US3797086A - Method of closing off a heat pipe - Google Patents
Method of closing off a heat pipe Download PDFInfo
- Publication number
- US3797086A US3797086A US00308765A US3797086DA US3797086A US 3797086 A US3797086 A US 3797086A US 00308765 A US00308765 A US 00308765A US 3797086D A US3797086D A US 3797086DA US 3797086 A US3797086 A US 3797086A
- Authority
- US
- United States
- Prior art keywords
- heat pipe
- hydrogen
- sealing
- heat
- diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0283—Means for filling or sealing heat pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S29/00—Metal working
- Y10S29/034—Scaling with other step
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49353—Heat pipe device making
Definitions
- the invention relates to a method of closing off a heat pipe, in which a sealing place is sealed while heating it to at least its softening temperature.
- a heat pipe within the scope of the present application is to be understood to mean a heat transfer device constituted by a container in which a heat transfer medium is present, for example sodium, which on the one hand absorbs thermal energy from a heat source through a wall of the container while changing from the liquid phase into the vapour phase and on the other hand delivers thermal energy to the exterior through another wall of the container while changing from the vapor phase into the liquid phase.
- a heat transfer medium for example sodium
- Heat pipes comprising a capillary structure for the return of condensate are known, for example, from the US. Pat. Nos. 3,229,759 and 3,402,767.
- heat pipe For a good operation of the heat pipe it is desirable to remove all foreign gases, including air, from the heat pipe.
- gases can cause all kinds of difficulties. They can inhibit, for example, the condensation of heat transfer medium on the condensation wall in that said wall is covered with a gas layer or they can enter into chemical reactions with the heat transfer medium, the material of the capillary structure or that of the heat pipe walls.
- Undesirable gases which would be liberated from the heat pipe walls or the capillary structure during the often high operating temperature of the heat pipe can be eliminated for the greater part in advance by subjecting the heat pipe to a thermal treatment, for example, annealing in a vacuum furnace, before filling it with heat transfer medium and sealing it.
- a thermal treatment for example, annealing in a vacuum furnace
- Closing off the heat pipe can be done by means of cocks. On the one hand, this makes the heat pipe comparatively expensive, on the other hand a hermetic seal is often not obtained since the cock is apt to show leakage. Undesirable gases then leak into the heat pipe and may cause again the above-mentioned difficulties.
- a sealing method is preferably used so as to obtain a good sealing, for example melting, soldering or welding, the place to be sealed obtaining the shape desirable for sealing by heating to at least its softening temperature (contraction of a filling spout and exhaust tube, respectively).
- heat pipe may be removed from it.
- said method is unattractive for economic considerations.
- the method according to the invention is characterized in that after evacuation of undesirable gases, the heat pipe is filled with hydrogen, is then sealed, after which the hydrogen is removed to the atmosphere by diffusion through the wall of the heat pipe.
- the hydrogen during sealing ensures that the temperature of the heat pipe does not become too high because evaporation of the heat transfer medium and flow of medium vapour to the colder parts of the pipe is prevented.
- the heat pipe then remains easy to handle. Sealing may thus be carried out as handwork.
- an evacuated heatpipe is ultimately obtained again in a simple manner by causing the hydrogen to diffuse from the heat pipe to the atmosphere.
- All conventional heat pipe materials permit of diffusion of hydrogen through the pipe walls.
- Materials used for the manufacture of heat pipes are, for example, glass, ceramic, steel, the metals copper, aluminum, molybdenum, niobium, zirconium, tungsten, tantalum, rhenium and alloys thereof.
- the hydrogen may be introduced into the heat pipe in the form of a gas. If desirable, however, liquid hydrogen may also be supplied which evaporates in the heat pipe and provides an extra cooling of the heat pipe due to its low temperature.
- the hydrogen pressure in the heat pipe during sealing is equal to or substantially equal to the ambient pressure.
- the ambient pressure is usually the atmospheric pressure but this need not always be the case. Since now the pressures on either side of the place to be sealed are equal or substantially equal, neither the danger of implosion nor of explosion will exist and a good sealing will be obtained.
- the hydrogen inside the heat pipe disappears from it by diffusion through the walls of the heat pipe to the atmosphere. Dependent upon the material of the heat pipe and the temperature thereof, said hydrogen diffusion will occur more or less rapidly.
- the heat pipe is heated. By heating, the wall temperature of the heat pipe rises and the hydrogen pressure inside the heat pipe increases. Both factors have a favourable influence on the hydrogen diffusion rate.
- the nominal operating temperature of the heat pipe is so high that such a temperature can be a positive contribution to increasing the hydrogen diffusion rate
- the heat pipe may also be made free from hydrogen by operating it in the normal practical circumstances endeavoured.
- the diffusion rate of hydrogen depends upon the material of the heat pipe.
- the starting material chosen is a material which has a comparatively low permeability for hydrogen.
- an increase of the hydrogen diffusion can nevertheless be obtained by using a heat pipe of which a part of the material of comparatively low permeability of hydrogen is replaced, preferably in the form of a window, by a material having a larger permeability for hydrogen.
- Materials through which hydrogen can diffuse at a high rate, notably at higher temperatures (above 600C), are palladium or alloys thereof, such as silverpalladium and (to a slightly smaller extent) nickel or alloys thereof, for example, nickel-iron alloys.
- said materials are used as windows in heat pipes which consist of a material having a comparatively low permeability to hydrogen, the great advantage is obtained that upon heating the hydrogen is expelled from the heat pipe in a very short time via the window.
- the invention furthermore relates to a heat pipe manufactured according to the above-described methods.
- FIG. la is an elevation view partially in section of the new heat pipe assembly.
- FIG. lb is a sectional view of a portion of FIG. 1a in further detail.
- FIG. 1c is a sectional view of a portion of FIG. la in further detail.
- FIG. la denotes a stainless steel heat pipe which is provided with a nickel window 2 and a filling spout 3.
- the inner wall of the pipe is lined with a capillary structure 4 consisting of layers of gauze.
- the heat pipe 1 may be made to communiate at will with a vacuum pump 7 or a hydrogen cylinder 8 filled with hydrogen under pressure and comprising a pressure reducing valve 9.
- the heat pipe 1 comprises a quantity of sodium as a heat transfer medium which may have been provided in the heat pipe, for example, via a distillation process.
- the heat pipe 1 Prior to the sodium filling, the heat pipe 1 has been heated with simultaneous evacuation by a vacuum pump 7 so as to remove all the undesirable gases from the heat pipe. If desirable, heating may be repeated after the sodium filling so that undesirable gases which are liberated from the sodium are then also removed.
- the heat pipe is then rinsed once or several times with hydrogen from the hydrogen cylinder 8, the hydrogen being sucked off after each rinsing by vacuum pump 7.
- the heat pipe 1 is then filled with hydrogen of approximately l atm. and the filling spout 3 is sealed,
- the hydrogen in the heat pipe 1 ensures that during sealing the temperature of the heat pipe remains low. As a matter of fact, the hydrogen restricts evaporation of heat transfer medium so that medium vapor cannot condense on colder parts of the wall. As a result of this the heat pipe remains readily handable.
- the nickel window 2 and the walls of the heat pipe 1 are heated at a high temperature.
- the hydrogen pressure inside the heat pipe increases. Hydrogen now diffuses at a high speed through the nickel window 2 to the exterior. Diffusion of hydrogen also takes place through the stainless steel walls of the heat pipe, albeit at a much lower rate than is the case for the nickel window.
- the heat pipe is free from hydrogen and ready for normal use.
- thermal energy is supplied to the part A of the pipe (FIG. 1c).
- the sodium inside the heat pipe evaporates there and flows to the part B of the pipe in the vapor phase because this part has a slightly lower temperature so that a lower vapor pressure prevails at the area of pipe part B.
- Sodium vapor condenses on pipe part B while giving off thermal energy to said part.
- the capillary structure 4 formed by layers of gauze the condensate is returned to pipe part A, on the basis of capillary action, to be evaporated there again.
- a method of closing off a heat pipe, at least a part of which is hydrogen permeable and in which a sealing place is sealed while heating it to at least its softening temperature comprising evacuating undesirable gases from the heat pipe, filling the evacuated heat pipe wth hydrogen, then sealing the heat pipe, and subsequently removing the hydrogen into the atmosphere by diffusion of the hydrogen through the wall of the heat pipe.
- the window consists of nickel or an alloy thereof, for example, an iron-nickel alloy.
- the window consists of palladium or an alloy thereof, for example, a silver-palladium alloy.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Thermal Insulation (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL7116620A NL7116620A (enrdf_load_stackoverflow) | 1971-12-03 | 1971-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3797086A true US3797086A (en) | 1974-03-19 |
Family
ID=19814612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00308765A Expired - Lifetime US3797086A (en) | 1971-12-03 | 1972-11-12 | Method of closing off a heat pipe |
Country Status (7)
Country | Link |
---|---|
US (1) | US3797086A (enrdf_load_stackoverflow) |
JP (1) | JPS5340984B2 (enrdf_load_stackoverflow) |
CA (1) | CA961030A (enrdf_load_stackoverflow) |
DE (1) | DE2255363A1 (enrdf_load_stackoverflow) |
FR (1) | FR2162097B1 (enrdf_load_stackoverflow) |
GB (1) | GB1395207A (enrdf_load_stackoverflow) |
NL (1) | NL7116620A (enrdf_load_stackoverflow) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106171A (en) * | 1974-11-29 | 1978-08-15 | Hughes Aircraft Company | Method for closure of heat pipes and device fabricated thereby |
US4217882A (en) * | 1978-10-30 | 1980-08-19 | Feldman Karl T Jr | Passive solar heat collector |
US4240189A (en) * | 1976-12-25 | 1980-12-23 | Ricoh Company, Ltd. | Method of producing heat pipe roller |
US4389002A (en) * | 1980-02-07 | 1983-06-21 | Kona Corporation | Injection molding nozzle |
US5412869A (en) * | 1992-12-08 | 1995-05-09 | Fritz Werner Prazisionsmaschinenbau Gmbh | Making a cell for a motor-vehicle latent-heat storage unit |
US5423122A (en) * | 1992-12-08 | 1995-06-13 | Fritz Werner Prazisionsmaschinenbau Gmbh | Assembly of a motor-vehicle latent-heat storage unit |
US6419476B1 (en) | 1998-08-25 | 2002-07-16 | Joseph P. Ouellette | Thermally insulated runner manifold and injection nozzle construction for plastic molding apparatus |
US20040163799A1 (en) * | 2002-02-13 | 2004-08-26 | Matthew Connors | Deformable end cap for heat pipe |
US20050011567A1 (en) * | 2003-07-16 | 2005-01-20 | Hotmon International Corporation | Vacuum sealing-structure for heat-sinking conduit/chamber |
US20050022414A1 (en) * | 2003-07-18 | 2005-02-03 | Hul-Chun Hsu | Method and apparatus for removing vapor within heat pipe |
US20060162161A1 (en) * | 2005-01-27 | 2006-07-27 | Hul-Chun Hsu | Method and apparatus for continuous parallel conveyance of heat pipe |
US20060183374A1 (en) * | 2005-02-14 | 2006-08-17 | Forcecon Technology Co., Ltd. | Sealing end for a heat conductor and method of constructing same |
US20100158794A1 (en) * | 2006-04-05 | 2010-06-24 | Thomas Steer | Heat pipe, heat pipe reformer comprising such a heat pipe, and method for the operation of such a heat pipe reformer |
US20160262563A1 (en) * | 2007-09-17 | 2016-09-15 | Accutemp Products, Inc. | Method and apparatus for filling a steam chamber |
US10071441B2 (en) | 2012-11-19 | 2018-09-11 | Bertwin R. Geist Immobilien + Erneuerbare Energien E.K. | Method for producing a hollow body which is pressure-tight to a predetermined medium |
US10999952B1 (en) * | 2020-01-02 | 2021-05-04 | Taiwan Microloops Corp. | Vapor chamber and manufacturing method thereof |
US12185872B1 (en) | 2019-08-21 | 2025-01-07 | Accutemp Products, Inc. | Griddle |
US12376701B1 (en) | 2019-08-21 | 2025-08-05 | Accu Temp Products, Inc. | Griddle |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53152444U (enrdf_load_stackoverflow) * | 1978-03-28 | 1978-11-30 | ||
JPS61151911U (enrdf_load_stackoverflow) * | 1985-03-12 | 1986-09-19 | ||
DE102008053494B4 (de) * | 2008-10-28 | 2011-08-25 | Highterm Research GmbH, 85276 | Rückdiffusionswärmerohr |
DE102012111136A1 (de) * | 2012-11-19 | 2014-05-22 | Bertwin R. Geist Immobilien + Erneuerbare Energien E.K. | Verfahren zum Herstellen eines für ein vorbestimmtes Medium druckdichten Hohlkörpers |
CN114659395B (zh) * | 2022-05-28 | 2022-08-02 | 新乡市特美特热控技术股份有限公司 | 一种均温板充注系统及控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3033974A (en) * | 1958-07-01 | 1962-05-08 | Zeiss Carl | Method and means for welding and soldering with the help of beams of charged particles |
US3503438A (en) * | 1968-10-25 | 1970-03-31 | Acf Ind Inc | Hydrogen release for a heat pipe |
US3604504A (en) * | 1970-05-13 | 1971-09-14 | Rca Corp | Flexible heat pipe |
US3613773A (en) * | 1964-12-07 | 1971-10-19 | Rca Corp | Constant temperature output heat pipe |
-
1971
- 1971-12-03 NL NL7116620A patent/NL7116620A/xx unknown
-
1972
- 1972-11-11 DE DE2255363A patent/DE2255363A1/de active Pending
- 1972-11-12 US US00308765A patent/US3797086A/en not_active Expired - Lifetime
- 1972-11-30 CA CA157,858A patent/CA961030A/en not_active Expired
- 1972-11-30 GB GB5533972A patent/GB1395207A/en not_active Expired
- 1972-11-30 FR FR7242587A patent/FR2162097B1/fr not_active Expired
- 1972-11-30 JP JP11947472A patent/JPS5340984B2/ja not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3033974A (en) * | 1958-07-01 | 1962-05-08 | Zeiss Carl | Method and means for welding and soldering with the help of beams of charged particles |
US3613773A (en) * | 1964-12-07 | 1971-10-19 | Rca Corp | Constant temperature output heat pipe |
US3503438A (en) * | 1968-10-25 | 1970-03-31 | Acf Ind Inc | Hydrogen release for a heat pipe |
US3604504A (en) * | 1970-05-13 | 1971-09-14 | Rca Corp | Flexible heat pipe |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106171A (en) * | 1974-11-29 | 1978-08-15 | Hughes Aircraft Company | Method for closure of heat pipes and device fabricated thereby |
US4240189A (en) * | 1976-12-25 | 1980-12-23 | Ricoh Company, Ltd. | Method of producing heat pipe roller |
US4217882A (en) * | 1978-10-30 | 1980-08-19 | Feldman Karl T Jr | Passive solar heat collector |
US4389002A (en) * | 1980-02-07 | 1983-06-21 | Kona Corporation | Injection molding nozzle |
US5412869A (en) * | 1992-12-08 | 1995-05-09 | Fritz Werner Prazisionsmaschinenbau Gmbh | Making a cell for a motor-vehicle latent-heat storage unit |
US5423122A (en) * | 1992-12-08 | 1995-06-13 | Fritz Werner Prazisionsmaschinenbau Gmbh | Assembly of a motor-vehicle latent-heat storage unit |
US6852264B2 (en) | 1998-08-25 | 2005-02-08 | Joseph P. Ouellette | Thermally insulated runner manifold and injection nozzle construction for plastic molding apparatus |
US6419476B1 (en) | 1998-08-25 | 2002-07-16 | Joseph P. Ouellette | Thermally insulated runner manifold and injection nozzle construction for plastic molding apparatus |
US20020140131A1 (en) * | 1998-08-25 | 2002-10-03 | Ouellette Joseph P. | Thermally insulated runner manifold and injection nozzle construction for plastic molding apparatus |
US20050082039A1 (en) * | 2002-02-13 | 2005-04-21 | Matthew Connors | Deformable end cap for heat pipe |
US20040163799A1 (en) * | 2002-02-13 | 2004-08-26 | Matthew Connors | Deformable end cap for heat pipe |
US6907918B2 (en) * | 2002-02-13 | 2005-06-21 | Thermal Corp. | Deformable end cap for heat pipe |
US7090002B2 (en) * | 2002-02-13 | 2006-08-15 | Thermal Corp. | Deformable end cap for heat pipe |
US20050011567A1 (en) * | 2003-07-16 | 2005-01-20 | Hotmon International Corporation | Vacuum sealing-structure for heat-sinking conduit/chamber |
US20050022414A1 (en) * | 2003-07-18 | 2005-02-03 | Hul-Chun Hsu | Method and apparatus for removing vapor within heat pipe |
US20060162161A1 (en) * | 2005-01-27 | 2006-07-27 | Hul-Chun Hsu | Method and apparatus for continuous parallel conveyance of heat pipe |
US20060183374A1 (en) * | 2005-02-14 | 2006-08-17 | Forcecon Technology Co., Ltd. | Sealing end for a heat conductor and method of constructing same |
US20100158794A1 (en) * | 2006-04-05 | 2010-06-24 | Thomas Steer | Heat pipe, heat pipe reformer comprising such a heat pipe, and method for the operation of such a heat pipe reformer |
US20160262563A1 (en) * | 2007-09-17 | 2016-09-15 | Accutemp Products, Inc. | Method and apparatus for filling a steam chamber |
US11700967B2 (en) * | 2007-09-17 | 2023-07-18 | Accutemp Products, Inc. | Method and apparatus for filling a steam chamber |
US10071441B2 (en) | 2012-11-19 | 2018-09-11 | Bertwin R. Geist Immobilien + Erneuerbare Energien E.K. | Method for producing a hollow body which is pressure-tight to a predetermined medium |
US12185872B1 (en) | 2019-08-21 | 2025-01-07 | Accutemp Products, Inc. | Griddle |
US12376701B1 (en) | 2019-08-21 | 2025-08-05 | Accu Temp Products, Inc. | Griddle |
US10999952B1 (en) * | 2020-01-02 | 2021-05-04 | Taiwan Microloops Corp. | Vapor chamber and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
DE2255363A1 (de) | 1973-06-14 |
CA961030A (en) | 1975-01-14 |
FR2162097B1 (enrdf_load_stackoverflow) | 1976-08-20 |
GB1395207A (en) | 1975-05-21 |
NL7116620A (enrdf_load_stackoverflow) | 1973-06-05 |
FR2162097A1 (enrdf_load_stackoverflow) | 1973-07-13 |
JPS5340984B2 (enrdf_load_stackoverflow) | 1978-10-30 |
JPS4865545A (enrdf_load_stackoverflow) | 1973-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3797086A (en) | Method of closing off a heat pipe | |
US5897927A (en) | Seal for vacuum devices and methods for making same | |
US3137551A (en) | Ultra high vacuum device | |
US2727167A (en) | Ion pump | |
WO2001012942A1 (en) | Evacuated glass panel having a getter | |
US4159737A (en) | Heat pipe | |
US2398449A (en) | Method of making hermetic seals | |
US3116764A (en) | High vacuum method and apparatus | |
US3525229A (en) | On-off thermal switch for a cryopump | |
US3672020A (en) | Method of making a heat pipe having an easily contaminated internal wetting surface | |
US3088201A (en) | Method of making a ceramic-to-metal seal | |
US3353890A (en) | Methods of manufacturing electron tubes having a photo-sensitive layer in a vacuum space tubes manufactured by said methods and devices for carrying out said methods | |
US1943523A (en) | Electron tube | |
Yarwood | Ultra-high vacua | |
US2494915A (en) | Method of gas-filling and sealing vessels | |
US3087289A (en) | Method of processing articles or materials in a continuous flow operation | |
US2491874A (en) | Manufacture of mercury-containing, gas-filled electric discharge apparatus | |
US2456968A (en) | Process for outgassing photocells containing antimony | |
JPH11283492A (ja) | 真空外周器及びその真空方法 | |
US3535011A (en) | Method of making photoemissive electron tubes | |
JPH0592136A (ja) | 吸着剤包袋およびその製造方法 | |
US3258193A (en) | Vacuum method | |
JPS6086384A (ja) | ヒ−トパイプへの熱媒体の充填方法 | |
US4382646A (en) | Method for removing gases caused by out-gassing in a vacuum vessel | |
US3419950A (en) | Method of making a vapor device |