US3780668A - Electromagnetic suspension and/or guide system especially for magnetically suspended vehicles - Google Patents
Electromagnetic suspension and/or guide system especially for magnetically suspended vehicles Download PDFInfo
- Publication number
- US3780668A US3780668A US00280073A US3780668DA US3780668A US 3780668 A US3780668 A US 3780668A US 00280073 A US00280073 A US 00280073A US 3780668D A US3780668D A US 3780668DA US 3780668 A US3780668 A US 3780668A
- Authority
- US
- United States
- Prior art keywords
- shanks
- vehicle
- rail member
- core member
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 49
- 230000005291 magnetic effect Effects 0.000 claims description 26
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 10
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 230000004907 flux Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 244000186140 Asperula odorata Species 0.000 description 1
- 101100310222 Caenorhabditis briggsae she-1 gene Proteins 0.000 description 1
- 235000008526 Galium odoratum Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/04—Monorail systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/08—Sliding or levitation systems
Definitions
- ABSTRACT An electromagnetic suspension and guide system for a tisel x ssspea sixehislss semi-21 2s esq or track along which the vehicle is displaceable and is provided with an armature rail of magnetically permeable material (e.g., a ferrous metal), while the vehicle is provided with at least one electromagnet'cooperating with this armature rail.
- the electromagnet has a core of U-profile, the arms or shanks of which reach toward eazmatu e rai s hichisfihawiss of -P whose shanks reach toward the electromagnet.
- the shags oilthese twornembers overlap and the shanks of one member are in c lined toward the shanks of the other.
- the shanks o f the armature nernhermav reach into the s p ace between the shanks of the core member of vice versa.
- PATENTED B5325 3, 780 668 sum u nr 5 PATENTEU UEE 2 51975 SHEUSBFS I FIG. /0
- the present invention relates to magnetic suspension and guide systems and, more particularly, to an electromagnetic suspension or guide system for magnetically suspended vehicles.
- any transportation system of this type must comprise a track or support which is located above grade, at grade level or below grade, and a vehicle displaceable along this track.
- One of the principal disadvantages of conventional vehicular systems of this type is the friction between the vehicle and the track.
- the displacement of vehicles along a track may make use of fluid-pressure differentials, linear-induction motors and other non-contact or limited contact motive systems, i.e., systems in which frictional contact between the vehicle and track is minimized.
- non-contact or limited contact motive systems i.e., systems in which frictional contact between the vehicle and track is minimized.
- the supporting and guiding functions are also frictionless or of limited friction, the practical vehicle speed remains limited.
- a magnetic suspension and guide system may include one or more armature rails extending along the track and one or more electromagnets cam'edby the vehicle and having cores cooperating with the armature rails of the track or support to maintain an air gap therewith across which magnetic force supports the vehicle.
- a magnetic-flux path is closed between the poles of the electromagnet core through the armature and across the gap.
- the armature was a flat bar and the system was characterized by an unstable force characteristic.
- the vehicle could be laterally and longitudinally dislocated or shifted by such forces as wind, centrifugal force as the vehicle passes around a curve etc., without significant controllability.
- some freedom of movement is provided in the parallel power to the plane of the air gap and hence an unstable condition is created in this situation as well.
- electronic control was necessary for each degree of uncontrolled movement.
- electromagnets were provided to adjust both lateral and vertical air gaps and to limit the displacement of the vehicle in the vertical and lateral directions, and even to stabilize the vehicle against displacement in a longitudinal mode.
- a separate gap detector and feedback circuit was provided to regulate the energization current through the respective coil to maintain the gap at desired level.
- Still another object of the invention is to provide a magnetic suspension and guide system for a magnetically suspended vehicle in which fewer gap-responsive control circuits are necessary to limit instability.
- an electromagnetic suspension and/or guide system especially for magnetically suspended vehicles adapted to travel along a support track, which comprises at least one armature rail extending along this track and having a web from which a pair of shanks reach toward a portion of the vehicle, and at least one electromagnet whose coil member is of U-profile with a pair of shanks reaching toward the armature member, the shanks of one of these members being inclined toward the shanks of the other member and overlapping the same. A coil is wound upon this core.
- the armature member is constituted substantially of a U-cross-section channel whose lateral shanks or arms are spaced from and overlapping with the lateral shanks or arms of the U-cross-section electromagnet core whereby the shanks of one of these members is received between the shanks of the other member.
- the shanks of one of the members are inclined toward the shanks of the other member so that the region of overlap has a location of closest approach at which the inclined shanks are closest to a flank of the noninclined shank or the shank with which they overlap proximally of the web and divergent from this shank in the direction of its free end.
- a wedge-shaped air gap is provided between each inclined shank and the noninclined shank of the other member.
- a system of this type develops an attractive force in the direction of the longitudinal axis in which the center of gravity of the cross-sections or profiles (centroids) lie and which maintains stability along this longitudinal axis over a limited range of positions of the electromagnet.
- This system is defined as a system having longitudinal stability, i.e., without change in theelectrical current traversing the electromagnet, the magnetic force resisting displacement along the longitudinal axis increased with displacement to provide a so-called force characteristic which has a spring constant similar to the force characteristic of an extension spring which is deformed.
- the increasing magnetic attraction with separation of the interfitting core member and rail member results from the fact that the magnetic flux bridging the air gap between the two shanks of each overlapping pair is a stray flux which is unconcentrated over the full length of the shank. As the degree of overlap is reduced, the stray flux is reduced and the flux density at the reduced regions of juxtaposition (poles) increases.
- the force characteristic reaches its maximum when overlapping practically ceases, i.e., at the point at which the free end of the arms of the yoke or core of the electromagnet and the free ends of the arms of the armature rail lie in a common plane perpendicular to the longitudinal axis defined by the centroids. At this point of total separation, increased adhesive force with increasing displacement no longer develops and the magnetic suspension is no longer stable even in one direction. With overlapping of the shanks and interfitting of the two channel-shaped members, the system is transversely unstable, this degree of instability remaining when the two components of the system are separated.
- the transverse instability is seen in the fact that a displacement of the core member relative to the rail member in a direction perpendicular to the plane of the longitudinal axis defined by the centroids of the profile sections, is not magnetically resisted by the flux traversing the core and rail members.
- a feature of the present invention to provide a further electromagnetic system, preferably including a magnetic armature rail and electromagnet, which is effective in the transverse direction for limiting such displacement.
- the further electromagnetic system may be provided with a gap sensor or detector for adjusting the electromagnetic force to compensate for or resist the transverse forces.
- Another advantage of the present system resides in the relatively large freedom of movement of the magnetically suspended system in the longitudinal direction by comparison with systems using flat armatures.
- the system of the present invention can thus provide tracks, rails and like structures which interact with mating facilities of the vehicle with larger tolerances than is possible with the prior art arrangements.
- the electromagnet of the present invention may be made relatively wide with relatively short lateral shanks or arms such that the lateral shanks or arms of the armature can be received between the shanks or arms of the electromagnet core.
- a system of this type is characterized by reduced stray flux between the relatively widely spread lateral shanks of the magnet core, by the ability to use wide electromagnet coils and hence by reduced coil-winding height.
- the active surfaces of the armature and the magnet core is protected from ice, contaminants and the like in a particularly convenient manner.
- FIG. 1 is a vertical cross-sectional view through a portion of a suspension system embodying the invention, the means for attaching the components to the respective supporting structure being illustrated diagrammatically;
- FIG. 2 is a view similar to FIG. 1 of a suspension and guide system representing a variation of the system of FIG. 1;
- FIG. 3 (sheet 2 of the drawing) is a view similar to FIGS. 1 and 2 but illustrating a kinematic reversal of the components in a suspension or guide system according to the invention
- FIG. 4 is a view similar to FIG. 3 of still another embodiment of the invention.
- FIG. 5 is a further diagrammatic cross-sectional view, taken in a plane perpendicular to the direction of movement of a vehicle provided with the suspension or guide system and illustrating another aspect of invention
- FIG. 6 (sheet 1 of the drawing) is a view similar to FIG. 5 showing another modification
- FIG. 7 (sheet 3 of the drawing) is a vertical crosssection through a suspension system for a magnetically suspended vehicle in which the longitudinal stability is provided in the suspension portion of the system;
- FIG. 8 is a view similar to FIG. 7 of an embodiment of the invention wherein the longitudinally stable electromagnetic system is provided for guiding the vehicle;
- FIG. 9 is a side elevational view of one of the electro magnets in accordance with the invention.
- F IG. 10 is a diagrammatic perspective view of a vehicle system embodying the invention.
- the system may comprise a substantially horizontal support track 50 held at intervals by pylons 51 or other suppor means at grade level, above grade or below grade.
- the track 50 is provided with a channel 52 which is upwardly open and is overhung by a pair of inwardly turned flanges 53 and 54.
- the undersides of the flanges 53 and 54 are provided with respective downwardly open channels 55, 56 constituting armature rails composed of a ferromagnetic material, e.g., iron, and extending the full length of the track.
- the rails may have the configuration of any of the rails 1 of FIGS. 1 through 7.
- the rail configuration may be that of FIG. 8.
- the vehicle 60 may comprise an operator compartment 61 and a passenger compartment 63 to which axis is had through a door 63.
- the vehicle may be propelled by a linear induction motor and it receives electrical power through brushes provided on the vehicle and contact rails provided on the support tract 50 in accordance with conventional practices.
- the vehicle is provided with a horizontal flange 64 which extends into the channel 52 and carries on its outer edges the electromagnets 65 and 66 cooperating with rails 55 and 56 for suspension of the vehicle.
- Outwardly facing electromagnets 67 and- 68 are also provided upon the vehicle to cooperate with the armature rails 67 and 68 in guiding the vehicle.
- the vehicle is magnetically suspended from the downwardly open U-section rails 55 and 56 and is guided against lateral movement by the electromagnetic forces generated at rails 57 and 58.
- the result is a frictionless magnetic suspension and guide system.
- FIG. I the electromagnetic suspension or guide system is shown in greater detail and the principles of operation will become more fully apparent.
- the electromagnetic suspension or guide system which may be used for the suspension or guide arrangement of FIG. 10, can comprise a fixed armature mounted an electromagnet 5 whose elongated core 6 has a U-shaped profile and carries a coil 8 wound about the web 7.
- the arms or lateral shanks 12 of the core 6 reach upwardly to bracket the arms 2 of the rail 1 between them, i.e., the armature rail 1 and the core 6 overlap or interfit with the arms 1 received with the channel or between the arms of the other.
- a magnetic flux 9 (shown in broken lines) is induced in the core 6, the flux path closing through the air gap between the arms 12 of the core 6 and the arms 2 of the rail 1 and through the latter.
- the lateral flanges, arms or shanks 2 and 12 of the armature rail 1 and the core 6 overlap in this position and define gaps between them which diverge in the direction of the support structure.
- the direction of divergence be toward the support structure it being only significant that the direction of convergence be such that a tendency toward separation will reduce the volume of the air gap between the two members.
- the inclined orientation of one of the pairs of lateral arms (in this case the arms of the rail) to the mutually parallel arms of the other pair results in an increasing attractive magnetic force between the cores 6 and the rail 1 with increasing separation (i.e., with increasing withdrawal of the interfitting parts) to a maximum attractive force at the point that overlap ceases or the poles formed by the ends of the arms become substantially coplanar.
- the suspension or guide system becomes unstable as in conventional magnetic suspensions in which the electromagnet cooperates with a flat-strip armature.
- a longitudinally stable system within the meaning of the present inventi0n,is one which compensates automatically for a tendency toward separation of the parts by increasing the magnetic attractive force resisting such separation without a concommitant increase in the electrical energization of the coil.
- the system of FIG. 1 thus provides increasing magnetic attractive force to resist separation in the direction of the axis 13 until the point of withdrawal is reached.
- the mutually parallel lateral arms, flanks or shanks 12 of the electromagnetic core 6 reach into the channel formed by the armature rail 1 between the inwardly turned arms 2 of the latter.
- the arms 2 include angles a of less than 90 such that the arms will include the desired angle between 15 and with the arms 12.
- FIGS. 3 and 4 represent systems which are kinematic reversal of the systems of FIGS. l and 2.
- the arms of the core 6 are inclined inwardly (FIG. 3) or outwardly (FIG. 4) toward the mutually parallel arms 2 of the armature rail 1.
- the arms of the latter are thus received with an overlap between the arms of the electromagnetic core 6 (FIG. 3) or receive the arms of the core (FIG. 4).
- the latter systems which function as described for the system of FIG. 1, have the advantage that a single armature rail structure can be used for a variety of configurations of the magnet or magnet core.
- the inclined shanks or arms may be oriented to provide the desired characteristic.
- FIG. there is shown a system in which the arms 2 are provided with an outwardly concave curvature i.e., a curvature which is convex in the direction of the centroids.
- This curvature which may be generally cylindrical, pyramidal or otherwise conformed to a surface of revolution with an axis parallel to the longitudinal direction, results in an increase in the spring constant of the system with increasing longitudinal displacement, i.e., the elastic suspension of the floating system becomes stiffer with greater loads.
- spring constant is used herein to refer'to the relationship between restoring force and displacementwhich, generally speaking, can be represented by a relationship such as F Kx where x is the displacement and F is the restoring force.
- the constant K is thus defined as F /x and is analogous to the usual spring constant. With increasing K, the system becomes stiffer.
- FIGS. 7 and 8 there are shown two arrangements of the longitudinally stable suspension and guide arrangements of FIGS. 1 through 6. These systems respectively provide a longitudinally stable suspension with an unstable system providing lateral control and an unstable suspension system with a longitudinally stable guide system for lateral control.
- a pair of longitudinally stable electromagnetic suspension systems 16 (see FIG. 1) while the guide systems are longitudinally unstable and are provided at 17.
- the unstable systems 17 each comprises an armature rail 18 and electromagnets 19 with U-profiles whose arms are parallel and aligned one another so that they are juxtaposed without overlap.
- the electromagnets 20 of these systems are provided with gap detector in their respective control circuits 100 to maintain the optimum gap.
- vertical control circuits are not necessary because of the automatic adjustment of the magnetic adhesion force to increasing displacement in the vertical direction.
- FIG. 8 A converse system is shown in FIG. 8 in which the longitudinally stable system 21 is provided for guide purposes in combination with longitudinally unstable suspension systems 22, the latter being connected with a control 200 to maintain with optimum suspension gap.
- the guide systems automatically operate to center the vehicle against lateral forces, e.g., from wind or the centrifugal effect of a turn or bend in the track without a control circuit.
- An electromagnetic suspension or guide system comprising support, a U-profile armature rail member fixed to said support and having a web and a pair of shanks extending from said web, and electromagnet 5 juxtaposed with said rail member and having a core member provided with a web and a pair of shanks extending therefrom toward said rail member, and a coil wound on said core member, the shanks of one of said members being received between the shanks of the other of said members and overlapping therewith, and at least one shank of each overlapping pair being inclined to the other.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
- Railway Tracks (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2146143A DE2146143A1 (de) | 1971-09-15 | 1971-09-15 | Elektromagnetisches trag- oder fuehrungssystem |
Publications (1)
Publication Number | Publication Date |
---|---|
US3780668A true US3780668A (en) | 1973-12-25 |
Family
ID=5819644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00280073A Expired - Lifetime US3780668A (en) | 1971-09-15 | 1972-08-11 | Electromagnetic suspension and/or guide system especially for magnetically suspended vehicles |
Country Status (7)
Country | Link |
---|---|
US (1) | US3780668A (enrdf_load_stackoverflow) |
JP (1) | JPS4837808A (enrdf_load_stackoverflow) |
CA (1) | CA976034A (enrdf_load_stackoverflow) |
DE (1) | DE2146143A1 (enrdf_load_stackoverflow) |
FR (1) | FR2154012A5 (enrdf_load_stackoverflow) |
GB (1) | GB1395787A (enrdf_load_stackoverflow) |
IT (1) | IT965208B (enrdf_load_stackoverflow) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3834318A (en) * | 1972-01-24 | 1974-09-10 | Tracked Hovercraft Ltd | Ground transportation systems and tracks and vehicles therefor |
US3869990A (en) * | 1972-09-29 | 1975-03-11 | Siemens Ag | Switch arrangement for a magnetic suspension railroad |
US3885505A (en) * | 1973-01-25 | 1975-05-27 | Krauss Maffei Ag | Track for magnetic-suspension vehicle |
US3895585A (en) * | 1972-12-30 | 1975-07-22 | Krauss Maffei Ag | Two-sided linear induction motor especially for suspended vehicles |
US3911828A (en) * | 1972-12-30 | 1975-10-14 | Krauss Maffei Ag | Linear-induction motor, e.g. for high-speed magnetic-levitation vehicle |
US3954064A (en) * | 1974-01-31 | 1976-05-04 | Gravity Transit Company | Rapid transit system |
US4259908A (en) * | 1979-07-19 | 1981-04-07 | Krauss-Maffei Ag | Electromagnetic suspension vehicle |
EP0234543A1 (de) * | 1986-02-27 | 1987-09-02 | Peter Schuster | Magnetkraftsystem für reibungsarmen Transport von Lasten |
US5152227A (en) * | 1991-02-25 | 1992-10-06 | Hsst Corporation | Levitation-magnetic-force generating apparatus for magnetic levitation transport vehicle |
WO1994004404A1 (en) * | 1992-08-14 | 1994-03-03 | Fischer Phillip A | Induction motor monorail system |
US5343811A (en) * | 1986-02-27 | 1994-09-06 | Peter Schuster | Magnetic power system for low-friction transportation of loads |
WO1995032102A1 (en) * | 1994-05-24 | 1995-11-30 | Power Superconductor Applications Co., Inc. | Electrodynamic guidance using alternating current superconducting magnets |
US5653173A (en) * | 1992-08-14 | 1997-08-05 | Fischer; Phillip A. | Induction motor monorail system |
US5904101A (en) * | 1997-04-22 | 1999-05-18 | Power Superconductor Applications Co., Inc. | Auxiliary propulsion for magnetically levitated vehicle |
USD430907S (en) * | 1999-07-13 | 2000-09-12 | Tomy Company, Ltd. | Toy train |
USD437896S1 (en) | 1999-07-13 | 2001-02-20 | Tomy Company, Ltd. | Toy train |
USD437897S1 (en) | 1999-07-13 | 2001-02-20 | Tomy Company, Ltd. | Toy train |
USD444826S1 (en) | 1999-07-09 | 2001-07-10 | Tomy Company, Ltd. | Toy train |
USD445149S1 (en) | 1999-07-13 | 2001-07-17 | Tomy Company, Ltd. | Toy train |
USD445464S1 (en) | 1999-07-09 | 2001-07-24 | Tomy Company, Ltd. | Toy train |
USD478842S1 (en) | 2002-02-26 | 2003-08-26 | Bombardier, Inc. | End car of a monorail |
US20060145551A1 (en) * | 2004-12-30 | 2006-07-06 | Rozlev Corp., Llc | Bearing assembly having a mechanical component and using attractive magnetic forces |
US20060145552A1 (en) * | 2004-12-30 | 2006-07-06 | Rozlev Corp., Llc | Magnetic bearing assembly using repulsive magnetic forces |
US20060236371A1 (en) * | 2004-12-29 | 2006-10-19 | Fish Andrew J | Mechanism to determine trust of out-of-band management agents |
US20080012347A1 (en) * | 2004-12-30 | 2008-01-17 | Rozmus John J | Wind generator system using attractive magnetic forces to reduce the load on the bearings |
CN100377912C (zh) * | 2005-03-17 | 2008-04-02 | 李岭群 | 吊轨永磁平衡补偿式悬浮系统 |
CN100406298C (zh) * | 2005-08-25 | 2008-07-30 | 李岭群 | 一种环抱式路-车吊轨 |
US20080296983A1 (en) * | 2005-12-16 | 2008-12-04 | Watson Douglas C | Ci-core actuator for long travel in a transverse direction |
CN100465017C (zh) * | 2006-09-13 | 2009-03-04 | 李岭群 | 一种凹形永磁悬浮机构及其槽轨路车 |
US20100301979A1 (en) * | 2009-03-26 | 2010-12-02 | Philip Albert Studer | Method and system for transportation using a magnetic bearing structure |
US8820246B2 (en) | 2011-12-16 | 2014-09-02 | Sandor Wayne Shapery | Method and system for transportation using a rail structure |
US8850989B2 (en) | 2010-12-03 | 2014-10-07 | Sandor Wayne Shapery | Magnetic levitation assembly |
CN108203902A (zh) * | 2018-02-11 | 2018-06-26 | 北京交通大学 | 一种适用于磁浮交通的∏型轨 |
CN109050344A (zh) * | 2018-06-27 | 2018-12-21 | 陈祚 | 一种磁悬浮列车 |
US11413987B2 (en) * | 2019-09-03 | 2022-08-16 | The Boeing Company | Electromagnetic seat attachment and seat power |
CN115140103A (zh) * | 2022-07-01 | 2022-10-04 | 中铁二院工程集团有限责任公司 | 一种常导高速磁浮车辆及轨道系统 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5095410A (enrdf_load_stackoverflow) * | 1973-12-29 | 1975-07-29 | ||
JPS50149003A (enrdf_load_stackoverflow) * | 1974-05-22 | 1975-11-28 | ||
JPS5181645U (enrdf_load_stackoverflow) * | 1974-12-24 | 1976-06-30 | ||
JPS51120946U (enrdf_load_stackoverflow) * | 1975-03-28 | 1976-09-30 | ||
JPS5270488A (en) * | 1975-12-10 | 1977-06-11 | Hori Tetsukoushiyo Kk | Cutting and arranging device for use in soft belt body |
JPS52124664A (en) * | 1976-04-13 | 1977-10-19 | Fukui Kikai Kk | Device for removing combined paper in thin sheet feeder |
JPS53139708A (en) * | 1977-05-12 | 1978-12-06 | Meinan Machinery Works | Piling of veneer plate |
FR2415751A1 (fr) * | 1978-01-27 | 1979-08-24 | Gay Henri | Suspension par coussin magnetique |
JPS6085910U (ja) * | 1983-11-18 | 1985-06-13 | 株式会社小松製作所 | ワ−ク搬送装置におけるワ−ク積重ね装置 |
JPS62121135A (ja) * | 1985-11-19 | 1987-06-02 | Toshiba Corp | 磁気浮上式搬送装置 |
DE3719587A1 (de) * | 1987-06-12 | 1988-12-22 | Weh Herbert | Magnetschwebesystem mit permanentmagneten |
JPS6424901A (en) * | 1987-07-21 | 1989-01-26 | Sumitomo Electric Industries | Magnetic float running apparatus |
DE3914093A1 (de) * | 1989-04-28 | 1990-10-31 | Walter Hruby | Magnetbahn auf trassen und bahnschienen herkoemmlicher art |
DE4418458C2 (de) * | 1994-05-26 | 1999-01-07 | Wimmer Ulrich Dipl Ing Fh | Verfahren und Einrichtung zur Simulation künstlicher Schwerkraftbedingungen |
DE102006004891B4 (de) * | 2006-02-03 | 2008-09-04 | Stephan Obermaier | Transportsystem |
CN111746293A (zh) * | 2019-03-29 | 2020-10-09 | 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) | 高温超导磁悬浮推进系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1126608A (en) * | 1912-03-04 | 1915-01-26 | Paul H Woodruff | Toy railway. |
DE643316C (de) * | 1934-08-11 | 1937-04-05 | Hermann Kemper Dipl Ing | Schwebebahn mit raederlosen Fahrzeugen, die an eisernen Fahrschienen mittels magnetischer Felder schwebend entlang gefuehrt werden |
DE707032C (de) * | 1938-08-17 | 1941-06-11 | Hermann Kemper Dipl Ing | Schwebebahn |
GB1035764A (en) * | 1962-04-04 | 1966-07-13 | Geoffrey Richard Polgreen | Improvements in and relating to systems of transportation |
US3378801A (en) * | 1960-02-25 | 1968-04-16 | Anaconda Aluminum Co | Strip electrical coils |
US3428370A (en) * | 1965-10-22 | 1969-02-18 | Magnetfab Bonn Gmbh | Magnetic suspension system |
US3724388A (en) * | 1970-10-27 | 1973-04-03 | Messerschmitt Boelkow Blohm | Apparatus for electromagnetic suspension and guidance of tracked cars |
-
1971
- 1971-09-15 DE DE2146143A patent/DE2146143A1/de active Pending
- 1971-11-02 JP JP46087536A patent/JPS4837808A/ja active Pending
-
1972
- 1972-08-08 GB GB3695872A patent/GB1395787A/en not_active Expired
- 1972-08-11 US US00280073A patent/US3780668A/en not_active Expired - Lifetime
- 1972-09-05 IT IT52541/72A patent/IT965208B/it active
- 1972-09-14 FR FR7232539A patent/FR2154012A5/fr not_active Expired
- 1972-09-14 CA CA151,738A patent/CA976034A/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1126608A (en) * | 1912-03-04 | 1915-01-26 | Paul H Woodruff | Toy railway. |
DE643316C (de) * | 1934-08-11 | 1937-04-05 | Hermann Kemper Dipl Ing | Schwebebahn mit raederlosen Fahrzeugen, die an eisernen Fahrschienen mittels magnetischer Felder schwebend entlang gefuehrt werden |
DE707032C (de) * | 1938-08-17 | 1941-06-11 | Hermann Kemper Dipl Ing | Schwebebahn |
US3378801A (en) * | 1960-02-25 | 1968-04-16 | Anaconda Aluminum Co | Strip electrical coils |
GB1035764A (en) * | 1962-04-04 | 1966-07-13 | Geoffrey Richard Polgreen | Improvements in and relating to systems of transportation |
US3428370A (en) * | 1965-10-22 | 1969-02-18 | Magnetfab Bonn Gmbh | Magnetic suspension system |
US3724388A (en) * | 1970-10-27 | 1973-04-03 | Messerschmitt Boelkow Blohm | Apparatus for electromagnetic suspension and guidance of tracked cars |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3834318A (en) * | 1972-01-24 | 1974-09-10 | Tracked Hovercraft Ltd | Ground transportation systems and tracks and vehicles therefor |
US3869990A (en) * | 1972-09-29 | 1975-03-11 | Siemens Ag | Switch arrangement for a magnetic suspension railroad |
US3895585A (en) * | 1972-12-30 | 1975-07-22 | Krauss Maffei Ag | Two-sided linear induction motor especially for suspended vehicles |
US3911828A (en) * | 1972-12-30 | 1975-10-14 | Krauss Maffei Ag | Linear-induction motor, e.g. for high-speed magnetic-levitation vehicle |
US3885505A (en) * | 1973-01-25 | 1975-05-27 | Krauss Maffei Ag | Track for magnetic-suspension vehicle |
US3954064A (en) * | 1974-01-31 | 1976-05-04 | Gravity Transit Company | Rapid transit system |
US4259908A (en) * | 1979-07-19 | 1981-04-07 | Krauss-Maffei Ag | Electromagnetic suspension vehicle |
AU617253B2 (en) * | 1986-02-27 | 1991-11-21 | Peter Schuster | Magnetic force system for low-friction transportation of loads |
EP0356370A1 (de) * | 1986-02-27 | 1990-02-28 | Peter Schuster | Magnetkraftsystem für reibungsarmen Transport von Lasten |
EP0234543A1 (de) * | 1986-02-27 | 1987-09-02 | Peter Schuster | Magnetkraftsystem für reibungsarmen Transport von Lasten |
US5343811A (en) * | 1986-02-27 | 1994-09-06 | Peter Schuster | Magnetic power system for low-friction transportation of loads |
WO1987005271A1 (en) * | 1986-02-27 | 1987-09-11 | Peter Schuster | Magnetic power system for transporting charges without friction |
US5152227A (en) * | 1991-02-25 | 1992-10-06 | Hsst Corporation | Levitation-magnetic-force generating apparatus for magnetic levitation transport vehicle |
US5653173A (en) * | 1992-08-14 | 1997-08-05 | Fischer; Phillip A. | Induction motor monorail system |
WO1994004404A1 (en) * | 1992-08-14 | 1994-03-03 | Fischer Phillip A | Induction motor monorail system |
WO1995032102A1 (en) * | 1994-05-24 | 1995-11-30 | Power Superconductor Applications Co., Inc. | Electrodynamic guidance using alternating current superconducting magnets |
US5666883A (en) * | 1994-05-24 | 1997-09-16 | Power Superconductor Applications Co., Inc. | Method and apparatus for use of alternating current in primary suspension magnets for electrodynamic guidance with superconducting fields |
US5868077A (en) * | 1994-05-24 | 1999-02-09 | Power Superconductor Applications Co. | Method and apparatus for use of alternating current in primary suspension magnets for electrodynamic guidance with superconducting fields |
US5904101A (en) * | 1997-04-22 | 1999-05-18 | Power Superconductor Applications Co., Inc. | Auxiliary propulsion for magnetically levitated vehicle |
USD445464S1 (en) | 1999-07-09 | 2001-07-24 | Tomy Company, Ltd. | Toy train |
USD444826S1 (en) | 1999-07-09 | 2001-07-10 | Tomy Company, Ltd. | Toy train |
USD445149S1 (en) | 1999-07-13 | 2001-07-17 | Tomy Company, Ltd. | Toy train |
USD437897S1 (en) | 1999-07-13 | 2001-02-20 | Tomy Company, Ltd. | Toy train |
USD437896S1 (en) | 1999-07-13 | 2001-02-20 | Tomy Company, Ltd. | Toy train |
USD430907S (en) * | 1999-07-13 | 2000-09-12 | Tomy Company, Ltd. | Toy train |
USD478842S1 (en) | 2002-02-26 | 2003-08-26 | Bombardier, Inc. | End car of a monorail |
US20060236371A1 (en) * | 2004-12-29 | 2006-10-19 | Fish Andrew J | Mechanism to determine trust of out-of-band management agents |
US20060145552A1 (en) * | 2004-12-30 | 2006-07-06 | Rozlev Corp., Llc | Magnetic bearing assembly using repulsive magnetic forces |
US7466052B2 (en) | 2004-12-30 | 2008-12-16 | Rozlev Corp., Llc | Bearing assembly having a mechanical component and using attractive magnetic forces |
US7126244B2 (en) | 2004-12-30 | 2006-10-24 | Rozlev Corp., Llc | Magnetic bearing assembly using repulsive magnetic forces |
US20070024139A1 (en) * | 2004-12-30 | 2007-02-01 | Rozmus John J | Magnetic bearing assembly using repulsive magnetic forces |
US20080012347A1 (en) * | 2004-12-30 | 2008-01-17 | Rozmus John J | Wind generator system using attractive magnetic forces to reduce the load on the bearings |
US7327060B2 (en) | 2004-12-30 | 2008-02-05 | Rozlev Corp., Llc | Bearing assembly having a mechanical component and using attractive magnetic forces |
US20080106165A1 (en) * | 2004-12-30 | 2008-05-08 | Rozlev Corp., Llc | Bearing assembly having a mechanical component and using attractive magnetic forces |
US7391128B2 (en) | 2004-12-30 | 2008-06-24 | Rozlev Corp., Llc | Wind generator system using attractive magnetic forces to reduce the load on the bearings |
US20060145551A1 (en) * | 2004-12-30 | 2006-07-06 | Rozlev Corp., Llc | Bearing assembly having a mechanical component and using attractive magnetic forces |
CN100377912C (zh) * | 2005-03-17 | 2008-04-02 | 李岭群 | 吊轨永磁平衡补偿式悬浮系统 |
CN100406298C (zh) * | 2005-08-25 | 2008-07-30 | 李岭群 | 一种环抱式路-车吊轨 |
US7683506B2 (en) * | 2005-12-16 | 2010-03-23 | Nikon Corporation | CI-core actuator for long travel in a transverse direction |
US20080296983A1 (en) * | 2005-12-16 | 2008-12-04 | Watson Douglas C | Ci-core actuator for long travel in a transverse direction |
CN100465017C (zh) * | 2006-09-13 | 2009-03-04 | 李岭群 | 一种凹形永磁悬浮机构及其槽轨路车 |
US20100301979A1 (en) * | 2009-03-26 | 2010-12-02 | Philip Albert Studer | Method and system for transportation using a magnetic bearing structure |
WO2010111549A3 (en) * | 2009-03-26 | 2010-12-09 | Philip Albert Studer | Method and system for transportation using a magnetic bearing structure |
US8324777B2 (en) | 2009-03-26 | 2012-12-04 | Sandor Wayne Shapery | Method and system for transportation using a magnetic bearing structure |
US8850989B2 (en) | 2010-12-03 | 2014-10-07 | Sandor Wayne Shapery | Magnetic levitation assembly |
US8820246B2 (en) | 2011-12-16 | 2014-09-02 | Sandor Wayne Shapery | Method and system for transportation using a rail structure |
CN108203902A (zh) * | 2018-02-11 | 2018-06-26 | 北京交通大学 | 一种适用于磁浮交通的∏型轨 |
CN109050344A (zh) * | 2018-06-27 | 2018-12-21 | 陈祚 | 一种磁悬浮列车 |
US11413987B2 (en) * | 2019-09-03 | 2022-08-16 | The Boeing Company | Electromagnetic seat attachment and seat power |
CN115140103A (zh) * | 2022-07-01 | 2022-10-04 | 中铁二院工程集团有限责任公司 | 一种常导高速磁浮车辆及轨道系统 |
CN115140103B (zh) * | 2022-07-01 | 2024-03-22 | 中铁二院工程集团有限责任公司 | 一种常导高速磁浮车辆及轨道系统 |
Also Published As
Publication number | Publication date |
---|---|
FR2154012A5 (enrdf_load_stackoverflow) | 1973-05-04 |
GB1395787A (en) | 1975-05-29 |
DE2146143A1 (de) | 1973-03-22 |
CA976034A (en) | 1975-10-14 |
IT965208B (it) | 1974-01-31 |
JPS4837808A (enrdf_load_stackoverflow) | 1973-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3780668A (en) | Electromagnetic suspension and/or guide system especially for magnetically suspended vehicles | |
US3845720A (en) | Magnetic-levitation vehicle with auxiliary magnetic support at track-branch locations | |
US6502517B1 (en) | Arrangement for operating a transportation system with a magnetic levitation vehicle | |
US7096794B2 (en) | Inductrack configuration | |
US4055123A (en) | Systems for magnetically supporting a vehicle | |
US4299173A (en) | Levitation and guide mechanism for curved track in inductive repulsion type vehicle magnetic levitation and guide system | |
US4793263A (en) | Integrated linear synchronous unipolar motor with controlled permanent magnet bias | |
CN111373097B (zh) | 采用无源低频电磁稳定化的永磁磁悬浮列车 | |
US20070044676A1 (en) | Guideway activated magnetic switching of vehicles | |
US3797403A (en) | Power electromagnetic suspension and guide system for vehicles | |
US4979445A (en) | Magnetically levitated vehicle with superconducting mirror sheets interacting with guideway magnetic fields | |
CA2191236A1 (en) | Electrodynamic guidance using alternating current superconducting magnets | |
US5652472A (en) | Magnetodynamic levitation and stabilizing selfregulating system | |
GB2174048A (en) | Magnetic suspension for a vehicle | |
US3931767A (en) | Magnetic suspension railway | |
US4259908A (en) | Electromagnetic suspension vehicle | |
US5140208A (en) | Self-adjusting magnetic guidance system for levitated vehicle guideway | |
US3804022A (en) | Electromagnetic suspension and guide system for magnetically suspended vehicles | |
US3850108A (en) | Armature assembly and magnetically suspended vehicle | |
US5528210A (en) | W-shaped superconducting electromagnetic system for magnetic levitation vehicles | |
CA1122664A (en) | Construction of truck for attractive type magnetically levitated vehicle | |
US3855939A (en) | Magnetically supported suspended railway | |
US3804997A (en) | Contact system for high-speed electrically operated vehicles | |
RU2739939C1 (ru) | Гибридный электромагнит для системы маглев | |
RU2786679C2 (ru) | Гибридный электромагнит для системы маглев |