
US5579735A (en) * | 1993-06-25 | 1996-12-03 | Mcculloch Corporation | Four-stroke internal combustion engine |
US6634871B2 (en) * | 2001-08-27 | 2003-10-21 | Kazumasa Ikuta | Suction-discharge device for fluids comprising a piston within a rotating inner tube and a plurality of suction and discharge holes |
US20120237383A1 (en) * | 2011-01-03 | 2012-09-20 | Soilmec S.P.A. | Hydraulic motor or pump with tangential pistons with annular or sectional shape on ordinary or planetary gear for high torque, and power performance and hydraulic and mechanical efficiency |
US9080560B2 (en) * | 2011-01-03 | 2015-07-14 | Soilmec S.P.A. | Hydraulic motor or pump with tangential pistons with annular or sectional shape on ordinary or planetary gear for high torque, and power performance and hydraulic and mechanical efficiency |
JP2015514908A (ja) * | 2012-04-18 | 2015-05-21 | スチュアート,マーティン,エー. | 多角形振動ピストンエンジン |
JP2018087575A (ja) * | 2012-04-18 | 2018-06-07 | スチュアート,マーティン,エー. | 多角形振動ピストンエンジン |
US20190284993A1 (en) * | 2016-12-02 | 2019-09-19 | Yanmar Co., Ltd. | Engine |
CN109026379A (zh) * | 2018-08-01 | 2018-12-18 | 重庆交通大学 | 双转子变循环稳燃活塞发动机 |
CN109026379B (zh) * | 2018-08-01 | 2019-10-29 | 重庆交通大学 | 双转子变循环稳燃活塞发动机 |
Also Published As
Publication number | Publication date |
---|---|
CH545910A (enrdf_load_stackoverflow) | 1974-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3654906A (en) | Axial cylinder rotary engine | |
US6739307B2 (en) | Internal combustion engine and method | |
US4599976A (en) | Reciprocating rotary piston thermal engine with a spherical chamber | |
US3456630A (en) | Rotary valve cam engine | |
US3256866A (en) | Internal combustion engine | |
CA1323840C (en) | Rotating cylinder block piston-cylinder engine | |
US20090151663A1 (en) | Two-stroke internal combustion engine with two opposed pistons per cylinder | |
EP0489208B1 (en) | Rotary engine, pump or compressor, with triangular cylinder | |
US3921602A (en) | Rotary cylinder internal combustion engine | |
US3563223A (en) | Perfectly balanced double-acting reciprocating machine | |
CA2232680C (en) | Reciprocating piston type internal combustion engine with a crank and multiple circular slide blocks | |
US6615793B1 (en) | Valveless revolving cylinder engine | |
US3182644A (en) | Internal combustion engine | |
US20160115862A1 (en) | Rotary Engine with Rotating Fuel and Exhaust Distributor | |
GB973134A (en) | Improvements in and relating to internal combustion engines | |
US3823697A (en) | Multicylinder motor or engine with double-acting pistons | |
US3937187A (en) | Toroidal cylinder orbiting piston engine | |
EP0320171A1 (en) | Power transmission apparatus | |
DE10223145A1 (de) | Rotationsverbrennungskraftmaschine | |
US3739755A (en) | Rotary engine | |
US2069646A (en) | Rotary engine | |
US3536050A (en) | Motion-converting device for barrel-type machine and various applications thereof | |
US2474879A (en) | Internal-combustion engine | |
US3134373A (en) | Engine with rotary valve | |
US3364908A (en) | Rotary cylinder swinging piston engine |