US3456630A - Rotary valve cam engine - Google Patents

Rotary valve cam engine Download PDF

Info

Publication number
US3456630A
US3456630A US3456630DA US3456630A US 3456630 A US3456630 A US 3456630A US 3456630D A US3456630D A US 3456630DA US 3456630 A US3456630 A US 3456630A
Authority
US
United States
Prior art keywords
plates
rotary valve
shaft
cylinders
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Paul Karlan
Original Assignee
Paul Karlan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Karlan filed Critical Paul Karlan
Priority to US75991968A priority Critical
Application granted granted Critical
Publication of US3456630A publication Critical patent/US3456630A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • F01B3/045Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by two or more curved surfaces, e.g. for two or more pistons in one cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Description

y 1969 P. KARLAN 3,456,630

' ROTARY VALVE CAM ENGINE Original Filed June 26, 1967 5 Sheets-Sheet 1 July 22, 1969 P. KARLAN 3,456,630

ROTARY VALVE CAM ENGINE Original Filed June 26, 1967 5 Sheets-Sheet 2 July 22, 1959 p KARLAN 3,456,630

ROTARY VALVE CAM ENGINE Original Filed June 26, 1967 5 Sheets-Sheet 5 aired 3,456,630 ROTARY VALVE CAM ENGINE Paul Karlan, New York, N .Y. (Karlan Tool Co.,

620 Ogden Ave., Mamaroneck, N.Y. 10543) Continuation of application Ser. No. 648,554, June 26, 1967. This application Sept. 16, 1968, Ser. No. 759,919 Int. Cl. F02b 75/26 US. Cl. 12358 4 Claims ABSTRACT OF THE DISCLOSURE This application is a continuation of my copending application, Ser. No. 648,554, filed June 26, 1967, now abandoned.

This invention relates generally to the field of internal combustion engines, and more particularly to an improved form of cam engine in which the pistons are fixedly mounted upon one end of a connecting rod, and the opposite end thereof engages a cam on a driven shaft to impart rotary motion thereto.

It is among the principal objects of the present inven tion to provide in an engine of the above described class a compact configuration obtained by placing the axes of the cylinders in parallel relation with respect to the principal axis of the motion output shaft, whereby the engine may be particularly suited for use in small boats, aircraft and the like.

Another object of the invention lies in the provision of a cam engine in which the pistons execute a normal fourcycle function during each revolution of the driven shaft without resort to gear reduction means.

Another object of the invention lies in the provision of an improved internal combustion engine in which the pistons thereof are supported for operation without side reaction through contact with the cylinder walls, and can be operated with the output shaft thereof either vertically or horizontally positioned.

Yet another object of the invention lies in the provision of an improved internal combustion engine in which induction and exhaust functions are performed by a single rotating disc valve mounted directly upon the driven shaft for rotation therewith.

Still another object of the invention lies in the provision of an internal combustion cam engine which, because of the relative reciprocation of the component parts is inherently in balance, without resort to counter weights, vibration dampers, and the like.

A further object of the invention lies in the provision of an internal combustion engine of the class described which may be conveniently fabricated using a minimum number of parts, whereby the total cost of production on a volume basis, may be materially less than that encountered in the manufacture of conventional internal combustion engines.

A feature of the invention lies in the ready adaptability of the disclosed embodiment to fuel injection diesel operation or carburetion.

Another feature of the invention lies in the ready adaptability of the disclosed embodiment to either air or liquid cooling.

rates patent Patented July 22, 1969 Still another feature of the invention lies in the high torque available at low operational speeds, effective engine displacement considered.

Another feature of the invention lies in the elimination of timing gears and valve springs in a four cycle engine.

These objects and features, as well as other incidental ends and advantages, will more fully appear in the progress of the following disclosure, and be pointed out in the appended claims.

In the drawing, to which reference will be made in the specification, similar reference characters have been employed to designate corresponding parts throughout the several views.

FIGURE 1 is side elevational view of an embodiment of the invention.

FIGURE 2 is a schematic top plan view showing the moving components of the embodiment.

FIGURE 3 is a schematic side elevational view as seen from the lower portion of FIGURE 2.

FIGURE 4 is a schematic and elevational view thereof, as seen from the right hand portion of FIGURE 3.

FIGURE 5 is a transverse sectional View as seen from the plane 4-4 in FIGURE 3.

In accordance with the invention, the device, generally indicated reference character 10, comprises broadly a frame element 11, a motion output shaft element 12, a plurality of cylinder and piston assemblies 13, and rotary valve element 14.

The frame element 11, as best seen in FIGURE 1 in the drawing, includes a base plate 16 for mounting the device 10 on a horizontal surface (not shown). Extending up wardly from the base plate are a plurality of vertical support members 17 which interconnect with first and second centrally disposed plates 18 and 19 which are interconnected by longitudinally extending bolts 20. The plates 18 and 19 are of solid configuration, and form on the interior portions thereof cylinder heads or manifolds for the assemblies 13, as will more fully appear hereinafter.

Extending longitudinally from the plates 18 and 19 are support rods 21a, the outer ends of which engage first and second end plates 22 and 23, respectively. The end plates define generally centrally located openings in which main bearings 24 and 25 are positioned to support the shaft element 12. These bearings handle radially directed loads, that is to say the weight of the shaft element 12, separate thrust bearings being provided to absorb power impulses.

A subframe 26 is supported on rods 27 interconnected with the plate 22 to support the fixed portions of a distributor or magnet 28, the rotor portion thereof being driven directly by the end of the shaft element 12.

The shaft element 12 includes the main shaft 29, a first end 30 communicating with the above mentioned distributor 28, and a second end 32 which supports a combined flywheel and starter ring gear 33 of well known type. Intermediate to ends 30 and 32 are a pair of ribbed barrel cams 34 and 35 each including opposed cam faces 36 and 37. Each cam 34-35 includes 'two symmetrically disposed high points 38 and corresponding low points 39 which may be modified too for dwell areas. Thrust bearings 40 and 41 transmit thrust directly to the plates 18 and 19, as do radical bearings and, respectively, whereby, in conjunction with the bearlugs 24 and 25, the shaft 29 is limited to pure rotation about its own axis.

The cylinder and piston assemblies 13 are best understood from a consideration of FIGURES 2 and 3. Each assembly includes a cylinder sleeve 46 having an exposed surface 47 for air or liquid cooling (not shown). The inner ends 48 of the sleeves 46 are connected to one of the plates 18-19 which, as has been mentioned, func tions as a cylinder head or manifold. The outer ends 49 thereof are connected to a supporting plate 5051 by bolts 51a, respectively. The plates 50-51 are similar, each being provided with corresponding openings for the sleeves 46, as well as openings 53 which form bearings for sliding guide rods 54. The pistons 55 are provided with conventional piston rings 56 for forming a seal with the inner surface of the sleeves 46, and are rigidly connected to connecting rods 57 in any suitable manner, but preferably not including conventional wrist pins since no relative pivotal movement is required between the rods and pistons, the rods 57 being connected to alignment plates 58 which also mount the guide rods 54, and the cam follower mounts 59 are provided with roller bearings 60 which coact with the cam faces 36-37 on one of the barrel cams 3435.

As best seen in FIGURES 2 and 5, the portions of the plates 18-19 which function as cylinder heads, and indicated by reference character 62 are provided with a single port 63 through which unburned gasses pass into the cylinder, and exhaust gasses are removed. The ports 63 are axially aligned for opposed cylinders, as best seen in FIGURE 3 in the drawing. As seen in FIGURE 2, spark plug openings 64 may be provided for each cylinder, but, as will more fully appear, one spark plug may be used to simultaneously fire two cylinders where desired.

The rotary valve element 19 is best understood from a consideration of FIGURE 5, and includes a generally rectangularly shaped valve housing 66 having first, second, third and fourth ports 67, 68, 69 and 70, respectively.

Carburetors, one of which is indicated by reference character 71 communicate with ports 68 and 70, and, if desired, ports 67 and 69 may be provided with mufiler means (not shown). A rotary valve body 72 is mounted on the shaft 29, and fixed relative thereto by keying means 74, so as to be disposed within a circular chamber 74a in the housing 66. The body 72 is bounded by a curved peripheral surface 75 and a pair of planar surfaces 76 which form means for sealing the ports 63 during the compression and power strokes of any given piston.

Referring to FIGURE 5, the body 72 is divided into an intake quadrant 77 a compression quadrant 78, a power quadrant 79 and an exhaust quadrant 80. These quadrants are serially presented to each pair of opposed cylinder and piston assemblies as the shaft 29 rotates, to permit the opening of the cylinder for the induction of a combustible mixture, the subsequent closing of the cylinder for compression and power strokes, and the later opening of the ports 63 to permit the burned gasses to be exhausted.

For convenience in location of the ports 67-70, the channel 81 providing for induction of gasses includes a peripherally opened portion 82 and a radially opened portion 83 which together extend over an arcuate distance of slightly less than 180 degrees. The exhaust channel 84 is both peripherally and radially open over the same arcuate distance, that is to say slightly less than 90 degrees.

From a consideration of FIGURES 2, 3, and 5, it will be apparent during the revolution of the main shaft 29 through 360 degrees, each of the cylinder and piston assemblies will have completed a single four stroke cycle of operation, and with two cylinders firing simultaneously in opposite directions along a common axis, four power strokes will be obtained for each revolution. As the device operates, the reciprocating masses are at all times equally balanced, so that axial vibration is practically non-existent. The valve body 72 is most conveniently balanced by milling areas as indicated by reference character 85, or if desired, suitable counter weights (not shown) may be employed. Through holes 85a connect between opposed cylinders to provide equal compression in those cylinders during the combustion or power stroke.

Where diesel operation is preferable, the carburetors 71 may be substituted by suitable fuel injection means (not shown) timed to operate simultaneously with the alignment of the valve body 72 with the ports 63. Where the device is gasoline operated, lubrication is best accomplished by mixing lubricating oil with the fuel as is normally done in the operation of two cycle engines.

It will be observed that by virtue of the presence of the guide rods 54, and the reciprocating plates 58, there is substantially no side wall reaction between the pistons and the cylinder walls, all side wall reaction being absorbed by the rods within respective bearings.

I wish it to be understood that I do not consider the invention limited to the precise details of structure shown and set forth in this specification, for obvious modifications will occur to those skilled in the art to which the I claim:

1. In a cam type internal combustion engine having a relatively stationary frame element, a motion output shaft having a principal axis supported for rotation in said frame element, barrel cams mounted upon said shaft, and cylinders surrounding said shaft and having principal axes parallel to that of said shaft, improved valving means comprising: a valve housing having first, second, third and fourth ports, carburetors communicating with two oppositely disposed ports, exhaust means communicating with the other two of said ports, a rotary valve body mounted on said motion output shaft and disposed within said housing, said body being bounded by a curved peripheral surface and a pair of parallel planar surfaces, said last mentioned surfaces sealing said ports during compression and power strokes in any given cylinder, said body including intake, compression, power and exhaust quadrants serially presented to coaxially aligned cylinders as said shaft rotates.

2. Structures in accordance with claim 1 in which said body includes a peripherally opened portion and a communicating radially opened portion which together extend over substantially degrees.

3. Structure in accordance with claim 1, said cylinders being arranged in coaxially aligned pairs on opposite sides of said valve housing and including a pair of plates connected thereto in direct communication with said valve housing to serve as intake and exhaust manifolding therefor.

4. Structure in accordance with claim 1, said cylinders being arranged in coaxially aligned pairs on opposite sides of said valve housing and including a first pair of plates connected thereto in direct communication with said valve housing to serve as intake and exhaust manifolding therefor, all of said cylinders being interconnected to one of a second pair of plates lying in a plane perpendicular to the principal axes of said cylinders, a plurality of guide rods aligned in mutually parallel relation for reciprocation through said first and second pair of plates, a third pair of plates mounted upon said guide rods for reciprocation therewith, pistons arranged for reciprocation in said cylinders, and piston rods interconnecting said pistons to one of said third pair of plates; and cam follower means carried by said third pair of plates engaging said barrel cams; whereby said pistons move without substantial side reaction against the inner walls of said cylinders, said side reaction being substantially carried by said guide rods.

References Cited UNITED STATES PATENTS 1/1931 Woolson.

FOREIGN PATENTS 1/1927 Great Britain.

US3456630D 1968-09-16 1968-09-16 Rotary valve cam engine Expired - Lifetime US3456630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US75991968A true 1968-09-16 1968-09-16

Publications (1)

Publication Number Publication Date
US3456630A true US3456630A (en) 1969-07-22

Family

ID=25057465

Family Applications (1)

Application Number Title Priority Date Filing Date
US3456630D Expired - Lifetime US3456630A (en) 1968-09-16 1968-09-16 Rotary valve cam engine

Country Status (1)

Country Link
US (1) US3456630A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805749A (en) * 1972-11-01 1974-04-23 P Karlan Rotary valve cam engine
US4022167A (en) * 1974-01-14 1977-05-10 Haakon Henrik Kristiansen Internal combustion engine and operating cycle
US4090478A (en) * 1976-07-26 1978-05-23 Trimble James A Multiple cylinder sinusoidal engine
FR2457377A1 (en) * 1979-05-22 1980-12-19 Haakon Henrik Internal combustion engine and thermodynamic conversion process
USRE30565E (en) * 1979-03-26 1981-04-07 Kristiansen Cycle Engines Ltd. Internal combustion engine and operating cycle
US4432310A (en) * 1979-05-03 1984-02-21 Leonard J. E. Waller Parallel cylinder internal combustion engine
US4516536A (en) * 1981-05-06 1985-05-14 Williams Gerald J Three cycle internal combustion engine
US4610223A (en) * 1984-09-04 1986-09-09 Paul Karlan Cam engine
US4979406A (en) * 1979-05-03 1990-12-25 Walter J. Monacelli Cam with sinusoidal cam lobe surfaces
US5031581A (en) * 1988-08-29 1991-07-16 Powell Brian L Crankless reciprocating machine
US5452689A (en) * 1994-05-02 1995-09-26 Karlan; Paul Rotary valve cam engine
US5551383A (en) * 1995-07-20 1996-09-03 Novotny; Rudolph J. Internal combustion engine utilizing pistons
US5603245A (en) * 1993-02-02 1997-02-18 Schumag Aktiengesellschaft Method for a translatory motion of components
US5799629A (en) * 1993-08-27 1998-09-01 Lowi, Jr.; Alvin Adiabatic, two-stroke cycle engine having external piston rod alignment
US6279519B1 (en) 2001-02-15 2001-08-28 William S. Nagel Air and water cooled opposed cylinder aircraft engine
US6662775B2 (en) 1999-03-23 2003-12-16 Thomas Engine Company, Llc Integral air compressor for boost air in barrel engine
US6698394B2 (en) 1999-03-23 2004-03-02 Thomas Engine Company Homogenous charge compression ignition and barrel engines
US20050081805A1 (en) * 2001-12-18 2005-04-21 Mechanical Innovation, Inc., A Florida Corporation Internal combustion engine using opposed pistons
US7753659B2 (en) 2006-04-10 2010-07-13 The Boeing Company Axial cam air motor
US8046299B2 (en) 2003-10-15 2011-10-25 American Express Travel Related Services Company, Inc. Systems, methods, and devices for selling transaction accounts
US10443491B1 (en) 2018-11-07 2019-10-15 Hts Llc Opposed piston engine with serial combustion chambers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB264893A (en) * 1925-09-26 1927-01-26 Rowland Williams Improvements in internal combustion engines having cylinders arranged parallel to a central shaft
US1788140A (en) * 1928-04-19 1931-01-06 Packard Motor Car Co Internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB264893A (en) * 1925-09-26 1927-01-26 Rowland Williams Improvements in internal combustion engines having cylinders arranged parallel to a central shaft
US1788140A (en) * 1928-04-19 1931-01-06 Packard Motor Car Co Internal-combustion engine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805749A (en) * 1972-11-01 1974-04-23 P Karlan Rotary valve cam engine
US4022167A (en) * 1974-01-14 1977-05-10 Haakon Henrik Kristiansen Internal combustion engine and operating cycle
US4090478A (en) * 1976-07-26 1978-05-23 Trimble James A Multiple cylinder sinusoidal engine
USRE30565E (en) * 1979-03-26 1981-04-07 Kristiansen Cycle Engines Ltd. Internal combustion engine and operating cycle
US4432310A (en) * 1979-05-03 1984-02-21 Leonard J. E. Waller Parallel cylinder internal combustion engine
US4979406A (en) * 1979-05-03 1990-12-25 Walter J. Monacelli Cam with sinusoidal cam lobe surfaces
FR2457377A1 (en) * 1979-05-22 1980-12-19 Haakon Henrik Internal combustion engine and thermodynamic conversion process
US4516536A (en) * 1981-05-06 1985-05-14 Williams Gerald J Three cycle internal combustion engine
US4610223A (en) * 1984-09-04 1986-09-09 Paul Karlan Cam engine
US5031581A (en) * 1988-08-29 1991-07-16 Powell Brian L Crankless reciprocating machine
US5603245A (en) * 1993-02-02 1997-02-18 Schumag Aktiengesellschaft Method for a translatory motion of components
US5799629A (en) * 1993-08-27 1998-09-01 Lowi, Jr.; Alvin Adiabatic, two-stroke cycle engine having external piston rod alignment
US5452689A (en) * 1994-05-02 1995-09-26 Karlan; Paul Rotary valve cam engine
US5551383A (en) * 1995-07-20 1996-09-03 Novotny; Rudolph J. Internal combustion engine utilizing pistons
US6662775B2 (en) 1999-03-23 2003-12-16 Thomas Engine Company, Llc Integral air compressor for boost air in barrel engine
US6698394B2 (en) 1999-03-23 2004-03-02 Thomas Engine Company Homogenous charge compression ignition and barrel engines
US6279519B1 (en) 2001-02-15 2001-08-28 William S. Nagel Air and water cooled opposed cylinder aircraft engine
US20050081805A1 (en) * 2001-12-18 2005-04-21 Mechanical Innovation, Inc., A Florida Corporation Internal combustion engine using opposed pistons
US7124716B2 (en) * 2001-12-18 2006-10-24 Mechanical Innovation, Inc. Internal combustion engine using opposed pistons
US8046299B2 (en) 2003-10-15 2011-10-25 American Express Travel Related Services Company, Inc. Systems, methods, and devices for selling transaction accounts
US7753659B2 (en) 2006-04-10 2010-07-13 The Boeing Company Axial cam air motor
US10443491B1 (en) 2018-11-07 2019-10-15 Hts Llc Opposed piston engine with serial combustion chambers
US10465516B1 (en) 2018-11-07 2019-11-05 Hts Llc Opposed piston engine cam shape

Similar Documents

Publication Publication Date Title
US3517652A (en) Two-cycle engine
US3572209A (en) Radial engine
US4334506A (en) Reciprocating rotary engine
US3084678A (en) Internal combustion engine with shifting cylinders
US3964450A (en) Rotary cam internal combustion radial engine
US4090478A (en) Multiple cylinder sinusoidal engine
KR960007104B1 (en) Engine using compressed air
US6880494B2 (en) Toroidal internal combustion engine
US4022167A (en) Internal combustion engine and operating cycle
US5031581A (en) Crankless reciprocating machine
US3855977A (en) Rotary internal-combustion engine
DE60018609T2 (en) Piston engine with balancing and charging
USRE30565E (en) Internal combustion engine and operating cycle
US4599976A (en) Reciprocating rotary piston thermal engine with a spherical chamber
US4026252A (en) Engine construction
CA1107202A (en) Internal combustion engine
US3945359A (en) Rotor engine
EP2171211B1 (en) Internal combustion engines
US3517651A (en) Rotary two-cycle engine
US3256866A (en) Internal combustion engine
EP0177214A2 (en) Compact internal combustion engines
US3274982A (en) Two-cycle two-cylinder internal combustion engine
RU2168035C2 (en) Axial piston rotary engine
US4030471A (en) Opposed piston engine
US3757748A (en) Rotating combustion engine