US3807917A - Apparatus for spinning sheath-core type composite fibers - Google Patents
Apparatus for spinning sheath-core type composite fibers Download PDFInfo
- Publication number
- US3807917A US3807917A US00249183A US24918372A US3807917A US 3807917 A US3807917 A US 3807917A US 00249183 A US00249183 A US 00249183A US 24918372 A US24918372 A US 24918372A US 3807917 A US3807917 A US 3807917A
- Authority
- US
- United States
- Prior art keywords
- plate
- distributing
- spinning
- opening
- sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/06—Distributing spinning solution or melt to spinning nozzles
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/34—Core-skin structure; Spinnerette packs therefor
Definitions
- the device has an end plate with two kinds of openings, one to form the sheath component and the other to form the core component, the two kinds of openings supplying the streams of two difierent spinning solutions isolated from each other.
- the device has a first distributing plate which supplies the first spinning solution to the back side of a spinnerette plate and has openings therethrough to lead streams of the second spinning solution to second and third distributing plates.
- the second distributing plate has openings therethrough to lead the streams of the two different spinning solutions to the subsequent third distributing plate.
- the third distributing plate has flowing-down grooves on the surface contacting the second distributing plate to flow streams of the second spinning solution to the back side of the spinnerette.
- Sheath-component flowing-in grooves are provided in the device to supply sheath-component spinning solution from the first distribution plate so as to surround the core-component-forming spinning solution streams.
- the spinnerette plate has spinnerette orifices with axial centers substantially coinciding with the axial centers of the flowing-down grooves in the third distributing plate through which the composite fibers are extruded.
- the present invention relates to a device for spinning sheath-core type composite fibers, more particularly to a device for spinning sheath-core type composite fibers, which comprises laminated plates having differently shaped stream passages for the spinning solutions and a spinnerette plate attached thereto.
- Composite fibers composed of different fiberforming components having different dyeability or thermal shrinkage joined with each other along the whole length in the axial direction of the fibers are widely used because of their properties of developing peculiar spiral three dimensional crimps, and multi color effects or different color effects due to the difference in dyeability. Also, many devices have been proposed for spinning such composite fibers.
- sheath-core type composite fibers have many advantages which are not observed in sideby-side type composite fibers. For example, when composite fibers are produced which are composed of a component excellent in sensuous fiber properties such as dyeability, touch, etc.
- sheath part and the other component excellent in physical properties such as strength, elongation, rigidity, etc. or containing a fiber modifier such as a flame retarding agent as the core part, not only the sensuous properties of the crimped fibers such as dyeability, etc., but also the practical properties such as strength, elongation, or fire-resisting properties can be greatly improved over those of conventional side-by-side type composite fibers.
- spinning devices for extrusion-spinning sheath-core type composite fibers are generally complicated in comparison with those for extrusion-spinning side-by-side type composite fiber. This imposes a large restriction on the number of spinning orifices per unit area of the spinnerette plate.
- the production of sheath-core type composite fibers by the wet spinning process requiring an especially large number of spinning orifices has suffered great inconvenience in practice from such limitation on the productivity.
- a spinning device for producing sheath-core type composite fibers can be provided having a number of the spinnerette orifices in the spinnerette plate per unit area which is large enough for practical use in spite of its extremely simple structure in comparison with conventional devices and which provides remarkably improved joined shape of the sheath and core components.
- a main object of this invention is to provide composite fiber spinning devices having structural characteristics suitable for producing sheath-core type composite fibers.
- a further object of this invention is to provide novel spinning devices which have a greatly increased number of spinnerette orifices per unit area of the spinnerette plate in comparison with conventional spinning devices for producing sheath-core type composite fibers.
- Another object of this invention is to provide a spinning device for producing sheath-core type composite fibers whose joined shape formed by the sheath and core components is remarkably stabilized in spite ofthe simplicity in structure.
- this invention provides a spinning device for producing sheath-core type composite fibers characterized in that a. an end plate having two kinds of openings bored therethrough, the one kind for supplying the first spinning solution to form the sheath component and the other kind for supplying the second spinning solution to form the core component of the composite fibers, these two kinds of opening being to supply the streams of the two different spinning solutions in an isolated state from each other,
- the first distributing plate having cut-off parts to cause the sheath-component forming streams supplied from the openings for supplying the first spinning solution, to flow to the backside of the spinnerette plate; and having introducing openings bored therethrough to lead the streams of the second spinning solution for forming the core component to the subsequent second and third distributing plates,
- the third distributing plates having flowing-down grooves on the surface contacting the second distributing plate, the grooves being to cause the streams of the second spinning solution for forming the core component (which have flowed thereinto through the supplying openings for the second spinning solution bored through the foregoing end plate, the introducing openings bored through the first distributing plate, and the one hand leading openings bored through the second distributing plate) to flow to the backside of the spinnerette; and having supplying openings for the streams of the first spinning solution to flow therethrough, the openings communicating with the other hand leading openings bored through the second distributing plate, are laminated consecutively with the end plate at both ends, and
- a spinnerette plate having spinnerette orifices with the axial centers substantially coinciding with the axial centers of the core-component-flowing-down grooves formed in the third distributing plate is positioned in the downstream zone of the spinning solution passages formed by the laminated body of the foregoing distributing plates.
- This invention also provides a spinning device for producing sheath-core composite fibers characterized in that a. an end plate having two kinds of openings bored therethrough the one kind for supplying the first spinning solution to form the sheath component and the other kind for supplying the second spinning solution to form the core component of the composite fibers, these two kinds of openings being to supply the streams of the two different spinning solutions in an isolated state from each other,
- the first distributing plate having cut-off parts to cause the sheath-component forming streams supplied from the openings for supplying the first spinning solution, to flow to the backside of the spinnerette plate; and having introducing openings bored therethrough to lead the streams of the second spinning solution for forming the core component to the subsequent second and third distributing plates,
- the third distributing plate having flowing-down grooves on the surface contacting the second distributing plate, the grooves being to cause the streams of the second spinning solution for forming the core component (which have flowed thereinto through the supplying openings for the second spinning solution bored through the foregoing end plate, the introducing openings bored through the first distributing plate, and the one hand leading openings bored through the second distributing plate) to flow to the backside of the spinnerette; and having supplying openings for the streams of the first spinning solution to flow therethrough, the openings communicating the other hand leading openings bored through the second distributing plate, are laminated consecutively with the end plate at both ends,
- sheath-component-flowing-in grooves are provided which communicate with the cut-off parts of the first distributing plate on the end surface of the second distributing plate facing the backside of the spinnerette plate and between the flowing-down grooves of the third distributing plate so that the sheath-component-forming spinning solution steams supplied to the cut-off parts of the first distributing plate can surround the core-componentforming spinning solution streams, and
- a spinnerette plate having spinnerette orifices with the axial centers substantially coinciding with the axial centers of the core-component-flowing-down grooves formed in the third distributing plate is positioned in the downstream zone of the spinning solution passages formed by the laminated body of the foregoing distributing plates.
- FIG. 1 is an exploded perspective view showing an example of the structure of the spinning device for producing sheath-core type composite fibers according to the present invention.
- FIG. 2 is a partially broken sectional view to show an arrangement of the laminated body of distributing plates and the spinnerette plate.
- FIG. 3 is a perspective view of a laminated body of distributing plates showing another embodiment in which sheath-component-flowing-in grooves are provided on the end surface of the distributing plate (the second and the third) in connection with the flowingdown grooves (of the third distributing plate).
- FIG. 4 and FIG. 5 are cross-sections to show the arrangement of the sheath component in the sheath-core type composite fibers produced by the devices of the present invention.
- FIG. 6 is a cross sectional photograph of the sheathcore type composite fibers obtained by the use of a spinning device embodying this invention.
- an end plate 1 has the first spinning solution-supplying opening 13 and the second spinning solution-supplying opening 14 bored therethrough to supply the streams of two different spinning solutions in an isolated state from each other.
- the end plate 1 is closely contacted with the first distributing plate 3 on the backside, i.e., on the side for extrusion of the spinning solutions.
- the first distributing plate 3 has introducing openings 17 bored therethrough to lead the streams of the spinning solution for forming the core component of the composite fibers from said distributing plate toward the second distributing plate 4 and toward the third distributing plate 5 which is closely contacted with the second distributing plate 4.
- the plate 3 is also formed with cut-out parts 12 to cause the steams of the other spinning solution for forming the sheath component of the composite fibers to flow to the backside of a spinnerette 6.
- the second distributing plate 4 being held between the first distributing plate 3 and the third distributing plate 5 so as to form a unitary structure, forms stream passages to flow down the streams of the different spinning solutions to the backside of the spinnerette 6, and also has leading openings 15 and 16 bored therethrough to lead these streams of the different spinning solutions to the subsequent third distributing plate 5 and first distributing plate 3.
- the third distributing plate 5 has a supplying opening 18 bored therethrough to lead the streams of the sheath component-forming spinning solution to the first distributing plate 3 and second distributing plate 4, and also has a supply opening 8a and flowing-down grooves 8 communicating with said supply opening 8a and which are arranged along an edge of plate 5 at intervals equal to the spinnerette orifices 9 mentioned hereinafter to cause the streams of the core-component-forming spinning solution to flow to the backside of the spinnerette plate 6.
- the first, second and third distributing plate are replaced together repeatedly in the above described order depending upon the required number of the spinnerette orifices, and the thus obtained assembly of the distributing plates is bound together firmly between the end plates 1.
- suitable clamping elements such as bolts (not shown in the drawings) into a unitary structure, a laminated assembly for introducing the spinning solution streams is formed.
- a spacer plate having openings 7a therein to form a narrow spacing T (FIG. 2) for joining the streams of the core-forming and sheath-forming streams of the spinning solutions together into sheath-core arrangement prior to extruding them through the spinnerette orifices 9 formed in the spinnerette plate 6.
- the plate 7 contacts at its peripheral and central parts with the spinnerette plate 6 as well as the end surface of the laminated body on its extrusion side of the spinning solutions.
- the spinnerette plate 6 has a large number of spinnerette orifices 9 therethrough the axial centers of which coincide substantially with the axial centers of the corresponding grooves 8 in the third distributing plate 5 through which the core component-forming spinning solution flows.
- the streams of the spinning solution for forming the core part of the sheath-core type composite fibers flow through the grooves 8 formed in the third distributing plate 5 in a state isolated from the streams of the spinning solution for forming the sheath part, thus forming laminar flows, and reach the backside of the spinnerette plate 6 which has spinnerette orifices 9 coinciding with the axial centers of the above-mentioned grooves 8.
- the spinnerette plate 6 does not have any spinnerette orifices at the place corresponding to the downstream zone of the streams of the other spinning solution for forming the sheath component.
- sheath component flow grooves 10 into which the sheath component flows are provided, in the laminating direction of the distributing plates, on the end surface of the second distributing plate 4 facing the backside of the spinnerette plate 6 and between the grooves 8 formed in the third distributing plate 5, and wherein the end parts of the sheath component-flow grooves 10 are communicated with the cut-out parts 12 of the first distributing plate 3.
- the streams of the sheath-component-forming spinning solution by the aid of the sheath-component-flow grooves 10, completely surround the streams of the core-component-forming spinning solution on the end surface of the spinning-solution-extruding side of the laminated body of the distributing plates. Thereafter, the streams ofthe spinning solutions reach the backside of the spinnerette plate 6 while maintaining the sheathcore relationship of the spinning solutions,
- the sheath-core bicomponent arrangement in the extruded composite fiber can be further improved to be formed into concentric circular form.
- the dimension of the foregoing narrow spacing T, formed by interposing the spacer plate 7 between the end surface of the laminated body of the distributing plates and the backside of the spinnerette plate 6, should be the same with or less than that of the sheath-component-forming spacing W formed by the cut-out part 12 provided in the first distributing plate 3.
- the cross section of the spinnerette orifices through the spinnerette plate may take a non-circular cross sectional shape such as triangular cross section or a flat cross section.
- it is possible to vary the proportion of the sheath and core components by regulating the thicknesses of distributing plates and thus varying the amounts of the streams of the spinning solutions to be supplied.
- the spinning device makes possible to extrude composite fibers having sheath-core type arrangements of fiber-forming components under very stable spinning conditions while using an extremely simple structure, and also to increase the number of spinnerette orifices per unit area of the spinnerette plate to a great extent because of the easiness of production. Accordingly, the present invention is particularly useful for the wet spinning devices which especially require an increased number of spinnerette orifices.
- the devices of the present invention can be used, of course, also for melt spinning or dry spinning of composite fibers.
- Example An acid-dye-dyeable copolymer A consisting of percent acrylonitrile, 13 percent vinyl acetate and 7 percent Z-methyI-S-Vinylpyridine was prepared.
- a copolymer B consisting of percent acrylonitrile, 9.5 percent methyl acrylate and 0.5 percent sodium methallyl sulfonate was prepared as a basic-dye-dyeable copolymer. The same amounts of the copolymers A and B were dissolved respectively in 50 percent sodium rhodanate aqueous solution to produce two kinds of spinning solution.
- the spinning solution containing the dissolved copolymer A and the spinning solution containing the dissolved copolymer B were supplied to a spinning device of this invention as the streams for forming the core component and the streams for forming the sheath component of the composite fibers respectively, and were extruded therethrough into a 10 percent sodium rhodanate aqueous solution maintained at a temperature of C.
- the spinning device used was that as shown in FIG. 1 which had a narrow spacing T of 0.1 mm. between the end surface of the spinning solution-extruding side of the laminated body of the distributing plates and the backside of the spinnerette plate.
- the fibers thus formed were subjected to washing with water, stretching, relaxation heat treatment, and drying in the usual way.
- the thus-obtained fibers were immersed into a dyeing bath containing percent CI. Basic Blue 4 and 1 percent acetic acid both on the weight of fibers, the bath ratio being 1:100.
- the dyeing treatment was carried out in the usual way.
- the arrangement of the sheath and core component in the composite fibers was studied of which only the sheath component had been dyed.
- a cross sectional photograph of the sheath-core type composite fibers after dyeing is shown in FIG. 6. From this photpgraph, it will be understood that the devices of the present invention are remarkably improved in the stability of spinning to maintain excellent uniformity and concentric arrangement of sheath and core components.
- a spinning device for producing sheath-core type composite fibers comprising:
- At least one first distributing plate having at least one first opening and at least one second opening therein for passing a first spinning solution for forming a sheath component and a second spinning solution to form a core component of the composite fibers through said plate, said first distributing plate further having cut-out portions therein extending from said first openings to one edge thereof;
- At least one second distributing plate having at least one first opening and at least one second opening therein aligned with the corresponding openings in said first distributing plate for leading the streams of first and second spinning solutions therethrough;
- At least one third distributing plate having at least one first opening and at least one second opening therein aligned with the corresponding openings in said first and second distributing plates and having a plurality of grooves in the surface toward said second distributing plate and communicating with said second opening and opening out of the edge thereof corresponding to said one edge of said first distributing plate; said first, second and third distributing plates being assembled in a stack;
- a spacer plate havibg at least one opening therein against the surface of the stack of distributing plates out of which the cut-out portions and grooves in said distributing plates open with the opening in said spacer plate aligned with said cutout portions and said grooves;
- a spinning device as claimed in claim 1 in which the dimension of said cut-out portions in the direction of the length of the first distributing plate is equal to the dimension of the opening in the spacer plate in the corresponding direction.
- a spinning device as claimed in claim 1 in which said second and third distributing plates have sheath component flow grooves through the edges thereof corresponding to the edges out of which the cut-out portions and grooves open, said sheath component grooves being between the grooves in said third distribution plates and aligned with the sheath component flow grooves in said second distributing plate.
- a spinning device as claimed in claim 1 in which there are a plurality of stacks of distributing plates between the two end plates.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP46029555A JPS5115124B1 (ko) | 1971-05-04 | 1971-05-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3807917A true US3807917A (en) | 1974-04-30 |
Family
ID=12279375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00249183A Expired - Lifetime US3807917A (en) | 1971-05-04 | 1972-05-01 | Apparatus for spinning sheath-core type composite fibers |
Country Status (4)
Country | Link |
---|---|
US (1) | US3807917A (ko) |
JP (1) | JPS5115124B1 (ko) |
CA (1) | CA959213A (ko) |
DE (1) | DE2221697A1 (ko) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852013A (en) * | 1972-09-19 | 1974-12-03 | H Upmeier | Extruder for plastics material, particularly thermoplastic or non-cross-linked elastomeric materials |
US4406850A (en) * | 1981-09-24 | 1983-09-27 | Hills Research & Development, Inc. | Spin pack and method for producing conjugate fibers |
US4846653A (en) * | 1987-04-01 | 1989-07-11 | Neumunstersche Maschinen - und Apparatebau GmbH (Neumag) | Pack of spinning nozzles for forming two component filaments having core-and-sheath structure |
US5134031A (en) * | 1990-04-25 | 1992-07-28 | Descente Ltd. | Highly moisture-absorptive fiber |
US5162074A (en) * | 1987-10-02 | 1992-11-10 | Basf Corporation | Method of making plural component fibers |
US5281378A (en) * | 1990-02-05 | 1994-01-25 | Hercules Incorporated | Process of making high thermal bonding fiber |
US5533883A (en) * | 1992-10-29 | 1996-07-09 | Basf Corporation | Spin pack for spinning synthetic polymeric fibers |
US5543206A (en) * | 1994-11-23 | 1996-08-06 | Fiberweb North America, Inc. | Nonwoven composite fabrics |
US5551588A (en) * | 1987-10-02 | 1996-09-03 | Basf Corporation | Profiled multi-component fiber flow plate method |
US5620644A (en) * | 1992-10-29 | 1997-04-15 | Basf Corporation | Melt-spinning synthetic polymeric fibers |
US5629080A (en) * | 1992-01-13 | 1997-05-13 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5705119A (en) * | 1993-06-24 | 1998-01-06 | Hercules Incorporated | Process of making skin-core high thermal bond strength fiber |
EP0893517A2 (en) * | 1997-07-23 | 1999-01-27 | Anthony Fabbricante | Micro-denier nonwoven materials made using modular die units |
US5882562A (en) * | 1994-12-19 | 1999-03-16 | Fiberco, Inc. | Process for producing fibers for high strength non-woven materials |
US5921973A (en) * | 1994-11-23 | 1999-07-13 | Bba Nonwoven Simpsonville, Inc. | Nonwoven fabric useful for preparing elastic composite fabrics |
US6361736B1 (en) | 1998-08-20 | 2002-03-26 | Fiber Innovation Technology | Synthetic fiber forming apparatus for spinning synthetic fibers |
US6417121B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6417122B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6420285B1 (en) | 1994-11-23 | 2002-07-16 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US20050046090A1 (en) * | 2003-08-28 | 2005-03-03 | Nordson Corporation | Lamellar meltblowing die apparatus and method |
US20050046066A1 (en) * | 2003-08-28 | 2005-03-03 | Nordson Corporation | Lamellar extrusion die apparatus and method |
US20070205530A1 (en) * | 2006-03-02 | 2007-09-06 | Nordson Corporation | Apparatus and methods for distributing a balanced air stream to an extrusion die of a meltspinning apparatus |
US20080145530A1 (en) * | 2006-12-13 | 2008-06-19 | Nordson Corporation | Multi-plate nozzle and method for dispensing random pattern of adhesive filaments |
CN102206881A (zh) * | 2011-05-27 | 2011-10-05 | 东华大学 | 一种用于生产三组分皮芯型纤维的装置 |
US8074902B2 (en) | 2008-04-14 | 2011-12-13 | Nordson Corporation | Nozzle and method for dispensing random pattern of adhesive filaments |
CN104275276A (zh) * | 2013-07-12 | 2015-01-14 | 三星显示有限公司 | 狭缝喷嘴和使用狭缝喷嘴制造显示装置的方法 |
US20160008839A1 (en) * | 2009-12-28 | 2016-01-14 | Unicharm Corporation | Composite stretch material |
US20160263591A1 (en) * | 2015-03-10 | 2016-09-15 | Bum Je WOO | Purge gas injection plate and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4405547A (en) * | 1980-10-20 | 1983-09-20 | The Standard Oil Company | Method of coextruding diverse materials |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492692A (en) * | 1967-02-07 | 1970-02-03 | Japan Exlan Co Ltd | Apparatus for spinning composite fibers |
US3613170A (en) * | 1969-05-27 | 1971-10-19 | American Cyanamid Co | Spinning apparatus for sheath-core bicomponent fibers |
-
1971
- 1971-05-04 JP JP46029555A patent/JPS5115124B1/ja active Pending
-
1972
- 1972-05-01 US US00249183A patent/US3807917A/en not_active Expired - Lifetime
- 1972-05-03 DE DE19722221697 patent/DE2221697A1/de active Pending
- 1972-05-04 CA CA141,276A patent/CA959213A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492692A (en) * | 1967-02-07 | 1970-02-03 | Japan Exlan Co Ltd | Apparatus for spinning composite fibers |
US3613170A (en) * | 1969-05-27 | 1971-10-19 | American Cyanamid Co | Spinning apparatus for sheath-core bicomponent fibers |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852013A (en) * | 1972-09-19 | 1974-12-03 | H Upmeier | Extruder for plastics material, particularly thermoplastic or non-cross-linked elastomeric materials |
US4406850A (en) * | 1981-09-24 | 1983-09-27 | Hills Research & Development, Inc. | Spin pack and method for producing conjugate fibers |
US4846653A (en) * | 1987-04-01 | 1989-07-11 | Neumunstersche Maschinen - und Apparatebau GmbH (Neumag) | Pack of spinning nozzles for forming two component filaments having core-and-sheath structure |
US5551588A (en) * | 1987-10-02 | 1996-09-03 | Basf Corporation | Profiled multi-component fiber flow plate method |
US5162074A (en) * | 1987-10-02 | 1992-11-10 | Basf Corporation | Method of making plural component fibers |
US5344297A (en) * | 1987-10-02 | 1994-09-06 | Basf Corporation | Apparatus for making profiled multi-component yarns |
US5466410A (en) * | 1987-10-02 | 1995-11-14 | Basf Corporation | Process of making multiple mono-component fiber |
US5562930A (en) * | 1987-10-02 | 1996-10-08 | Hills; William H. | Distribution plate for spin pack assembly |
US5281378A (en) * | 1990-02-05 | 1994-01-25 | Hercules Incorporated | Process of making high thermal bonding fiber |
US5318735A (en) * | 1990-02-05 | 1994-06-07 | Hercules Incorporated | Process of making high thermal bonding strength fiber |
US5431994A (en) * | 1990-02-05 | 1995-07-11 | Hercules Incorporated | High thermal strength bonding fiber |
US5134031A (en) * | 1990-04-25 | 1992-07-28 | Descente Ltd. | Highly moisture-absorptive fiber |
US5888438A (en) * | 1992-01-13 | 1999-03-30 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5629080A (en) * | 1992-01-13 | 1997-05-13 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5733646A (en) * | 1992-01-13 | 1998-03-31 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5654088A (en) * | 1992-01-13 | 1997-08-05 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5533883A (en) * | 1992-10-29 | 1996-07-09 | Basf Corporation | Spin pack for spinning synthetic polymeric fibers |
US5620644A (en) * | 1992-10-29 | 1997-04-15 | Basf Corporation | Melt-spinning synthetic polymeric fibers |
US5575063A (en) * | 1992-10-29 | 1996-11-19 | Basf Corporation | Melt-spinning synthetic polymeric fibers |
US5705119A (en) * | 1993-06-24 | 1998-01-06 | Hercules Incorporated | Process of making skin-core high thermal bond strength fiber |
US6116883A (en) * | 1993-06-24 | 2000-09-12 | Fiberco, Inc. | Melt spin system for producing skin-core high thermal bond strength fibers |
US6417121B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US5543206A (en) * | 1994-11-23 | 1996-08-06 | Fiberweb North America, Inc. | Nonwoven composite fabrics |
US5921973A (en) * | 1994-11-23 | 1999-07-13 | Bba Nonwoven Simpsonville, Inc. | Nonwoven fabric useful for preparing elastic composite fabrics |
US6420285B1 (en) | 1994-11-23 | 2002-07-16 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6417122B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US5882562A (en) * | 1994-12-19 | 1999-03-16 | Fiberco, Inc. | Process for producing fibers for high strength non-woven materials |
EP0893517A2 (en) * | 1997-07-23 | 1999-01-27 | Anthony Fabbricante | Micro-denier nonwoven materials made using modular die units |
EP0893517A3 (en) * | 1997-07-23 | 1999-07-21 | Anthony Fabbricante | Micro-denier nonwoven materials made using modular die units |
US6361736B1 (en) | 1998-08-20 | 2002-03-26 | Fiber Innovation Technology | Synthetic fiber forming apparatus for spinning synthetic fibers |
US20050046090A1 (en) * | 2003-08-28 | 2005-03-03 | Nordson Corporation | Lamellar meltblowing die apparatus and method |
US20050046066A1 (en) * | 2003-08-28 | 2005-03-03 | Nordson Corporation | Lamellar extrusion die apparatus and method |
EP1512775A1 (en) * | 2003-08-28 | 2005-03-09 | Nordson Corporation | Lamellar meltblowing die apparatus and method |
EP1512776A1 (en) * | 2003-08-28 | 2005-03-09 | Nordson Corporation | Lamellar extrusion die apparatus and method |
US7033154B2 (en) | 2003-08-28 | 2006-04-25 | Nordson Corporation | Lamellar extrusion die apparatus and method |
US7033153B2 (en) | 2003-08-28 | 2006-04-25 | Nordson Corporation | Lamellar meltblowing die apparatus and method |
US20070205530A1 (en) * | 2006-03-02 | 2007-09-06 | Nordson Corporation | Apparatus and methods for distributing a balanced air stream to an extrusion die of a meltspinning apparatus |
US7798434B2 (en) | 2006-12-13 | 2010-09-21 | Nordson Corporation | Multi-plate nozzle and method for dispensing random pattern of adhesive filaments |
US20080145530A1 (en) * | 2006-12-13 | 2008-06-19 | Nordson Corporation | Multi-plate nozzle and method for dispensing random pattern of adhesive filaments |
US8435600B2 (en) | 2008-04-14 | 2013-05-07 | Nordson Corporation | Method for dispensing random pattern of adhesive filaments |
US8074902B2 (en) | 2008-04-14 | 2011-12-13 | Nordson Corporation | Nozzle and method for dispensing random pattern of adhesive filaments |
US9731316B2 (en) * | 2009-12-28 | 2017-08-15 | Unicharm Corporation | Composite stretch material |
US20160008839A1 (en) * | 2009-12-28 | 2016-01-14 | Unicharm Corporation | Composite stretch material |
CN102206881A (zh) * | 2011-05-27 | 2011-10-05 | 东华大学 | 一种用于生产三组分皮芯型纤维的装置 |
CN104275276A (zh) * | 2013-07-12 | 2015-01-14 | 三星显示有限公司 | 狭缝喷嘴和使用狭缝喷嘴制造显示装置的方法 |
US20150013900A1 (en) * | 2013-07-12 | 2015-01-15 | Samsung Display Co., Ltd. | Slit nozzle and method of manufacturing display apparatus using the same |
US10011100B2 (en) * | 2013-07-12 | 2018-07-03 | Samsung Display Co., Ltd. | Slit nozzle and method of manufacturing display apparatus using the same |
CN108454220A (zh) * | 2013-07-12 | 2018-08-28 | 三星显示有限公司 | 狭缝喷嘴和使用狭缝喷嘴制造显示装置的方法 |
CN104275276B (zh) * | 2013-07-12 | 2018-09-28 | 三星显示有限公司 | 狭缝喷嘴和使用狭缝喷嘴制造显示装置的方法 |
CN108454220B (zh) * | 2013-07-12 | 2021-02-05 | 三星显示有限公司 | 狭缝喷嘴和使用狭缝喷嘴制造显示装置的方法 |
US20160263591A1 (en) * | 2015-03-10 | 2016-09-15 | Bum Je WOO | Purge gas injection plate and manufacturing method thereof |
US10358736B2 (en) * | 2015-03-10 | 2019-07-23 | Bum Je WOO | Purge gas spraying plate for fume removing of a semiconductor manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE2221697A1 (de) | 1972-11-23 |
JPS5115124B1 (ko) | 1976-05-14 |
CA959213A (en) | 1974-12-17 |
DE2221697B2 (ko) | 1975-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3807917A (en) | Apparatus for spinning sheath-core type composite fibers | |
US3778208A (en) | Apparatus for the manufacture of eccentric core/sheath conjugate filaments | |
US4251200A (en) | Apparatus for spinning bicomponent filaments | |
US3613170A (en) | Spinning apparatus for sheath-core bicomponent fibers | |
US3192562A (en) | Spinnerette | |
US3501805A (en) | Apparatus for forming multicomponent fibers | |
US4406850A (en) | Spin pack and method for producing conjugate fibers | |
US5017116A (en) | Spinning pack for wet spinning bicomponent filaments | |
US5256050A (en) | Method and apparatus for spinning bicomponent filaments and products produced therefrom | |
GB830441A (en) | Process for extruding a synthetic fibre-forming liquid and a spinneret assembly for use in the process | |
ES382379A1 (es) | Un procedimiento para la fabricacion de electrodos desti- nados a la produccion de taladros de hilatura perfiladas por electroerosion. | |
US3230972A (en) | Apparatus for spinning filaments | |
US3182106A (en) | Spinning multi-component fibers | |
GB1043566A (en) | Improvements in or relating to artificial crimped fibres | |
US3375548A (en) | Apparatus for producing conjugated filaments | |
US3403422A (en) | Apparatus for spinning multicomponent fibers | |
US20020094352A1 (en) | Bicomponent filament spin pack used in spunbond production | |
US3413683A (en) | Annular bi-component spinerette assembly | |
US3709971A (en) | Method and apparatus for producing multi-laminated fibers | |
JPH0653973B2 (ja) | 異形断面中空糸製造用紡糸口金 | |
GB896955A (en) | Composite synthetic textile fibres | |
CN216585340U (zh) | 一步法生产多中空弹性纤维的喷丝板 | |
US3618166A (en) | Spinnerets for the manufacture of composite fiber filaments | |
GB1095166A (en) | Improvements in or relating to the manufacture of heterofilaments | |
DE68910664T2 (de) | Düsenpaket zum Spinnen von bikomponenten Faden. |