US3817058A - Cylinder and dial construction for knitting machines - Google Patents

Cylinder and dial construction for knitting machines Download PDF

Info

Publication number
US3817058A
US3817058A US00182822A US18282271A US3817058A US 3817058 A US3817058 A US 3817058A US 00182822 A US00182822 A US 00182822A US 18282271 A US18282271 A US 18282271A US 3817058 A US3817058 A US 3817058A
Authority
US
United States
Prior art keywords
cylinder
knitting
lubricant
elements
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00182822A
Inventor
V Lombardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00182822A priority Critical patent/US3817058A/en
Priority to DE2416626A priority patent/DE2416626A1/en
Application granted granted Critical
Publication of US3817058A publication Critical patent/US3817058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/14Needle cylinders
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/10Needle beds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/02Knitting tools or instruments not provided for in group D04B15/00 or D04B27/00
    • D04B35/04Latch needles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/28Devices for lubricating machine parts

Definitions

  • ABSTRACT Spaces and passageways are formed behind the knit ting elements in cylinder constructions associated with circular knitting machines and cut-out portions or circumferential grooves are provided in the walls which constrain the movement of the elements and such cutout portions communicate with the spaces to allow lubricant applied from at least one position outwardly of the knitting elements and at locations juxtaposed to the cut-out portions of the walls to pass between the knitting elements into the spaces which include lubricant reservoirs to (a) facilitate the lubrication of these elements, and (b) to improve heat transfer away from portions of the machine at which frictional heat is produced by the sliding action within their respective slots of sinkers, needles, or other knitting instrumentalities.
  • a provision is made for improved lubrication between the needle and the cylinder by relieving a back portion of the needle to create a lubricant reservoir in the offset portion of the needle.
  • lubricating means positioned outwardly of the knitting elements are provided to apply lubricant to at least two sides of the knitting elements.
  • a provision is made to lubricate the cylindrical bearing surface of the sleeve gear member on which the cylinder is slidably mounted for relatively vertical movement.
  • Circular knitting machines are well known in the art and include machines having various diameters of cylinder constructions, cylinders which include horizontally disposed sinkers at their tops, other well known cylinder and dial combinations such as used in rib knitting machines, and constructions of links and links or superimposed cylinder design.
  • the cylinder and dial portions of a knitting machine are very important parts of the entire machine, and the preciseness with which these components can be manufactured and the subsequent regard to their adequate maintenance under mill operating conditions determine the real limitations for a given machine in terms of fabric quality and speed of production.
  • the proper application of lubricant and the dissipation of heat during machine operation are important requirements for successful and trouble-free fabric production.
  • the invention contemplates that a lesser quantity of lubricant will be required than with existing conventional systems because in the present invention, the lubricant can penetrate more quickly and more effectively to the sides and backs of knitting elements where the need for proper lubrication is greatest. Consequently, considerable lubricating economies can be effected in the practice of the invention.
  • the cut-out portions of the Walls permit speedy penetration of the lubricant to the sides and backs of the knitting elements with virtually no bouncing back of the lubricant into the atmosphere since the knitting elements and their cooperating walls do not present unbroken surfaces at the lubricating levels; rather since the cut-out portions of the insert or wall members are located at those levels where lubricating means are provided, minimal quantities of lubricant are required to adequately lubricate the knitting elements at all sides without the formation of the oil mist fog condition. With conventional existing systems, more lubricant is needed and greater oil pres sure has to be applied for longer periods to effect machine lubrication. These factors result in the utilization of more oil than is necessary for adequate lubrication and contribute greatly to the formation of the oil mist fog described.
  • the present invention makes possible an improved and more uniform application of lubricant on the bearing surfaces of these knitting elements disposed in cylinder and dial members of a knitting machine.
  • the invention also permits a better and more uniform application of lubricant to the cylindrical bearing surface of the sleeve gear member on which the cylinder is slidably mounted for relative vertical movement.
  • the present invention comprises the formation of cut-out portions within the walls which guide the movement of the knitting elements which cut-out portions communicate with spaces and passageways similar to those disclosed in the above-mentioned patent whereby lubricant which is applied to said knitting elements by means positioned outwardly of said elements and at levels juxtaposed to the cut-out portions in the walls passes between these knitting elements to said spaces which act as lubricant reservoirs.
  • the shapes of the cut-out portions and/or, spaces may be varied.
  • lubricant spray means positioned outwardly of the knitting elements are provided to lubricate each side of each knitting element as it reciprocates in its respective slot and such spray means may be provided at various levels and may be spaced circumferentially around the machine.
  • pneumatic cooling means may be provided at certain of the levels adjacent to cut-out portions in the walls, whereby dissipation of frictional heat generated during knitting is facilitated.
  • passageways which communicate with the spaces formed in an outside surface of the cylinder may be sloped with respect to said spaces from a higher level outwardly of the cylinder to a lower level inwardly of the cylinder so that when conditions so dictate, excess lubricant will flow from the reservoirs provided in the spaces to a suitable container positioned at said lower level of said passageways.
  • FIG. 1 is an elevational view in cross section of an inserted-wall cylinder construction of the type known as a sinker-top or open top cylinder having a sinker dial assembly included therewith;
  • FIG. 2 is a side elevational view of a cylinder insert element used in the construction shown in FIG. 1;
  • FIG. 3 is a frontal view of a portion of a cylinder illustrating the relationship between the knitting needles and the cylinder inserts;
  • FIG. 4 is an elevational view of a portion of the FIG. 1 view with the cylinder insert member omitted for clarity;
  • FIG. 5 is an alternate embodiment of the FIG. 4 construction
  • FIG. 6 is an alternate embodiment of the FIG. 1 construction
  • FIG. 7 is an alternate embodiment of the cylinder insert element illustrated in FIG. 2;
  • FIG. 8 is a side view of shorter insert elements used in the construction of FIG. 6;
  • FIG. 9 is an elevational view in cross section illustrating a solid wall cylinder construction, with its needle and jack means omitted for clarity;
  • FIG. 10 is an elevational view of the solid wall cylinder of FIG. 9 with a needle and jack means in place;
  • FIG. 11 is an elevational view in cross section of a machine of solid wall dial and cylinder construction
  • FIG. 12 illustrates the dial portion of FIG. 11 with the dial needle removed for clarity
  • FIG. 13 illustrates another form of dial construction
  • FIG. 14 is an alternate embodiment of a cylinder for the machine shown in FIG. 11;
  • FIG. 15 is a frontal view of a cylinder cam layout indicating the path of a knitting wave encountered in single jersey knitting
  • FIG. 16 is a top cross sectional view of the cylinder and cylinder cam layout taken along the line l6l6 in FIG. 15;
  • FIG. 17 is an elevational view in cross-section of a portion of a revolving cylinder knitting machine in which the cylinder is slidably mounted for relative motion on a sleeve gear member.
  • FIG. 1 a main body section of a cylinder 20 is shown in cross section with the inner surface of the cylinder being to the left of the drawing while the outer surface of the cylinder is to the right of the FIG. 1 view.
  • the cylinder member has been machined with plural longitudinal slots extending in the axial direction around its entire circumference to a depth 21 to receive a series of insert elements 30 (shown separately in FIG. 2).
  • the insert elements 30 project outwardly from the outside diameter indicated at 19, said insert members in combination creating a series of vertical slots in which knitting instruments, for example, needles 28 having butts 28, are made to operate in the knitting process.
  • the cylinder member 20 is machined with at least one outer annular channel or groove 69 to a depth 73 and with beveled portions 70.
  • the inside diameter may also be channeled and this is generally indicated at 67.
  • a series of circumferentially spaced apertures 68 may be drilled completely through the cylinder.
  • the apertures may be drilled through the cylinder at several levels or simply at one level as shown.
  • apertures 68 are not restricted to drilled holes but may take the form of slotted passageways as illustrated at 66 of FIG. 7a of applicants abovementioned patent.
  • inserts are machined into the outside surface of the cylinder to receive the cylinder insert elements 30, as shown in FIG. 2, which form the side walls for knitting instrument guiding slots.
  • These insert members may be held in the cylinder by a clamping ring 37 designed to fit into a notched portion of the upper end of the insert. A rolling action at the bottom-most portion of the insert exerts sufficient pressure to lock the insert securely in place in its slot. Inserts can also be held in place by soldering, or by the application of Lock-tite," a trade name for a bonding compound which, when applied between the cylinder insert slotand the insert member itself, securely joins them together. It will be understood that the insert member itself can consist of shorter elements appropriately fastened into the cylinder slot such that the space between the shorter elements will define a cut-out portion for the application of lubricant.
  • each cut-out portion 31 extends inwardly of the back of the needle 28 and occupies a position defined by an annular groove 69 of cylinder 20.
  • the cut-out portions 31 together define an exterior circumferential groove of a height or width less than the groove 69 machined in the cylinder member 20.
  • the groove 69, together with the inserts 30, define a space behind each needle 28 in direct communication with the circumferential groove defined by the cut-outs 31. It will be apparent that the needle will be exposed at its sides, as well as the front and'back edges at those locations where the cylinder insert members have the cutouts 31.
  • insert members 30 are bevelled at locations 34 of the cut-out portions 31 as best shown in FIG. 3 to further facilitate lubricating the sides of needles 28.
  • the oil will impinge on surface 73, which constitutes the innermost portion of annular groove 69 and will settle on the annular bevel 70, the lower edge of which is below the cut-out 31 so that the lower end of each space forms a reservoir for lubricant.
  • a sinker dial member 32 which is affixed to the upper end of cylinder 20 by set screws 34' to guide sinkers 24 has been channeled at 41 to a depth 43 which channel 1 serves essentially the same function as the cut-out portion of cylinder insert 30 and reservoir groove 69.
  • the cut-out 27 in sinker guide ring 26, serves an analogous function as the cut-out portion 31 of the cylinder insert 30. It will be appreciated, however, that during mill operation, fabric from the back of the needie will shield the cut-out 27 and prevent the application of lubricant to the cut-out portion.
  • the cut-out in this instance is to facilitate running in" of the machine during machine manufacture before the machine has been threaded up for fabric production. This consideration applies also to cut-out portion 36 of bearing member 46.
  • the sinker guide ring 26 and the bearing'member 46 are mounted to the cylinder 20 by bolt means 60 and thus are vertically adjustable through the substitution of various washers 55 of different thicknesses.
  • the surface 57 of bearing member 46 can be precisely adjusted with respect to the surface 35 of dial 32 to avoid a rocking action of the sinlkers 24 as they are guided thereupon.
  • the surface 57 in recessed at radial portions 61 and at annular groove 36 to minimize frictional contact with the sinker 24, to provide a lubricant reservoir and to permit vertical adjustment of bearing member 46 without fear of the sinker contacting surface 61.
  • FIG. 5 is an alternate embodiment of FIG. 1 wherein passageways 68' are angularly disposed to annular groove 69 to insure that any excessive lubricant is permitted to flow over the crest 70', through passageways 68' and into an annular trough 44 to be siphoned off by conventional means not shown. It is to be observed that crest 70 occupies a position inwardly of surface 19 so that a small amount of lubricant is retained in the reservoir and only the excess is permitted to flow into trough 44.
  • FIG. 6 illustrates still another embodiment of FIG. 1 wherein the insert member, rather than comprising a single element 30, as shown in FIG. 2, consists of a series of shorter elements 30 and 30" appropriately positioned and secured so as to define cut-out portions 7 3.1 analogous in function to cut-out portions 31 of FIG. 2.
  • FIG. 7 illustrates a cylinder insert whose cut-out portion has a configuration different from that disclosed in FIG. 2. It will be noted that portions 33 converge outwardly of the cylinder and serve the function of urging lubricant back into the cylinder where it can move effectively lubricate the knitting elements during their reciprocatory motions.
  • shorter elements 30' and 30" are notched at 70" to conform to the reservoirs defined by bevelled portions 70 in the cylinder.
  • This notched configuration will insure an unencumbered annular groove 69 and thus provide for more effective lubrication to the backs and sides of knitting elements.
  • the space 75 is preferably constructed of uniform curve configuration as shown, so that all lubricant introduced at levels A will, under the force of gravity, occupy positions at the bottom-most portions of annular spaces 75 so that as a knitting element is actuated upwardly and downwardly, the lubricant will more readily find its way behind the knitting elements, and as described earlier, squeeze out to the sides of these elements.
  • the grooves may also be shaped in arcuate form to eliminate any possibility of having the leading portion of the jack or needle hangup" in the annular groove during replacement. When needle or jack replacement becomes necessary, the uniformly curved configuration will gently cam the knitting element into its proper vertical position in the cylinder slot.
  • fabric shielding means 44 is appropriately mounted to insure that oil or other dirt will not soil the fabric.
  • FIG. II a machine of dial and cylinder construction in which features of the invention are shown.
  • the cylinder needle 28 is relieved at its back so that a length of the needle back is spaced out of contact with the bottom of the needle slot.
  • cylinder 20 is grooved 69 and 67 for the purposes described above.
  • the groove 69 will facilitate the application of lubricant to the sides of needle 28, as well as to the back and front edges of the needle.
  • the lower end 28" of the needle relief is normally below the bevelled portion 70 to form a reservoir for lubricant which will effectively lubricate the knitting elements.
  • this construction also minimizes frictional contact between needle 28 and cylinder 20 and since it increases the surface area of needle 28, it increases the rate of heat dissipation therefrom.
  • the dial section 85 of FIG. 11 has cut-out portions 95 which, it will be noted, extend downwardly, but
  • FIG. 12 represents the dial portion of FIG. 11 with the dial needle removed for clarity.
  • FIG. 13 shows another dial embodiment in which the cut-out, or channeled portion 98 is angled in a V-shape to terminate at the bottom of the slot 99. Therefore, when oil is applied along lines defined by the V-type grooves 98, the lubri cant will settle to the bottom of the V, thus insuring a more positive and better localized type application.
  • annular channel 69 extends to a depth 73 which is outwardly of the innermost portion 19 of the cylinder slot but inwardly of the needle relieved portion. Therefore, partial wall portions 30 are defined to provide increased strength and resistance to bending in wall 30. It will be understood that lubricant spray means directed into channel 69 will cause lubricant to be deposited on the fronts and sides of knitting elements and that lubricant will penetrate directly into the slots defined by the partial wall portions 30'. Consequently, each knitting element will have its individual reservoir of lubricant. Channel portions 69 are bevelled at 31' to facilitate the directing of the lubricant.
  • FIG. 15 is broadly illustrative of a cam layout and the knitting wave 16 associated with this knitting action.
  • Cylinder 20 is moving in a clockwise direction as shown by arrow C. Cut-out 31 has been described in connection with FIG. 2.
  • Stitch cam 17 and raising cam 18 indicate'extreme positions of needle 28.
  • oil mist or oil lubricating means generally indicated at 15 and 15 are provided in cam ring section 100.
  • Stitch cam 17, raising cam 18 and needle butt 28' of needle 28 have been omitted from this view for clarity.
  • These lubricating means are positioned at the same level at which cut-out 31 is located and oppositely angled toward a common point.
  • lubricant will be made not only to impinge as by spraying through channels 15 and 15' on both sides of the knitting elements through cut-outs 31, but also to enter into the annular channel as shown, for example, at location 69 in FIG. I or location of FIG. 10.
  • lubricating means may be spaced axially at different cut-out portions 31 to, simultaneously, lubricate different parts of a given knitting instrument. It will be understood that lubricant can also be applied to the knitting elements by means other than spraying.
  • FIG. 17 illustrates how in the practice of the invention a better and more uniform application of lubricant to the sleeve gear member of a revolving cylinder knitting machine is possible.
  • fashioning relates to the shaping of the stocking by automatically changing the stitch length during the knitting of differcut portions of the stocking to insure a better fit on the leg of the wearer. This automatic changing of the stitch length is effected by raising or lowering the cylinder of the machine relative to cams fixed in the cam ring.
  • FIG. 17 cylinder 20 slidably mounted on sleeve gear ring member 76 for vertical movement relative thereto. Key means 78 are provided to insure this relative vertical movement. Ring gear 82 which is integral with sleeve gear ring 76 is driven by means not shown. Consequentlyfcylinder member 20 which is keyed to sleeve gear ring 76 will also rotate. Therefore needles 28 will be actuated by fixedly mounted cams 17'. The vertical location of cylinder 20 relative to fixed cam means 17' will determine the length of stitch.
  • the cylinder 20 is slidably mounted on sleeve gear ring 76 at polished bearing surfaces 77. ln conventional design, these bearing surfaces are relatively inaccessible and difficult to lubricate.
  • a circular knitting machine comprising: cylinder means having a series of exterior spaced longitudinal slots and wall means separating said slots 10 and defining the side surfaces thereof; means defining at least one exterior circumferential groove in said cylinder'means interrupting said wall means; knitting elements carried and tion in said slots; means defining spaces behind said elements between the bottom of each of said slots and the opposed inner surface of the corresponding element at the location of said groove, the bottom of said groove in said wall means being spaced inwardly of said inner surfaces so that the inner portion of said groove in said wall means communicates directly with said spaces, and the lower end of each of said spaces being disposed below said groove to form a reservoir to contain lubricant in contact with said inner surface of said corresponding element; and means for directing lubricant from the exterior of said cylinder means into said groove to penetrate directly thereinto between said elements and thence into said spaces behind said elements.
  • the space-defining means includes relieved portions in said cylinder means having downwardly and outwardly inclined lower surfaces terminating at their lower outer edges below the groove whereby the reservoirs contain wedges of lu bricant against the inner surfaces of the knitting elements.
  • space-defining means includes relieved portions on the backs of the knitting elements terminating at their lower ends in downwardly and inwardly inclined surfaces.
  • the lubricantdirecting means includes a pair of spray nozzles disposed at acute angles opposite in direction with respect to a radius of said cylinder means so that said nozzles spray lubricant on opposite sides of the knitting elements exposed in the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)

Abstract

Spaces and passageways are formed behind the knitting elements in cylinder constructions associated with circular knitting machines and cut-out portions or circumferential grooves are provided in the walls which constrain the movement of the elements and such cut-out portions communicate with the spaces to allow lubricant applied from at least one position outwardly of the knitting elements and at locations juxtaposed to the cut-out portions of the walls to pass between the knitting elements into the spaces which include lubricant reservoirs to (a) facilitate the lubrication of these elements, and (b) to improve heat transfer away from portions of the machine at which frictional heat is produced by the sliding action within their respective slots of sinkers, needles, or other knitting instrumentalities. Also, a provision is made for improved lubrication between the needle and the cylinder by relieving a back portion of the needle to create a lubricant reservoir in the offset portion of the needle. Further, lubricating means positioned outwardly of the knitting elements are provided to apply lubricant to at least two sides of the knitting elements. In addition, a provision is made to lubricate the cylindrical bearing surface of the sleeve gear member on which the cylinder is slidably mounted for relatively vertical movement.

Description

United States Patent 1191 Lombardi June 18, 1974 1 CYLINDER AND DIAL CONSTRUCTION FOR KNITTING MACHINES [76] Inventor: Victor J. Lombardi, 2715 Charlotte Ln., Burlington, NC. 27215 [22] Filed: Sept. 22, 1971 [21] Appl. N0.: 182,822
[52] 11.8. C1 66/8, 66/19, 66/55, 66/107, 6'6/115 [51] Int. Cl D04b 35/28 [58] Field of Search 66/8, 107, 104, 19, 115, 66/55; 184/626 [56] References Cited UNITED STATES PATENTS 335,587 2/1886 Huse 66/104 X 349,448 9/1886 O'Neil 66/8 X 541,406 6/1895 Williams 66/107 1,100,805 6/1914 Wilcomb 66/115 X 1,100,806 6/1914 Wilcomb.... 66/8 X 1,216,900 Z/l9l7 Wildman 66/1 15 X 1,514,500 11/1924 Berdon 66/8 1,758,079 5/1930 Kappes 6 6/1 15 x- 2,l20,796 6/1938 Coile 66/8 X' 2,372,019 3/1945 Saftlas 66/8 X 2,399,440 4/1946 Koppel 66/115 2,401,083 5/1946 Koppel 66/115 2,707,872 5/1955 McDaniel, Sr 66/8 2,723,543 11/1955 Chiodine et a1. 66/19 2,725,734 12/1955 Oberly 66/8 2,800,119 7/1957 Schmidl 184/626 X 3,078,960 2/1963 Minton 66/8 X 3,500,661 3/1970 Kohler et a1. 66/8 3,545,233 12/1970 Lombardi 66/107 X 3,587,251 6/1971 Vincoli 66/8 3,640,094 2/1972 Piana e1 :11. 66/19 Hosiery Trade Journal, Feb. 127 &
[57] ABSTRACT Spaces and passageways are formed behind the knit ting elements in cylinder constructions associated with circular knitting machines and cut-out portions or circumferential grooves are provided in the walls which constrain the movement of the elements and such cutout portions communicate with the spaces to allow lubricant applied from at least one position outwardly of the knitting elements and at locations juxtaposed to the cut-out portions of the walls to pass between the knitting elements into the spaces which include lubricant reservoirs to (a) facilitate the lubrication of these elements, and (b) to improve heat transfer away from portions of the machine at which frictional heat is produced by the sliding action within their respective slots of sinkers, needles, or other knitting instrumentalities. Also, a provision is made for improved lubrication between the needle and the cylinder by relieving a back portion of the needle to create a lubricant reservoir in the offset portion of the needle. Further, lubricating means positioned outwardly of the knitting elements are provided to apply lubricant to at least two sides of the knitting elements. In addition, a provision is made to lubricate the cylindrical bearing surface of the sleeve gear member on which the cylinder is slidably mounted for relatively vertical movement.
7 Claims, 17 Drawing Figures ammsa SHEU 2 0F 6 INVENTOR VICTOR U LONE H RDI BY cusuMnN,DnRBY;cusunAN ATTORNEY PATENTEDJun 10 m4 sum u n; 6
INVENIOR VICTQR J. Lonanam BY CUSHMBN, DARBY gcusuvmw ATTORNEY PATENTEDJum m4 3.817358 SHEET 5 BF 6 INVENTOR VICTOR rT- LCmBHRm BY cusmq n Npmasyfcusu MAN ATTORNEY PATENTEDJUNIBIBM 3.8171158 snmsnre INVENTOR VICTOR a. LOWBHRYN BYCUSH mnw, DRRBY CUSH MAN ATTORNEY BRIEF DESCRIPTION AND SUMMARY OF THE INVENTION This invention relates to circular knitting machines and to improvements in cylinder and dial constructions associated with such machines. More precisely, this invention relates to an improvement in the circular knitting machines disclosed in the applicants U. S. Pat. No. 3,545,233 issued on Dec. 8, I970.
Circular knitting machines are well known in the art and include machines having various diameters of cylinder constructions, cylinders which include horizontally disposed sinkers at their tops, other well known cylinder and dial combinations such as used in rib knitting machines, and constructions of links and links or superimposed cylinder design.
The cylinder and dial portions of a knitting machine are very important parts of the entire machine, and the preciseness with which these components can be manufactured and the subsequent regard to their adequate maintenance under mill operating conditions determine the real limitations for a given machine in terms of fabric quality and speed of production. The proper application of lubricant and the dissipation of heat during machine operation are important requirements for successful and trouble-free fabric production.
The aforementioned patent discloses novel constructions which permit a more precise manufacture of cylinder and dial members, which facilitate lint removal therefrom and which provide lubricant reservoir means associated with an outside cylinder surface adjacent to needles, or other knitting instrumentalities.
The patent, however, contemplated the application of lubricant in a conventional manner to the cylinder and to the set of vertically disposed knitting elements associated with the cylinder from a position outwardly of the cylinder assembly; However, in view of the extremely close manufacturing allowances between the knitting elements and the cylinder slots in which they operate, adequate penetration of the lubricant to the sides and backs of the knitting elements was not always achieved, and therefore. the full potential of the reservoir means feature could be only partially realized.
It is the purpose of the present invention to improve the means whereby adequate lubrication is applied from positions outwardly of cylinder and dial members to all sides of the knitting elements, to insure an adequate supply of lubricant to the reservoir means for the purpose described, and to facilitate the dissipation of frictional heat generated during knitting.
In addition, the invention contemplates that a lesser quantity of lubricant will be required than with existing conventional systems because in the present invention, the lubricant can penetrate more quickly and more effectively to the sides and backs of knitting elements where the need for proper lubrication is greatest. Consequently, considerable lubricating economies can be effected in the practice of the invention.
It is, also, a purpose of the present invention to minimize the formation of the oil mist fog which frequently results when spray lubrication means are utilized in circular machines incorporating cylinder and dial members of conventional design. When spray lubricating means are used with cylinders of conventional design, the close tolerance which exists between the knitting elements and the slots in which the knitting elements are made to operate present virtually an unbroken surface which causes much of the lubricating oil spray to bounce back away from the cylinder into the atmosphere surrounding the machine, thereby, creating the oil mist fog conditions described. Especially, in the case of hosiery machines where several hundred units are frequently closely mounted side by side in the same knitting room does the problem of oil mist fog become acute. With the present invention, the cut-out portions of the Walls permit speedy penetration of the lubricant to the sides and backs of the knitting elements with virtually no bouncing back of the lubricant into the atmosphere since the knitting elements and their cooperating walls do not present unbroken surfaces at the lubricating levels; rather since the cut-out portions of the insert or wall members are located at those levels where lubricating means are provided, minimal quantities of lubricant are required to adequately lubricate the knitting elements at all sides without the formation of the oil mist fog condition. With conventional existing systems, more lubricant is needed and greater oil pres sure has to be applied for longer periods to effect machine lubrication. These factors result in the utilization of more oil than is necessary for adequate lubrication and contribute greatly to the formation of the oil mist fog described.
The importance of proper lubrication of knitting machinery cannot be overstated. For example, when a single jersey machine of, say, 30 inches diameter X 28 needles per inch of circumference l20-feed operates at 18 RPM-a currently popular model-each needle is vertically actuated in its cooperating slot 240 times during each revolution of the machine. This means that for every minute of machine operation, the needle is activated a total of 4,320 times, or 259,200 times per hour. Translating this in terms of a .375 inch vertical movement for each actuation, it will be seen that for each hour of machine operation, a. single knitting needle will be moved in a sliding engagement within its respective slot, a distance of approximately 1.5 miles. The full complement of needles in the cylinder would, therefore, have a total movement of approximately 3,900 miles per hour, or greater than the distance around the world in an eight hour period. It is little wonder, therefore, why knowledgeable individuals in the knitting industry consider proper lubrication to be the most critical single requirement for the successful operation of a knitting machine. This does not mean just the outside surfaces of the cylinder and dial portions of the machine, but more importantly, the needles, jacks, sinkers, or other knitting instruments associated with knitting equipment. Earlier, it was common practice in many knitting mills to oil machines manually at some supposedly fixed time interval; understandably, with the human factor involved, the application was erratic and this practice resulted in a number of problems, among which the following might be noted:
a. A heavy application of oil creates a drag on the needles which retards their action. This results in the production of off-quality fabric since needles which are restrained from free movement in their respective needle slots produce knitted loops which are smaller than would be the case with uninhibited needle movement. In the case, for example, of hosiery, short lengths of stockings would be produced until the oil had worked uniformly into the machine.
b. Heavy oil application increases, at least temporarily, the power requirements necessary to drive the knitting machine.
c. After several hours operation, the oil film between the knitting elements and the slots in which they operate is diminished and metal-to-metal contact begins. This creates frictional build-up which results in heating of the machine, in accelerating the wear of knitting instruments, and in time, causing a breakdown in the lubricant, thereby seriously impairing its effectiveness. The efficiency of the knitting machine, and the quality of production, accordingly, suffer.
The development of automatic oiling devices has greatly improved the condition; however, these devices, operating within the limitations of existing cylinder and dial design, do not permit the adequate application of oil on the critical portions of moving knitting elements where such lubrication is most seriously required.
The present invention makes possible an improved and more uniform application of lubricant on the bearing surfaces of these knitting elements disposed in cylinder and dial members of a knitting machine. The invention also permits a better and more uniform application of lubricant to the cylindrical bearing surface of the sleeve gear member on which the cylinder is slidably mounted for relative vertical movement.
Basically, the present invention comprises the formation of cut-out portions within the walls which guide the movement of the knitting elements which cut-out portions communicate with spaces and passageways similar to those disclosed in the above-mentioned patent whereby lubricant which is applied to said knitting elements by means positioned outwardly of said elements and at levels juxtaposed to the cut-out portions in the walls passes between these knitting elements to said spaces which act as lubricant reservoirs. The shapes of the cut-out portions and/or, spaces may be varied.
In addition, lubricant spray means positioned outwardly of the knitting elements are provided to lubricate each side of each knitting element as it reciprocates in its respective slot and such spray means may be provided at various levels and may be spaced circumferentially around the machine.
Furthermore, pneumatic cooling means may be provided at certain of the levels adjacent to cut-out portions in the walls, whereby dissipation of frictional heat generated during knitting is facilitated.
Furthermore. the passageways which communicate with the spaces formed in an outside surface of the cylinder may be sloped with respect to said spaces from a higher level outwardly of the cylinder to a lower level inwardly of the cylinder so that when conditions so dictate, excess lubricant will flow from the reservoirs provided in the spaces to a suitable container positioned at said lower level of said passageways.
BRIEF DESCRIPTION OF THE DRAWINGS The above and other features and advantages are accomplished by the preferred embodiments of the invention which will now be described with reference to the drawings in which:
FIG. 1 is an elevational view in cross section of an inserted-wall cylinder construction of the type known as a sinker-top or open top cylinder having a sinker dial assembly included therewith;
FIG. 2 is a side elevational view of a cylinder insert element used in the construction shown in FIG. 1;
FIG. 3 is a frontal view of a portion of a cylinder illustrating the relationship between the knitting needles and the cylinder inserts;
FIG. 4 is an elevational view of a portion of the FIG. 1 view with the cylinder insert member omitted for clarity;
FIG. 5 is an alternate embodiment of the FIG. 4 construction;
FIG. 6 is an alternate embodiment of the FIG. 1 construction;
FIG. 7 is an alternate embodiment of the cylinder insert element illustrated in FIG. 2;
FIG. 8 is a side view of shorter insert elements used in the construction of FIG. 6;
FIG. 9 is an elevational view in cross section illustrating a solid wall cylinder construction, with its needle and jack means omitted for clarity;
FIG. 10 is an elevational view of the solid wall cylinder of FIG. 9 with a needle and jack means in place;
FIG. 11 is an elevational view in cross section of a machine of solid wall dial and cylinder construction;
FIG. 12 illustrates the dial portion of FIG. 11 with the dial needle removed for clarity;
FIG. 13 illustrates another form of dial construction;
FIG. 14 is an alternate embodiment of a cylinder for the machine shown in FIG. 11;
FIG. 15 is a frontal view of a cylinder cam layout indicating the path of a knitting wave encountered in single jersey knitting;
FIG. 16 is a top cross sectional view of the cylinder and cylinder cam layout taken along the line l6l6 in FIG. 15; and
FIG. 17 is an elevational view in cross-section of a portion of a revolving cylinder knitting machine in which the cylinder is slidably mounted for relative motion on a sleeve gear member.
Similar elements are identified by identical reference numerals throughout the drawings.
DETAILED DISCUSSION OF PREFERRED EMBODIMENTS In the following discussion of the invention, it will be understood that cylinder and dial constructions are discussed with reference to known arrangements and relationships of cylinders and dials in circular knitting machines. In the drawings, the cylinder and dial constructions are shown as portions only of what would comprise an entire cylinder or dial assembly, and the remaining assemblies. associated with typical circular knitting machines have been omitted for clarity. How ever, the drawings and the following discussion are intended to be related to known circular knitting machine constructions and operations.
Other details of construction of the cylinder appear in the applicants above-mentioned patent which is incorporated by reference into this disclosure. Thus, only those details of construction pertaining to the various novel features which constitute the present invention will be emphasized below.
In FIG. 1, a main body section of a cylinder 20 is shown in cross section with the inner surface of the cylinder being to the left of the drawing while the outer surface of the cylinder is to the right of the FIG. 1 view.
The cylinder member has been machined with plural longitudinal slots extending in the axial direction around its entire circumference to a depth 21 to receive a series of insert elements 30 (shown separately in FIG. 2). The insert elements 30 project outwardly from the outside diameter indicated at 19, said insert members in combination creating a series of vertical slots in which knitting instruments, for example, needles 28 having butts 28, are made to operate in the knitting process. As further shown in FIG. 4, the cylinder member 20 is machined with at least one outer annular channel or groove 69 to a depth 73 and with beveled portions 70. The inside diameter may also be channeled and this is generally indicated at 67. After the channels, orgrooves have been machined into the cylinder, a series of circumferentially spaced apertures 68, as best shown in FIGS. 1 and 3, may be drilled completely through the cylinder. The apertures may be drilled through the cylinder at several levels or simply at one level as shown.
It will be understood that the apertures 68 are not restricted to drilled holes but may take the form of slotted passageways as illustrated at 66 of FIG. 7a of applicants abovementioned patent.
After the cylinder blank has been turned, grooved and drilled as described, vertically extending slots are machined into the outside surface of the cylinder to receive the cylinder insert elements 30, as shown in FIG. 2, which form the side walls for knitting instrument guiding slots. These insert members may be held in the cylinder by a clamping ring 37 designed to fit into a notched portion of the upper end of the insert. A rolling action at the bottom-most portion of the insert exerts sufficient pressure to lock the insert securely in place in its slot. Inserts can also be held in place by soldering, or by the application of Lock-tite," a trade name for a bonding compound which, when applied between the cylinder insert slotand the insert member itself, securely joins them together. It will be understood that the insert member itself can consist of shorter elements appropriately fastened into the cylinder slot such that the space between the shorter elements will define a cut-out portion for the application of lubricant.
It will be observed that the insert element 30 has cutout portions 31, extending to a depth 33. As shown in FIG. 1, each cut-out portion 31 extends inwardly of the back of the needle 28 and occupies a position defined by an annular groove 69 of cylinder 20. The cut-out portions 31 together define an exterior circumferential groove of a height or width less than the groove 69 machined in the cylinder member 20. Moreover, the groove 69, together with the inserts 30, define a space behind each needle 28 in direct communication with the circumferential groove defined by the cut-outs 31. It will be apparent that the needle will be exposed at its sides, as well as the front and'back edges at those locations where the cylinder insert members have the cutouts 31. Consequently, the application of lubricant by spray means to the needles on a timed basis along the lines generally indicated in FIG. 1 by the arrows A will deposit oil on all sides of the knitting needles because the oil will penetrate directly onto the aforesaid spaces. It is to be noted that insert members 30 are bevelled at locations 34 of the cut-out portions 31 as best shown in FIG. 3 to further facilitate lubricating the sides of needles 28. Of equal importance is that the oil will impinge on surface 73, which constitutes the innermost portion of annular groove 69 and will settle on the annular bevel 70, the lower edge of which is below the cut-out 31 so that the lower end of each space forms a reservoir for lubricant. Consequently, as the needle reciprocates, an adequate supply of lubricant will be applied both to the sides of the needle, as well as to the back of the needle. It will be understood also that the accumulation of small quantities of lubricant on the annular bevelled portions will facilitate a wedging action between the back of the needle and the lubricant occupying the annular bevelled portions 70. This will cause the needle to ride on a film of oil and will, at the same time, promote a squeezing action on the oil causing it to flow from the back to the sides of the knitting instruments, thereby .providing additional lubricant thereto. This lubricating action, especially in the case of small diameter applications wherein cylinders are rotated at high speeds will be greately assisted by the centrifugal forces in effect, but at. the same time lubricant will be contained in the reservoir.
A sinker dial member 32 which is affixed to the upper end of cylinder 20 by set screws 34' to guide sinkers 24 has been channeled at 41 to a depth 43 which channel 1 serves essentially the same function as the cut-out portion of cylinder insert 30 and reservoir groove 69. In addition, the cut-out 27 in sinker guide ring 26, serves an analogous function as the cut-out portion 31 of the cylinder insert 30. It will be appreciated, however, that during mill operation, fabric from the back of the needie will shield the cut-out 27 and prevent the application of lubricant to the cut-out portion. The cut-out in this instance is to facilitate running in" of the machine during machine manufacture before the machine has been threaded up for fabric production. This consideration applies also to cut-out portion 36 of bearing member 46.
The sinker guide ring 26 and the bearing'member 46 are mounted to the cylinder 20 by bolt means 60 and thus are vertically adjustable through the substitution of various washers 55 of different thicknesses. Thus, the surface 57 of bearing member 46 can be precisely adjusted with respect to the surface 35 of dial 32 to avoid a rocking action of the sinlkers 24 as they are guided thereupon. The surface 57 in recessed at radial portions 61 and at annular groove 36 to minimize frictional contact with the sinker 24, to provide a lubricant reservoir and to permit vertical adjustment of bearing member 46 without fear of the sinker contacting surface 61.
FIG. 5 is an alternate embodiment of FIG. 1 wherein passageways 68' are angularly disposed to annular groove 69 to insure that any excessive lubricant is permitted to flow over the crest 70', through passageways 68' and into an annular trough 44 to be siphoned off by conventional means not shown. It is to be observed that crest 70 occupies a position inwardly of surface 19 so that a small amount of lubricant is retained in the reservoir and only the excess is permitted to flow into trough 44.
FIG. 6 illustrates still another embodiment of FIG. 1 wherein the insert member, rather than comprising a single element 30, as shown in FIG. 2, consists of a series of shorter elements 30 and 30" appropriately positioned and secured so as to define cut-out portions 7 3.1 analogous in function to cut-out portions 31 of FIG. 2.
FIG. 7 illustrates a cylinder insert whose cut-out portion has a configuration different from that disclosed in FIG. 2. It will be noted that portions 33 converge outwardly of the cylinder and serve the function of urging lubricant back into the cylinder where it can move effectively lubricate the knitting elements during their reciprocatory motions.
It will be observed in FIG. 8 that shorter elements 30' and 30" are notched at 70" to conform to the reservoirs defined by bevelled portions 70 in the cylinder. This notched configuration will insure an unencumbered annular groove 69 and thus provide for more effective lubrication to the backs and sides of knitting elements.
FIGS. 9 and 10 represent elevational views ofa solid wall cylinder according to another embodiment of the invention. FIG. 9 indicates annular grooves 69 terminating in an arcuate portion 73. The grooves, as well as the apertures 68, are machined into the cylinder member prior to slotting the cylinder to a depth 18, creating thereby, a series of walls There is illustrated in FIG. 10 needle means 28 and jack means 29, which cooperate in a common slot. It will be observed in FIG. 10 that annular openings, or channels 75 are created behind each jack member. It is to be further noted that profile 73 commences at the bottom of the slot 18 and extends inwardly of the cylinder to define the aforementioned annular space 75. The space 75 is preferably constructed of uniform curve configuration as shown, so that all lubricant introduced at levels A will, under the force of gravity, occupy positions at the bottom-most portions of annular spaces 75 so that as a knitting element is actuated upwardly and downwardly, the lubricant will more readily find its way behind the knitting elements, and as described earlier, squeeze out to the sides of these elements. The grooves may also be shaped in arcuate form to eliminate any possibility of having the leading portion of the jack or needle hangup" in the annular groove during replacement. When needle or jack replacement becomes necessary, the uniformly curved configuration will gently cam the knitting element into its proper vertical position in the cylinder slot. As shown in FIG. 9, fabric shielding means 44 is appropriately mounted to insure that oil or other dirt will not soil the fabric.
There is illustrated in FIG. II a machine of dial and cylinder construction in which features of the invention are shown. In this instance, however, the cylinder needle 28 is relieved at its back so that a length of the needle back is spaced out of contact with the bottom of the needle slot. In the illustration, cylinder 20 is grooved 69 and 67 for the purposes described above. As explained in the case of FIGS. 1 and 10, the groove 69 will facilitate the application of lubricant to the sides of needle 28, as well as to the back and front edges of the needle. It will be observed that the lower end 28" of the needle relief is normally below the bevelled portion 70 to form a reservoir for lubricant which will effectively lubricate the knitting elements. Of course, this construction also minimizes frictional contact between needle 28 and cylinder 20 and since it increases the surface area of needle 28, it increases the rate of heat dissipation therefrom.
The dial section 85 of FIG. 11 has cut-out portions 95 which, it will be noted, extend downwardly, but
above the bottom-most portion 99 of the needle slot. This construction will provide a reservoir between adjacent needles and cooperating dial walls for retaining oil generally applied along lines B, as shown in FIG. 11. FIG. 12 represents the dial portion of FIG. 11 with the dial needle removed for clarity. FIG. 13 shows another dial embodiment in which the cut-out, or channeled portion 98 is angled in a V-shape to terminate at the bottom of the slot 99. Therefore, when oil is applied along lines defined by the V-type grooves 98, the lubri cant will settle to the bottom of the V, thus insuring a more positive and better localized type application.
is machined so that annular channel 69 extends to a depth 73 which is outwardly of the innermost portion 19 of the cylinder slot but inwardly of the needle relieved portion. Therefore, partial wall portions 30 are defined to provide increased strength and resistance to bending in wall 30. It will be understood that lubricant spray means directed into channel 69 will cause lubricant to be deposited on the fronts and sides of knitting elements and that lubricant will penetrate directly into the slots defined by the partial wall portions 30'. Consequently, each knitting element will have its individual reservoir of lubricant. Channel portions 69 are bevelled at 31' to facilitate the directing of the lubricant.
FIG. 15 is broadly illustrative ofa cam layout and the knitting wave 16 associated with this knitting action. Cylinder 20 is moving in a clockwise direction as shown by arrow C. Cut-out 31 has been described in connection with FIG. 2. Stitch cam 17 and raising cam 18 indicate'extreme positions of needle 28. As best shown in FIG. 16, oil mist or oil lubricating means generally indicated at 15 and 15 are provided in cam ring section 100. Stitch cam 17, raising cam 18 and needle butt 28' of needle 28 have been omitted from this view for clarity. These lubricating means are positioned at the same level at which cut-out 31 is located and oppositely angled toward a common point. Therefore, if lubrication is applied, for example, at 15 in the direction A of machine travel, (indicated by arrow A in FIG. 15), as well as at 15' in the opposite direction as illustrated by arrow A, lubricant will be made not only to impinge as by spraying through channels 15 and 15' on both sides of the knitting elements through cut-outs 31, but also to enter into the annular channel as shown, for example, at location 69 in FIG. I or location of FIG. 10. In addition, by spacing the lubricating means circumferentially, but along the same level as shown in FIG. 15, it will be clear that different portions of the knitting instruments will receive oil during different phases of the knitting cycle. Furthermore, lubricating means may be spaced axially at different cut-out portions 31 to, simultaneously, lubricate different parts of a given knitting instrument. It will be understood that lubricant can also be applied to the knitting elements by means other than spraying.
FIG. 17 illustrates how in the practice of the invention a better and more uniform application of lubricant to the sleeve gear member of a revolving cylinder knitting machine is possible. In the manufacture, especially, of seamless hosiery on small diameter revolving cylinder knitting machines, the term fashioning relates to the shaping of the stocking by automatically changing the stitch length during the knitting of differcut portions of the stocking to insure a better fit on the leg of the wearer. This automatic changing of the stitch length is effected by raising or lowering the cylinder of the machine relative to cams fixed in the cam ring.
There is shown in FIG. 17 cylinder 20 slidably mounted on sleeve gear ring member 76 for vertical movement relative thereto. Key means 78 are provided to insure this relative vertical movement. Ring gear 82 which is integral with sleeve gear ring 76 is driven by means not shown. Consequentlyfcylinder member 20 which is keyed to sleeve gear ring 76 will also rotate. Therefore needles 28 will be actuated by fixedly mounted cams 17'. The vertical location of cylinder 20 relative to fixed cam means 17' will determine the length of stitch. The cylinder 20 is slidably mounted on sleeve gear ring 76 at polished bearing surfaces 77. ln conventional design, these bearing surfaces are relatively inaccessible and difficult to lubricate. However, in the practice of the present invention, the combination of cut-out portions in the wall members with spaces and passageways make possible uniform and effective applications of lubricant to bearing surfaces 77. Cylinder raising pin 79 is cam actuated by drum means not shown to progressively raise and lower the cylinder to effect the shaping of the stocking by automatically changing the stitch length. Other structures shown in FIG. 17 include a cam ring supporting means 100 secured to a bedplate 101 for supporting cam ring 103 as shown.
It will be apparent in FIG. 17 that lubricant generally applied in the direction of arrows A will pass between adjacent knitting elements into annular channels 69. In addition, the lubricant will, in passing through the passageways 68, impinge on surfaces 86 of the sleeve gear ring 76 running down bearing surfaces 77, thereby effectively applying lubricant thereto. ln addition, lubricant will run into opening 83 of the sleeve gear member 76, thereby leaving a deposit of lubricant on the bearing surfaces 84 of the cylinder raising pins 79.. Thus, from lubricating means located outwardly of the knitting cylinder, effective lubrication of the bearing surfaces between sleeve gear and cylinder members can be readily achieved.
Although the invention has been discussed with reference to specific embodiments, variations will become apparent to those skilled in this art. All such variations as may be considered equivalent to or obvious in view of the embodiments discussed are intended to be included within the scope of the claims.
What is claimed is: l. A circular knitting machine comprising: cylinder means having a series of exterior spaced longitudinal slots and wall means separating said slots 10 and defining the side surfaces thereof; means defining at least one exterior circumferential groove in said cylinder'means interrupting said wall means; knitting elements carried and tion in said slots; means defining spaces behind said elements between the bottom of each of said slots and the opposed inner surface of the corresponding element at the location of said groove, the bottom of said groove in said wall means being spaced inwardly of said inner surfaces so that the inner portion of said groove in said wall means communicates directly with said spaces, and the lower end of each of said spaces being disposed below said groove to form a reservoir to contain lubricant in contact with said inner surface of said corresponding element; and means for directing lubricant from the exterior of said cylinder means into said groove to penetrate directly thereinto between said elements and thence into said spaces behind said elements. 2. The machine of claim 1 wherein the space-defining means includes relieved portions in said cylinder means having downwardly and outwardly inclined lower surfaces terminating at their lower outer edges below the groove whereby the reservoirs contain wedges of lu bricant against the inner surfaces of the knitting elements.
guided for reciproca- 3. The machine of claim 1 wherein each wall means tapers in circumferential thickness toward and adjacent the groove.
4. The machine of claim l wherein the upper and lower side surfaces of the groove are inclined respectively downwardly and outwardly and upwardly and outwardly to provide a wiping action against the side of the knitting elements to urge lubricant on said sides inwardly of said cylinder means. r
5. The machine ofclaim 1 wherein the space-defining means includes relieved portions on the backs of the knitting elements terminating at their lower ends in downwardly and inwardly inclined surfaces.
6. The machine of claim 1 wherein the lubricantdirecting means includes a pair of spray nozzles disposed at acute angles opposite in direction with respect to a radius of said cylinder means so that said nozzles spray lubricant on opposite sides of the knitting elements exposed in the groove.
7. The machine of claim 1 including passageway means in said cylinder means providing communication between at least one of the spaces above the corresponding reservoir and the interior of the cylinder means for aiding in the cooling of the latter.

Claims (7)

1. A circular knitting machine comprising: cylinder means having a series of exterior spaced longitudinal slots and wall means separating said slots and defining the side surfaces thereof; means defining at least one exterior circumferential groove in said cylinder means interrupting said wall means; knitting elements carried and guided for reciprocation in said slots; means defining spaces behind said elements between the bottom of each of said slots and the opposed inner surface of the corresponding element at the location of said groove, the bottom of said groove in said wall means being spaced inwardly of said inner surfaces so that the inner portion of said groove in said wall means communicates directly with said spaces, and the lower end of each of said spaces being disposed below said groove to form a reservoir to contain lubricant in contact with said inner surface of said corresponding element; and means for directing lubricant from the exterior of said cylinder means into said groove to penetrate directly thereinto between said elements and thence into said spaces behind said elements.
2. The machine of claim 1 wherein the space-defining means includes relieved portions in said cylinder means having downwardly and outwardly inclined lower surfaces terminating at their lower outer edges below the groove whereby the reservoirs contain wedges of lubricant against the inner surfaces of the knitting elements.
3. The machine of claim 1 wherein each wall means tapers in circumferential thickness toward and adjacent the groove.
4. The machine of claim 1 wherein the upper and lower side surfaces of the groove are inclined respectively downwardly and outwardly and upwardly and outwardly to provide a wiping action against the side of the knitting elements to urge lubricant on said sides inwardly of said cylinder means.
5. The machine of claim 1 wherein the space-defining means includes relieved portions on the backs of the knitting elements terminating at their lower ends in downwardly and inwardly inclined surfaces.
6. The machine of claim 1 wherein the lubricant-directing means includes a pair of spray nozzles disposed at acute angles opposite in direction with respect to a radius of said cylinder means so that said nozzles spray lubricant on opposite sides of the knitting elements exposed in the groove.
7. The machine of claim 1 including passageway means in said cylinder means providing communication between at least one of the spaces above the corresponding reservoir and the interior of the cylinder means for aiding in the cooling of the latter.
US00182822A 1971-09-22 1971-09-22 Cylinder and dial construction for knitting machines Expired - Lifetime US3817058A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00182822A US3817058A (en) 1971-09-22 1971-09-22 Cylinder and dial construction for knitting machines
DE2416626A DE2416626A1 (en) 1971-09-22 1974-04-05 Cylinder and dial construction for knitting machine - in which lubricant passageways are provided adjacent to knitting elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00182822A US3817058A (en) 1971-09-22 1971-09-22 Cylinder and dial construction for knitting machines

Publications (1)

Publication Number Publication Date
US3817058A true US3817058A (en) 1974-06-18

Family

ID=22670186

Family Applications (1)

Application Number Title Priority Date Filing Date
US00182822A Expired - Lifetime US3817058A (en) 1971-09-22 1971-09-22 Cylinder and dial construction for knitting machines

Country Status (2)

Country Link
US (1) US3817058A (en)
DE (1) DE2416626A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041734A (en) * 1975-06-06 1977-08-16 Inamoto Yoichi Device for supporting and guiding knitting needles for knitting machines
US4719768A (en) * 1984-12-10 1988-01-19 Lonati S.P.A. Circular knitting machine, in particular for hose knitting, with continuous cycle lubrication
US5048313A (en) * 1988-08-04 1991-09-17 Vignoni S.R.L. Circular knitting machines with thread guide having support cam for yarn
US5156024A (en) * 1990-07-30 1992-10-20 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Carrier of cylindrical, annular, plate or disc form or the like in a circular knitting machine
US5386711A (en) * 1993-10-27 1995-02-07 Pai Lung Machinery Mill Co., Ltd. Double knit machine for knitting constructive fabrics
US5398526A (en) * 1994-07-20 1995-03-21 Liu; Chin M. Assembled interlock needle cylinder structure of a circular knitting machine
US5577401A (en) * 1995-11-15 1996-11-26 Monarch Knitting Machinery Corp. Knitting machine cylinder having a hardened top insert ring and method of making same
US5609044A (en) * 1996-01-19 1997-03-11 Monarch Knitting Machinery Corp. Durable knitting machine cylinder assembly and method of making same
US5613375A (en) * 1995-11-13 1997-03-25 Sara Lee Corporation Convertible circular knitting machine
GB2326650A (en) * 1997-06-27 1998-12-30 Sipra Patent Beteiligung Lubricating dial of circular knitting-machine
EP1911867A1 (en) * 2006-10-10 2008-04-16 Groz-Beckert KG needle bed with interrupted needle groove walls
US20090145171A1 (en) * 2007-12-08 2009-06-11 Groz-Beckert Kg Needle bed with fluid channels
CN101956286A (en) * 2010-09-27 2011-01-26 谢文彬 Radiating needle cylinder
US20120006064A1 (en) * 2010-07-06 2012-01-12 Groz-Beckert Kg Knitting system with flattened guide channels
CN102330264A (en) * 2011-07-25 2012-01-25 浙江海森纺机科技有限公司 Thermally processed needle board on flat knitting machine
CN102505317A (en) * 2011-09-30 2012-06-20 洪荣豪 Wear-resistant structure of circular needle cylinder
US8371144B1 (en) * 2011-09-21 2013-02-12 Pai Lung Machinery Mill Co., Ltd. Loop forming and loosening mechanism and sinkers thereof for circular knitting machines
US9617667B1 (en) * 2015-11-04 2017-04-11 Pai Lung Machinery Mill Co., Ltd. Sinker equipped with lubrication oil channeling and separating structure
US20180057981A1 (en) * 2015-03-12 2018-03-01 Terrot Gmbh Needle cylinder and circular knitting machine
US20180298532A1 (en) * 2017-04-14 2018-10-18 Ku-Ching Hou Method for Manufacturing Needle Walls Assembly of Circular Knitting Machine
EP3392385A1 (en) * 2016-08-01 2018-10-24 Ku-Ching Hou Method for manufacturing a needle walls assembly of circular knitting machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS204598B1 (en) * 1979-03-19 1981-04-30 Jan Ando Lubricating device for circular knitting machines
DE102013208066A1 (en) * 2013-05-02 2014-11-06 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Lock part for a circular knitting machine

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US335587A (en) * 1886-02-09 Knitting machine
US349448A (en) * 1886-09-21 o neil
US541406A (en) * 1895-06-18 Knitting-machine bar or cylinder
US1100806A (en) * 1909-02-04 1914-06-23 Hemphill Mfg Co Knitting-machine.
US1100805A (en) * 1906-11-19 1914-06-23 Hemphill Mfg Co Circular-knitting machine.
US1216900A (en) * 1914-04-29 1917-02-20 Frank B Wildman Circular-knitting machine.
US1514500A (en) * 1921-08-19 1924-11-04 James K Lanning Circular-knitting machine
US1758079A (en) * 1929-06-07 1930-05-13 Standard Trump Bros Machine Co Needle cylinder for circular-knitting machines
US2120796A (en) * 1937-06-03 1938-06-14 Keller Paul Knitting machine
US2372019A (en) * 1944-03-11 1945-03-20 Saftlas Samuel Knitting machine
US2399440A (en) * 1944-02-23 1946-04-30 Koppel Charles Cylinder and dial knitting machine
US2401083A (en) * 1944-02-23 1946-05-28 Koppel Charles Cylinder and dial knitting machine
US2707872A (en) * 1954-02-09 1955-05-10 Sr Hobert F Mcdaniel Lubrication of knitting machines
US2723543A (en) * 1952-11-04 1955-11-15 Lawson Products Inc Means for preventing soiling of knitted fabrics during the knitting operation
US2725734A (en) * 1954-12-24 1955-12-06 Ind Rayon Corp Method and apparatus for lubricating knitting machines
US2800119A (en) * 1955-05-05 1957-07-23 Maschf Augsburg Nuernberg Ag Arrangement for cooling the piston of internal combustion engines
US3078960A (en) * 1961-05-31 1963-02-26 Morpul Inc Lubricating system for knitting machines and the like
US3500661A (en) * 1967-02-08 1970-03-17 Schubert & Salzer Maschinen Method and apparatus for lubricating needle cylinders in circular-knitting machines
US3545233A (en) * 1967-06-19 1970-12-08 Victor J Lombardi Cylinder and dial construction for knitting machines
US3587251A (en) * 1969-03-11 1971-06-28 Santoni & C Spa Device for the operation of members in circular machines for stockings,socks and the like
US3640094A (en) * 1968-05-06 1972-02-08 Mecmor Spa Device for cutting and gripping threads in circular knitting machines and the like

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US335587A (en) * 1886-02-09 Knitting machine
US349448A (en) * 1886-09-21 o neil
US541406A (en) * 1895-06-18 Knitting-machine bar or cylinder
US1100805A (en) * 1906-11-19 1914-06-23 Hemphill Mfg Co Circular-knitting machine.
US1100806A (en) * 1909-02-04 1914-06-23 Hemphill Mfg Co Knitting-machine.
US1216900A (en) * 1914-04-29 1917-02-20 Frank B Wildman Circular-knitting machine.
US1514500A (en) * 1921-08-19 1924-11-04 James K Lanning Circular-knitting machine
US1758079A (en) * 1929-06-07 1930-05-13 Standard Trump Bros Machine Co Needle cylinder for circular-knitting machines
US2120796A (en) * 1937-06-03 1938-06-14 Keller Paul Knitting machine
US2399440A (en) * 1944-02-23 1946-04-30 Koppel Charles Cylinder and dial knitting machine
US2401083A (en) * 1944-02-23 1946-05-28 Koppel Charles Cylinder and dial knitting machine
US2372019A (en) * 1944-03-11 1945-03-20 Saftlas Samuel Knitting machine
US2723543A (en) * 1952-11-04 1955-11-15 Lawson Products Inc Means for preventing soiling of knitted fabrics during the knitting operation
US2707872A (en) * 1954-02-09 1955-05-10 Sr Hobert F Mcdaniel Lubrication of knitting machines
US2725734A (en) * 1954-12-24 1955-12-06 Ind Rayon Corp Method and apparatus for lubricating knitting machines
US2800119A (en) * 1955-05-05 1957-07-23 Maschf Augsburg Nuernberg Ag Arrangement for cooling the piston of internal combustion engines
US3078960A (en) * 1961-05-31 1963-02-26 Morpul Inc Lubricating system for knitting machines and the like
US3500661A (en) * 1967-02-08 1970-03-17 Schubert & Salzer Maschinen Method and apparatus for lubricating needle cylinders in circular-knitting machines
US3545233A (en) * 1967-06-19 1970-12-08 Victor J Lombardi Cylinder and dial construction for knitting machines
US3640094A (en) * 1968-05-06 1972-02-08 Mecmor Spa Device for cutting and gripping threads in circular knitting machines and the like
US3587251A (en) * 1969-03-11 1971-06-28 Santoni & C Spa Device for the operation of members in circular machines for stockings,socks and the like

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Knitting Machines and Aerosol Lubrication, The Hosiery Trade Journal, Feb. 1966, pp. 127 & 129 130. *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041734A (en) * 1975-06-06 1977-08-16 Inamoto Yoichi Device for supporting and guiding knitting needles for knitting machines
US4719768A (en) * 1984-12-10 1988-01-19 Lonati S.P.A. Circular knitting machine, in particular for hose knitting, with continuous cycle lubrication
US5048313A (en) * 1988-08-04 1991-09-17 Vignoni S.R.L. Circular knitting machines with thread guide having support cam for yarn
US5156024A (en) * 1990-07-30 1992-10-20 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Carrier of cylindrical, annular, plate or disc form or the like in a circular knitting machine
JP2967305B2 (en) 1990-07-30 1999-10-25 ジプラ パテントエントビクルングス−ウント ベタイリグングスゲゼルシャフト エムベーハー Cylindrical, annular, plate, disk or similar carrier in circular knitting machines
US5386711A (en) * 1993-10-27 1995-02-07 Pai Lung Machinery Mill Co., Ltd. Double knit machine for knitting constructive fabrics
US5398526A (en) * 1994-07-20 1995-03-21 Liu; Chin M. Assembled interlock needle cylinder structure of a circular knitting machine
US5613375A (en) * 1995-11-13 1997-03-25 Sara Lee Corporation Convertible circular knitting machine
US5577401A (en) * 1995-11-15 1996-11-26 Monarch Knitting Machinery Corp. Knitting machine cylinder having a hardened top insert ring and method of making same
US5609044A (en) * 1996-01-19 1997-03-11 Monarch Knitting Machinery Corp. Durable knitting machine cylinder assembly and method of making same
GB2326650A (en) * 1997-06-27 1998-12-30 Sipra Patent Beteiligung Lubricating dial of circular knitting-machine
US6003343A (en) * 1997-06-27 1999-12-21 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Circular knitting machine with a dial lubricating device
ES2156491A1 (en) * 1997-06-27 2001-06-16 Sipra Patent Beteiligung Circular knitting machine with a dial lubricating device
SG84512A1 (en) * 1997-06-27 2001-11-20 Sipra Patent Beteiligung Circular knitting machine with a dial arrangement and a lubricating device
GB2326650B (en) * 1997-06-27 2002-03-06 Sipra Patent Beteiligung Circulating knitting machine with a dial arrangement and a lubricating device
US7469561B2 (en) * 2006-10-10 2008-12-30 Groz-Beckert Kg Needle bed with discontinuous needle guides
JP2008095273A (en) * 2006-10-10 2008-04-24 Groz-Beckert Kg Needle bed having discontinuous needle guide
US20080184745A1 (en) * 2006-10-10 2008-08-07 Groz-Beckert Kg Needle bed with discontinuous needle guides
EP1911867A1 (en) * 2006-10-10 2008-04-16 Groz-Beckert KG needle bed with interrupted needle groove walls
JP4547412B2 (en) * 2006-10-10 2010-09-22 グローツ−ベッカート コマンディトゲゼルシャフト Needle bed with discontinuous needle guide
CN101225573B (en) * 2006-10-10 2012-12-19 格罗兹-贝克特公司 Needle bed with discontinuous needle guides
US20090145171A1 (en) * 2007-12-08 2009-06-11 Groz-Beckert Kg Needle bed with fluid channels
US7673478B2 (en) * 2007-12-08 2010-03-09 Groz-Beckert Kg Needle bed with fluid channels
CN101451289B (en) * 2007-12-08 2011-09-28 格罗兹-贝克特公司 Needle bed with fluid channels
US8438877B2 (en) * 2010-07-06 2013-05-14 Groz-Beckert Kg Knitting system with flattened guide channels
US20120006064A1 (en) * 2010-07-06 2012-01-12 Groz-Beckert Kg Knitting system with flattened guide channels
CN101956286A (en) * 2010-09-27 2011-01-26 谢文彬 Radiating needle cylinder
CN102330264A (en) * 2011-07-25 2012-01-25 浙江海森纺机科技有限公司 Thermally processed needle board on flat knitting machine
US8371144B1 (en) * 2011-09-21 2013-02-12 Pai Lung Machinery Mill Co., Ltd. Loop forming and loosening mechanism and sinkers thereof for circular knitting machines
CN102505317A (en) * 2011-09-30 2012-06-20 洪荣豪 Wear-resistant structure of circular needle cylinder
US20180057981A1 (en) * 2015-03-12 2018-03-01 Terrot Gmbh Needle cylinder and circular knitting machine
US10240267B2 (en) * 2015-03-12 2019-03-26 Terrot Gmbh Needle cylinder and circular knitting machine
US9617667B1 (en) * 2015-11-04 2017-04-11 Pai Lung Machinery Mill Co., Ltd. Sinker equipped with lubrication oil channeling and separating structure
EP3392385A1 (en) * 2016-08-01 2018-10-24 Ku-Ching Hou Method for manufacturing a needle walls assembly of circular knitting machine
US20180298532A1 (en) * 2017-04-14 2018-10-18 Ku-Ching Hou Method for Manufacturing Needle Walls Assembly of Circular Knitting Machine
US10988872B2 (en) * 2017-04-14 2021-04-27 Ku-Ching Hou Method for manufacturing needle walls assembly of circular knitting machine

Also Published As

Publication number Publication date
DE2416626A1 (en) 1975-10-30

Similar Documents

Publication Publication Date Title
US3817058A (en) Cylinder and dial construction for knitting machines
US3545233A (en) Cylinder and dial construction for knitting machines
US2188683A (en) Lubricating means for sewing machines
EP1318221B1 (en) Knitting machine
US3148518A (en) Multi-feed knitting machine
US3413823A (en) Apparatus for production of patterned pile fabric
US3078960A (en) Lubricating system for knitting machines and the like
US3500661A (en) Method and apparatus for lubricating needle cylinders in circular-knitting machines
DE19727498A1 (en) Circular knitting machine with a ribbed disk arrangement and a lubricating device
US2556007A (en) Lubricating attachment for knitting machines
US3173277A (en) Knitting apparatus
DE2603112A1 (en) METHOD OF MANUFACTURING SOCKS, ETC. WITH JACQUARD PATTERN ON RIBBED KNITTED WITH RIGHT AND LEFT STITCHES AND CIRCULAR KNITTING MACHINE TO PERFORM THE PROCESS
US1483844A (en) Mechanism for lubricating the needles and needle cam tracks of knitting machines
GB521264A (en) Improvements in or relating to patterning means for knitting machines
US1868574A (en) Ring for spinning and doubling machines
CS204598B1 (en) Lubricating device for circular knitting machines
US2050962A (en) Sinker and method for plating and reverse plating
US1131583A (en) Circular-knitting machine.
US2142693A (en) Knitting machine
US1751940A (en) Knitting machine
US1782298A (en) Circular-knitting machine
CZ1987U1 (en) Lubricating equipment
US4759201A (en) Winding thread device
CN216040171U (en) Feeding adjusting screw
CN210596499U (en) Connecting rod oil groove for high-speed warp knitting machine