US3807552A - Apparatus for cooling and classifying ground material - Google Patents
Apparatus for cooling and classifying ground material Download PDFInfo
- Publication number
- US3807552A US3807552A US00887978A US88797869A US3807552A US 3807552 A US3807552 A US 3807552A US 00887978 A US00887978 A US 00887978A US 88797869 A US88797869 A US 88797869A US 3807552 A US3807552 A US 3807552A
- Authority
- US
- United States
- Prior art keywords
- chamber
- air
- air stream
- primary
- primary chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B7/00—Selective separation of solid materials carried by, or dispersed in, gas currents
- B07B7/08—Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
- B07B7/083—Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
Definitions
- ABSTRACT An air separator is provided with an inlet for blowing cooling air into a circulating stream containing separated fines leaving a primary separating chamber and entering a secondary separating chamber. An excess of warm air is extracted through a pipe to maintain the quality of air flowing through the primary chamber Mar. 6, 1969 Germany 1911417 [52] U.S. Cl. 209/11, 209/139 A [51] Int. Cl B07b 7/10 [58] Field of Search 209/3, 11, 139 A, 139 R, 209/133, 134, 136; 34/77; 241/23 [5 6] References Cited UNITED STATES PATENTS 2,657,797 11/1953 Ledgett 209/11 constant.
- This invention relates to an apparatus for cooling and classifying fine material in an air separator by feeding cool air into the separator and removing warm air from the separator.
- ground material is often produced at a considerably higher temperature than is required for the finished material, the material must generally be cooled in an air separator.
- this object is achieved in that the cool air is fed into the separating air stream at a position where at least the majority of the coarse material has already been separated from the separating air stream, which in general is now-only laden with fine material.
- the cool air is only introduced after the separation of coarse material, i.e., into the separating air stream now in general only-laden with fine material, optimum cooling of the fine material is achieved for a given quantity of cool air.
- an effective embodiment of the invention is provided by using at least one cool air conduit which enters the separating air flow space on the pressure side of the fan.
- the fan is consequently not burdened with cooling air, and is fully utilized in circulating the main stream of air.
- the air passing through the fanthus makes a full contribution to the separating effectjin this manner a greater quantity of separating air than previously is now available, especially for the subsequent separation taking place in the lower part of the separator adjacent the zone where the circulating air re-enters the separating chamber.
- FIG. 1 is a" schematically shown vertical section through a first air separator embodying the invention
- FIGS. 2 and 3 are a vertical section and a fragmentary plan view of a further embodiment of an air separator
- FIGS. 4 and 5 are a vertical section and a fragmentary plan view of a'third embodiment.
- the air sifter shown in FIG. 1 has an outer separator housing 1 containing a vertical shaft 2 carrying a scatter plate 3 and a fan 4 connected thereto and rotating with the shaft and the scatter plate, and has an inner separator housing 5.
- the outer housing 1 has a circular cross-section and is closed at the top by a cover 6. At the bottom this housing becomes a collector hopper 7 having an exit pipe 8 for the fine material.
- the inner housing 5 is dis posed coaxially with the outer separator housing 1. A flow space 9 is formed between the two housings. Adjacent the conically shaped'lower part of housing 5 is a ring of screens 10 connected to the upper edge of a coarse material collector hopper 1 I.
- the outlet pipe 12 of hopper 11 leads downwardly and passes through the It extends from a drive 15 mounted on the housing cover 6 down into the separator, and is supported in the lower part thereof by radially adjustable struts 16.
- the scatter plate 3 affixed to shaft 2 is drivingly connected with fan 4 by a hollow shaft 17.
- the fan is located above the inner housing 5 which contains the actualv separating chamber 18.
- the hollow shaft 17 of the fan 4 concentrically surrounds the ground material feed pipe 19 which runs coaxially with shaft 2 and ends some distance above scatter plate 3.
- the feed pipe 19 is connected to a material supply hopper 20 which is adjacent the housing cover 6 and is filled from an inlet pipe 21.
- On the housing cover 6 are also disposed a number of peripherally distributed cool air inlets 22, 22' which enter the flow space 9 on the pressure side of the fan '4.
- the air separator shown in FIG. 1 operates as follows: I
- the air separator is supplied through inlet pipe 21 with ground material, coming for instance from a tube mill, which is to be separated into coarse and fine material.
- This ground material passes through supply hopper 20 and feed pipe 19 onto scatter plate 3.
- the latter is set in rotation by drive 15 and shaft 2, and spins the ground material off into the separator chamber 18.
- the separating air left in the separator flows, under suction effect of fan 4, back into the separating chamber 18 through the screen ring 10.
- the separating air stream 23 must again pass through the coarse material moving downwards on the inside of the screen ring 10, which causes a further separation of the coarse material. in this manner the air stream supplied by the fan makes a full contribution to the further separation.
- a further hollow shaft 32 coaxially supported thereon is driven by the drive 27.
- a pre-distributor plate 33 On the central part of this hollow shaft 32 is mounted a pre-distributor plate 33, and at its lower end is secured the scatter plate 3, which supports a counterblade system 34.
- a hood is disposed above the scatter plate 3 and around the pre-distributor plate 33. This hood 35 is supported by the supply hopper 20 located beneath the drive 27.
- the separating chamber 18 is mainly formed by the housing 1 and a cone 36 connected to the housing 1. At the bottom end of the cone 36 is the ring of screens 10, which are spaced directly above the fan 4.
- the pipes 31, 31' brought together on the suction side of fan 4 and passing through the collector hopper 7 are connected to a common warm air outlet conduit 13.
- a cool air inlet conduit 37 opens into each inlet pipe 29,-29 (see FIG. 3).
- the air feed of fine material is returned to the separator through the pipes 31, 31' which lead from the fine material separators 28, 28' to the fan 4; but a certain amount of warm air is first removed via the conduit 13, so that a largely constant amount of separating air can be fed to fan 4.
- a cool air supply conduit 37 also opens into each of these inlet pipes.
- the fine material separators 39, 39' are connected via a pipe 40 to a fan 41 lying outside of the housing 1.
- a warm'air exit pipe 42 is connected to the pipe 40.
- the pressure side of the fan 41 is connected by a pipe 43 to a space 44 surrounding the screen ring 10.
- the fine material separators 39, 39' with their material outlets are mounted on the edge of the hopper 7 surrounding the coarse material collector hopper 1 l.
- the ground material passes through the supply hopper 20 andthe material feed pipe 19 to the scatter plate 3 which distributes it uniformly in the separating chamber 18.
- the coarse material then passes downwards on the inner wall of the housing, and is removed via the coarse material collector hopper 11 and the outlet pipe
- the circulating stream of separator air entering from space 44 through the screen ring 10 thus passes twice through the ground material, entraining the fine material, which is separated in the fine material separators 39, 39 vCool air is fed into the mixture of fine material and air as it passes through the pipes 29, 29, so that the fine material'emerging fromthe separators 39, 39' and the hopper 7 leaves the air separator as well-cooled finished material.
- the excess warm air is removed through the pipe 42. Because of this removal of excess warm air before the fan (see also FIGS. 1 and 2), the latter in general need only be designed for the amount of air needed for separating.
- the air separators of the last two embodiments also have the special advantage that only clean air impinges on their fans, so that wear effects are largely avoided.
- the warm air is to be fed to another unit, e.g., to the mill, it can be extracted beyond the fan, so that no blower is needed to overcome the pressure difference.
- Apparatus for cooling and classifying ground material comprising means defining a primary chamber for separating coarse material from an air stream; means defining a secondary chamber for separating fine material from an air stream, which has an inlet connection leading from the upper portion of the primary chamber into the secondary chamber and an outlet connection leading from the secondary chamber into the lower portion of the primary chamber; an inlet for ground material leading into the upper portion of the primary chamber; a fan arranged to recirculate an air stream upward through the primary chamber into contact with the incoming ground material, through the secondary chamber and back into the lower portion of the primary chamber, causing coarse material to separate by gravity in the primary chamber, and causing fine material to be carried by the air stream into the secondary chamber and there separated from the air stream; wherein the improvement comprises means for introducing, into the recirculating air stream entering the secondary chamber, air which is cooler than such entering air stream; and means for withdrawing air fromthe recirculating air stream leaving the secondary chamber before such air stream again contacts said incoming ground material.
- Apparatus according to claim 1 wherein the means for withdrawing air is arranged to withdraw air from the air stream leaving the secondary chamber before such air stream enters the fan.
- Apparatus for cooling and classifying ground material comprising means defining a primary separating chamber, means defining a secondary separating chamber, an inlet connection leading from the upper portion of the primary chamber into the secondary chamber and an outlet connection leading from the secondary chamber into the lower portion of the primary chamber, an inlet for said ground material leading into the upper portion of the primary chamber, a fan constructed and arranged to circulate an air stream upwardly through the primary chamber into contact with the incoming ground material, through the secondary chamber and back into the lower portion of the primary chamber, causing coarse material to separate by gravity in the primary chamber, and causing fine material to be carried by the air stream into the secondary chamber and there separated from the air stream, wherein the improvement comprises means for introducing cooling air into the circulating air stream leaving the primary chamber and entering the secondary chamber, and means for withdrawing an excess of air from said circulating air stream leaving the secondary chamber before such air stream again contacts said incoming ground material to maintain a substantially constant quantity of air flowing through said primary chamber.
Landscapes
- Combined Means For Separation Of Solids (AREA)
- Furnace Details (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE1911417A DE1911417C3 (de) | 1969-03-06 | 1969-03-06 | Umluftsichter |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3807552A true US3807552A (en) | 1974-04-30 |
Family
ID=5727333
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00887978A Expired - Lifetime US3807552A (en) | 1969-03-06 | 1969-12-24 | Apparatus for cooling and classifying ground material |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3807552A (enExample) |
| JP (1) | JPS5322299B1 (enExample) |
| AT (1) | AT314948B (enExample) |
| DE (1) | DE1911417C3 (enExample) |
| FR (1) | FR2033785A5 (enExample) |
| GB (1) | GB1273257A (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2528728A1 (fr) * | 1982-06-18 | 1983-12-23 | Janich Hans Jurgen | Procede d'actionnement d'un appareil de criblage pneumatique et appareil de criblage pour la mise en oeuvre de ce procede |
| US4661244A (en) * | 1985-04-25 | 1987-04-28 | Firma Christian Pfeiffer | Rotary basket air classifier |
| US5180113A (en) * | 1990-02-01 | 1993-01-19 | Evt Energie- Und Verfahrenstechnik Gmbh | Pulverizing technique and rolling mill for use therein |
| US20070278706A1 (en) * | 2006-05-30 | 2007-12-06 | C. Cretors And Company | Cotton candy handling device |
| US20080271654A1 (en) * | 2007-05-01 | 2008-11-06 | Cavaliere William A | Methods and Apparatus for Enhanced Incineration |
| CN103861810A (zh) * | 2014-04-02 | 2014-06-18 | 徐国安 | 非金属片状物与环状物的分离器 |
| CN104148286A (zh) * | 2014-07-14 | 2014-11-19 | 南京西普水泥工程集团有限公司 | 一种用于辊压机粉磨系统的分选设备 |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1931892B2 (de) * | 1969-06-24 | 1979-01-25 | Westfalia Dinnendahl Groeppel Ag, 4630 Bochum | Umluftsichter zum Kühlen von Zement o.a. Gut |
| DE2414767A1 (de) * | 1974-03-27 | 1975-10-16 | Janich Hans Juergen | Umluftsichter mit kuehleinrichtung |
| DE3410363A1 (de) * | 1984-03-21 | 1985-10-03 | Krupp Polysius Ag, 4720 Beckum | Umluftsichter |
| CN110068200B (zh) * | 2019-05-07 | 2020-05-22 | 中国矿业大学 | 一种离心流化床干燥分选系统及干燥分选方法 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1962455A (en) * | 1931-01-30 | 1934-06-12 | Henry S Montgomery | Air separator |
| US2790550A (en) * | 1954-10-25 | 1957-04-30 | Sturtevant Mill Co | Apparatus for centrifugal separation |
| DE1242993B (de) * | 1961-01-27 | 1967-06-22 | Jakob Heyd | Umluftsichter |
-
1969
- 1969-03-06 DE DE1911417A patent/DE1911417C3/de not_active Expired
- 1969-12-03 AT AT1130669A patent/AT314948B/de not_active IP Right Cessation
- 1969-12-10 GB GB60219/69A patent/GB1273257A/en not_active Expired
- 1969-12-24 US US00887978A patent/US3807552A/en not_active Expired - Lifetime
-
1970
- 1970-01-29 FR FR7003214A patent/FR2033785A5/fr not_active Expired
- 1970-03-05 JP JP1899870A patent/JPS5322299B1/ja active Pending
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2528728A1 (fr) * | 1982-06-18 | 1983-12-23 | Janich Hans Jurgen | Procede d'actionnement d'un appareil de criblage pneumatique et appareil de criblage pour la mise en oeuvre de ce procede |
| US4515686A (en) * | 1982-06-18 | 1985-05-07 | Pks-Engineering Gmbh & Co. Kg | Method for the operation of an air separator, and an air separator for the practice of the method |
| US4661244A (en) * | 1985-04-25 | 1987-04-28 | Firma Christian Pfeiffer | Rotary basket air classifier |
| US5180113A (en) * | 1990-02-01 | 1993-01-19 | Evt Energie- Und Verfahrenstechnik Gmbh | Pulverizing technique and rolling mill for use therein |
| US20070278706A1 (en) * | 2006-05-30 | 2007-12-06 | C. Cretors And Company | Cotton candy handling device |
| US7641460B2 (en) * | 2006-05-30 | 2010-01-05 | C. Cretors & Company | Cotton candy handling device |
| US20080271654A1 (en) * | 2007-05-01 | 2008-11-06 | Cavaliere William A | Methods and Apparatus for Enhanced Incineration |
| US8020498B2 (en) * | 2007-05-01 | 2011-09-20 | Phase Inc. | Methods and apparatus for enhanced incineration |
| CN103861810A (zh) * | 2014-04-02 | 2014-06-18 | 徐国安 | 非金属片状物与环状物的分离器 |
| CN103861810B (zh) * | 2014-04-02 | 2016-01-06 | 徐国安 | 非金属片状物与环状物的分离器 |
| CN104148286A (zh) * | 2014-07-14 | 2014-11-19 | 南京西普水泥工程集团有限公司 | 一种用于辊压机粉磨系统的分选设备 |
| CN104148286B (zh) * | 2014-07-14 | 2016-06-01 | 南京西普水泥工程集团有限公司 | 一种用于辊压机粉磨系统的分选设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1273257A (en) | 1972-05-03 |
| DE1911417C3 (de) | 1985-05-09 |
| DE1911417A1 (de) | 1970-09-24 |
| JPS5322299B1 (enExample) | 1978-07-07 |
| FR2033785A5 (enExample) | 1970-12-04 |
| AT314948B (de) | 1974-04-25 |
| DE1911417B2 (enExample) | 1979-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3807552A (en) | Apparatus for cooling and classifying ground material | |
| US2269412A (en) | Air separator | |
| US3155326A (en) | Ore pulverizer and sizing device | |
| US3164548A (en) | Tower type pneumatic separator | |
| US4528091A (en) | Particle classifier | |
| JPS5843270A (ja) | 分級装置 | |
| US3615008A (en) | Centrifugal classifying system | |
| US4257880A (en) | Centrifugal air classifying apparatus | |
| US3371783A (en) | Centrifugal air classifiers | |
| US3901794A (en) | Circulatory air sifter | |
| US3567141A (en) | Mill for grinding hard materials | |
| US2350737A (en) | Apparatus for treating cement | |
| US3656618A (en) | Air sifter | |
| US3237766A (en) | Mechanical air classifier | |
| US3036708A (en) | Particulate material separator | |
| GB1094098A (en) | Improvements in or relating to sifters | |
| DK151047B (da) | Fremgangsmaade til drift af en vindsigte og vindsigte til udoevelse af fremgangsmaaden | |
| US2694492A (en) | Rumpf ettal | |
| US2931500A (en) | Pneumatic grain cleaner | |
| US3615009A (en) | Classifying system | |
| US2365179A (en) | Grain processing apparatus | |
| US4066535A (en) | Method and apparatus for the classification of fine material from a stream of material in a circulating air classifier | |
| US3563006A (en) | Separating and cooling device for plastic granules | |
| US2778577A (en) | Oscillatory mill with air separation | |
| US1977479A (en) | Dust extraction apparatus |