US3778127A - Sealing technique for gas panel - Google Patents
Sealing technique for gas panel Download PDFInfo
- Publication number
- US3778127A US3778127A US00214298A US3778127DA US3778127A US 3778127 A US3778127 A US 3778127A US 00214298 A US00214298 A US 00214298A US 3778127D A US3778127D A US 3778127DA US 3778127 A US3778127 A US 3778127A
- Authority
- US
- United States
- Prior art keywords
- sealing material
- gas
- sealing
- rods
- envelope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000011521 glass Substances 0.000 claims abstract description 37
- 239000003566 sealing material Substances 0.000 claims abstract description 25
- 125000006850 spacer group Chemical group 0.000 claims description 24
- 230000004927 fusion Effects 0.000 claims description 9
- 238000001465 metallisation Methods 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 230000001351 cycling effect Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000565 sealant Substances 0.000 abstract description 21
- 239000005357 flat glass Substances 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 11
- 238000003491 array Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000010943 off-gassing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000012812 sealant material Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/24—Manufacture or joining of vessels, leading-in conductors or bases
- H01J9/26—Sealing together parts of vessels
- H01J9/261—Sealing together parts of vessels the vessel being for a flat panel display
Definitions
- ABSTRACT In a method for sealing a gaseous display and/0r memory device, an unfused, low-softening point glass rod sealant, arranged in a picture frame pattern, together with high-softening point glass spacing rods are positioned between a pair of aligned flat glass plates, and the resulting assembly is placed in an oven enclosure. The assembly is then heated above the softening point of the glass rod sealant which reflows and fuses the plates to establish a gas-filled envelope. As the sealing material softens, the upper plate settles u;on the spacing rods to thus establish a predetermined and uniform spacing within the envelope.
- a gaseous display and/or memory device comprises an open panel configuration of electrically isolated but not physically isolated cells in which individual cells or sites are selected by energizing associated pairs of orthogonal drive lines disposed on opposite sides of a gasfilled envelope which, when appropriately and selectively energized, cause the gas in the sites between the selected conductors to ionize.
- a gasfilled envelope In order to provide substantially uniform resolution over the entire display surface, it is essential that the space between opposing walls of the gas envelope be maintained substantially uniform and that the walls of the chamber be sealed to provide a gas-filled container. Ihitially, such panels were sealed using epoxy which produced outgassing, i.e., impurities in the gas mixture which substantially lowered the life of the panel.
- the glass sealant material is selected to have viscosity sufficiently low to flow during the heat fusion cycling, and yet high enough so that it will not run off the voids during such cycling.
- the panel is pumped down and backfilled during a bakeout operation to eliminate outgassing or other impurities, and the. tubular orifice projecting from one of the plates and utilized as a vehicle for evacnation and gas filling is tipped off, thereby sealing the gas within the panel.
- vacuum and gas are coupled to the envelope while the exterior of the glass plates receives atmospheric pressure.
- an object of the present invention is to provide an improved sealing method for a gaseous discharge device.
- Another object of the present invention is to provide an improved gas panel assembly utilizing soft glass sealant and hard glass spacing rods.
- An associated object of the present invention is to provide an improved process for providng a gas panel seal utilizing a soft glass rod sealant and a hard glass rod spacer wherein the upper plate settles upon the spacing rods during a bakeout operation thus establishing a predetermined and uniform spacing within the envelope.
- FIG. I is a partially schematic perspective view of a gas panel constructed in accordance with the teaching of the instant invention.
- FIGS. 24 are sectional views of the assembly of FIG. 1 before and after the heat fusion state of the assembly processing.
- FIG. 5 is a schematic view of vacuum furnace apparatus utilized in the practice of the present invention to provide evacuation, gas-filling and heat-sealing stages.
- FIG. 1 there is illustrated a gaseous discharge assembly fabricated in accordance with the teaching of the instant invention.
- the panel assembly 1 consists of lower glass substrate 3 and an upper glass substrate 5 on which transverse passivated metallized conductor arrays 7 and 9, respectively, are formed.
- Conductor arrays 7 and 9 may be formed on substrates 3 and 5 by a number of well-known processes such as photoetching, vacuum deposition, stencil screening, etc.
- conductor arrays 7 and 9 may be wires or filaments of copper, gold, silver, aluminum or any other conductive metal or material, formed in situ conductor arrays of transparent, semi-transparent or opaque conductive material are preferred since they are more easily deposited on and adhered to the substrates 3, 5.
- opaque chrome-copper-chrome conductors having a split conductor configuration such as that described in the foregoing application Ser. No. 214,348 are utilized in one of the conductor arrays as the preferred electrode configuration for maximum light output. While not evident in FIG. 1 since they are transparent, each of the conductor arrays 7 and 9 have dielectric layers 11 and 13 (FIG. 3) formed thereon.
- the two metallized passivated dielectric coated front and rear glass plates 3 and 5 and exhaust tube 15 are formed into an integral structure by heat union of rod sealant 17 with dielectric plate coatings 11 and 13 of glass substrates 3 and 5, respectively.
- the broken-away portion of FIG. 1 indicates an edge spacer rod 23, one of which would be utilized around each edge in the preferred embodiment shown in FIG. 1.
- the fused seal is indicated in the broken-away section of FIG. 1 as element 25.
- the dielectric layers 11 and 13 (FIG. 2), formed from sprayed and heated glass frit, cover the conductor arrays indicated schematically as 7 and 9 in FIG.
- All glasses used in the fabrication of the subject panel such as the substrate, dielectric layers, orifice, orifice sealant, border sealant, etc., must have compatible thermal coefficients of expansion, albeit differing optical, physical, dielectric and heat-softening properties.
- the glass substrates 3 and 5 have substantial thickness (e.g. onefourth inch), the only requirement for such support members being that they be nonconductive and good insulators and substantially transparent for display purposes. Ordinary inch commerical grade soda-limesilica glass is utilized in the preferred embodiment. While the panel illustrated in FIG. 1 is representative of a panel after scaling in accordance with the instant invention, reference is made to FIGS. 2-4 for a more complete description of the operation of the sealing process.
- FIG. 2 the relative position of the glass plates 3 and 5 with their associated dielectric coated conductor arrays prior to the sealing process is illustrated. While shown exaggerated for ease of understanding, the relative size of sealing rod 17 with respect to the spacing rod 23 is illustrated. In a preferred embodiment constructed in accordance with the instant invention, the soft glass sealant 17 is approximately 40 mils in diameter, while the spacer rod 23 is approximately 7 mils in diameter. However, as noted previously, the configuration of the rods may vary, and other configurations of both sealing and spacing rods such as rectangular rods could be substituted for the circular rods illustrated in the preferred embodiment. When laid out in the general configuration shown in FIG.
- the component parts of the panel are placed in an oven which is then heated to a temperature sufficient to produce wetting or melting of the low-softening point envelope sealant 17 which, as previously described, comprises in the preferred embodiment a single rod in the form of a picture frame positioned outside the normal display area of the panels.
- the peripheral spacer rod 23 could comprise a single rod in the same general picture frame configuration or four or more separate spacer rods.
- the unjoined assembly when positioned in the desired orientation shown generally in FIG. 2, is placed in an oven enclosure and then heated in accordance with the sequence more fully described hereinafter such that the soft glass sealant 17 softens, flows and fuses with the dielectric metallization coating layers 13 and 11.
- the sealing rods are positioned beyond the viewing area of the panel and thus beyond the conductor configurations comprising conductor arrays 7 and 9, although this is not a requirement.
- the upper plate 5 gradually settles against spacers 23, establishing the desired final dimensions of the gasfilled sealed envelope contained between the plates. While the weight of the upper plate 5 is normally adequate, a glass weight providing a pressure of up to 5 lbs. per square inch throughout the sealing area may be added to upper plate 5. Thickness and viscosity of the unfused envelope sealant are selected so that upon softening and flowing the sealant forms a uniform void-free lining around the rectangular parallelepiped gas enclosure space shown within the sealed area bounded by seal 25 in FIG. 1.
- FIG. 3 An enlarged view of the left seal in FIG. 3 is illustrated in FIG. 4, and it will be appreciated that an identical sealing operation and sequence would simultaneously take place along the four edges to be sealed within the panel.
- FIG. 5 the apparatus for providing the pumpdown, bakeout and backfill operation re-' quired to fabricate a gas panel is illustrated schematically in FIG. 5.
- the gas from a gas source 29 is applied through conduit 31 and valve 33 to a metering valve 35 which controls the gas to the desired pressure.
- a metering valve 35 which controls the gas to the desired pressure.
- an electronic manometer 37 is also connected to the metering valve 35 to a vacuum system.
- a mechanical pump comprising a portion of the vacuum system creates an initial vacuum below 50 TOR, while a diffusion pump also conventional creates a higher vacuum in the area of 10 to 10 TOR.
- a bakeout cycle is provided in oven enclosure 41 to eliminate any remaining impurities within the gas panel, and following the vacuum bakeout the panel is backfilled with gas from the gas source 29.
- the apparatus of FIG. 1 is considered adequate for an understanding of the present invention.
- Typical parameters associated with the preferred embodiment of the subject invention are as follows: Glass plates 3 and 5 are conventional soda-limesilicate glass one-fourth inch in thickness.
- the glass sealing rods 23 are a hard glass composition described more fully hereinafter which provide a uniform gas spacing of 7 mils.
- Dielectric layers 11 and 13 may comprise 1 mil thick lead-borosilicate glass sprayed and fired at 600C.
- Metallization conductors 7 and 9 are chrome-copper-chrome conductors having chrome layers of 1,000 angstroms and an intermediate copper layers of 10,000-20,000 angstroms which are passivated in a forming gas as described in the aforereferenced application Ser. No. 214,348.
- the preferred dielectric material has the following composition:
- the plates, plate sealant, spacer tubes and tube sealants are prepared, the upper plate having a hole for tube coupling and the interior surfaces of the plates metallized, i.e., having the metallic conductors deposited, etched and passivated and the lead-borosilicate powdered glass frit which comprises the dielectric layer sprayed and reflown over the conductors.
- the component parts are then assembled in an unjoined state as shown in FIG. 2 and placed in the oven used only for temperature cycling to heat-fuse the components into an integral assembly.
- the space confined by the joint assembly is evacuated and baked out to establish fusion of the tube sealant to the tube and outer surface of the rear plates and fusion of the soft rod sealant between the plates to dielectric coating of the plates. Details of the specific duration and temperature of the heating cycle are described in the aforereferenced copending application Ser. No. 214,348. This and the other steps of the process are performed with the exterior of assembly at atmospheric pressure.
- the gas discharge device is checked for leaks and then coupled to the gas source as shown in FIG. 5 where the confined space in the panel is filled with gas.
- the tube will then be tipped off or sealed, and the terminal connection processing completed.
- the terminal connection processing comprises removing the dielectric and passivation coatings from the plate metallization at appropriate edge termination sites while the tests provided are the conventional tests applied to gas filled envelopes and familiar to those skilled in the art.
- the dielectric layers 11 and 13 are 1 mil thick lead-borosilicate glass sprayed and fired at 600C, the metallization composition.chrome-copper-chrome having upper and lower layers of chrome 1,000 angstroms in thickness and an intermediate layer of copper 10,000 angstroms thick. Passivation is provided in forming gas with water vapor.
- the surfaces of dielectrics l1 and 13 in contact with the gas may be formed from a refractory materialhaving a high secondary coefficient of emission as described in the aforenoted copending application Ser. No. 176,625.
- a process for constructing a gaseous discharge display/storage device comprising assembling discrete parts, including transparent flat members with pre-processed printed circuit metallization and dielectric coating, a tubulation for exhausting and backfilling said gaseous discharge display storage device, spacer rods and heat fusible sealing material,
- said heat fusible sealing material being in the form of a sealing red, the cross-sectional area of said sealing rod being substantially larger than the corresponding area of said spacer rods, and
- a process for constructing a gas discharge display/storage device comprising the steps of arranging components, including transparent non conductive plates with pre-processed printed circuit metallization and dielectric coating, a tubulation member, transparent spacer means and heat fusible sealing material in unfused condition, the cross-sectional area of said sealing means being substantially greater than that of said transparent spacer means,
- a process according to claim 5 including the further step of weighting the upper plate to facilitate the settling of said upper plate on said spacing rods.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Gas-Filled Discharge Tubes (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Joining Of Glass To Other Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21429871A | 1971-12-30 | 1971-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3778127A true US3778127A (en) | 1973-12-11 |
Family
ID=22798547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00214298A Expired - Lifetime US3778127A (en) | 1971-12-30 | 1971-12-30 | Sealing technique for gas panel |
Country Status (6)
Country | Link |
---|---|
US (1) | US3778127A (enrdf_load_stackoverflow) |
JP (1) | JPS539832B2 (enrdf_load_stackoverflow) |
CA (1) | CA1007052A (enrdf_load_stackoverflow) |
DE (1) | DE2247630C3 (enrdf_load_stackoverflow) |
FR (1) | FR2166228B1 (enrdf_load_stackoverflow) |
IT (1) | IT971735B (enrdf_load_stackoverflow) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3837724A (en) * | 1971-12-30 | 1974-09-24 | Ibm | Gas panel fabrication |
US3858284A (en) * | 1972-05-08 | 1975-01-07 | Ibm | Method of spacing the plates of a gaseous discharge device |
USB351672I5 (enrdf_load_stackoverflow) * | 1973-04-16 | 1975-01-28 | ||
US3909094A (en) * | 1974-01-16 | 1975-09-30 | Ibm | Gas panel construction |
US4071287A (en) * | 1976-03-15 | 1978-01-31 | International Business Machines Corporation | Manufacturing process for gaseous discharge device |
US4119378A (en) * | 1974-07-30 | 1978-10-10 | Owens-Illinois, Inc. | Segmented gas discharge display panel device and method of manufacturing same |
US4125307A (en) * | 1974-08-26 | 1978-11-14 | Owens-Illinois, Inc. | Method of making a gaseous discharge display panel with spacer beads in seal frame |
US4139250A (en) * | 1975-10-27 | 1979-02-13 | U.S. Philips Corporation | Gas discharge display panel and method of manufacturing the same |
EP0008782A1 (en) * | 1978-09-01 | 1980-03-19 | E.I. Du Pont De Nemours And Company | Process for providing overglaze for fired metallizations and AC plasma display panel comprising two overglazed substrates |
US4346951A (en) * | 1980-06-19 | 1982-08-31 | Burroughs Corporation | Method for providing a gas reservoir for a gas display panel |
US4407658A (en) * | 1981-03-02 | 1983-10-04 | Beckman Instruments, Inc. | Gas discharge display device sealing method for reducing gas contamination |
US4588261A (en) * | 1984-06-07 | 1986-05-13 | Rca Corporation | IR-CCD imager and method of making the same |
US5562517A (en) * | 1994-04-13 | 1996-10-08 | Texas Instruments Incorporated | Spacer for flat panel display |
US5657607A (en) * | 1989-08-23 | 1997-08-19 | University Of Sydney | Thermally insulating glass panel and method of construction |
US5811926A (en) * | 1996-06-18 | 1998-09-22 | Ppg Industries, Inc. | Spacer units, image display panels and methods for making and using the same |
WO1998043280A1 (de) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum |
US5834891A (en) * | 1996-06-18 | 1998-11-10 | Ppg Industries, Inc. | Spacers, spacer units, image display panels and methods for making and using the same |
US5902652A (en) * | 1993-06-30 | 1999-05-11 | University Of Sydney | Methods of construction of evacuated glazing |
WO2001061721A1 (de) * | 2000-02-15 | 2001-08-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Herstellungsverfahren für eine flache gasentladungslampe |
RU2188463C1 (ru) * | 2000-12-05 | 2002-08-27 | Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" | Газоразрядная индикаторная панель переменного тока |
US6452323B1 (en) * | 1999-09-20 | 2002-09-17 | Omnion Technologies, Inc. | Luminous gas discharge display having dielectric sealing layer |
US6590332B1 (en) * | 1999-08-06 | 2003-07-08 | Samsung Sdi Co., Ltd. | Plasma display panel including front and rear substrate assemblies |
US20040100180A1 (en) * | 2001-11-02 | 2004-05-27 | Byrum Bernard W. | Low voltage high efficiency illuminated display having capacitive coupled electrodes |
US20050067956A1 (en) * | 2003-09-25 | 2005-03-31 | Doo-Young Kim | Plasma display panel assembly |
US20050116647A1 (en) * | 2003-11-29 | 2005-06-02 | Jin-Sub Kim | Plasma display apparatus |
US20060066238A1 (en) * | 2004-09-24 | 2006-03-30 | Seok-Gyun Woo | Plasma display panel and plasma display device |
US20060157274A1 (en) * | 2002-03-22 | 2006-07-20 | Stark David H | Wafer-level hermetic micro-device packages |
US20080042566A1 (en) * | 2006-03-29 | 2008-02-21 | Jung-Suk Song | Plasma display panel |
US20100034996A1 (en) * | 2008-08-09 | 2010-02-11 | Lawrence Mott | Asymmetrical flexible edge seal for vacuum insulating glass |
US20100175347A1 (en) * | 2009-01-15 | 2010-07-15 | Bettger Kenneth J | Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units |
US20100178439A1 (en) * | 2009-01-15 | 2010-07-15 | Eversealed Windows, Inc. | Flexible edge seal for vacuum insulating glazing units |
US7832177B2 (en) | 2002-03-22 | 2010-11-16 | Electronics Packaging Solutions, Inc. | Insulated glazing units |
US7989040B2 (en) | 2007-09-14 | 2011-08-02 | Electronics Packaging Solutions, Inc. | Insulating glass unit having multi-height internal standoffs and visible decoration |
US8950162B2 (en) | 2010-06-02 | 2015-02-10 | Eversealed Windows, Inc. | Multi-pane glass unit having seal with adhesive and hermetic coating layer |
US9328512B2 (en) | 2011-05-05 | 2016-05-03 | Eversealed Windows, Inc. | Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4890199A (enrdf_load_stackoverflow) * | 1972-02-26 | 1973-11-24 | ||
JPS4952576A (enrdf_load_stackoverflow) * | 1972-09-20 | 1974-05-22 | ||
JPS5081562A (enrdf_load_stackoverflow) * | 1973-11-20 | 1975-07-02 | ||
US4018490A (en) * | 1975-07-07 | 1977-04-19 | International Business Machines Corporation | Gas discharge display panel fabrication |
JPS5220249U (enrdf_load_stackoverflow) * | 1975-07-31 | 1977-02-14 | ||
JPS5287975A (en) * | 1976-01-19 | 1977-07-22 | Hamamatsu Tv Co Ltd | Method of manufacturing fluorescent display tube |
JPS6048737B2 (ja) * | 1977-03-30 | 1985-10-29 | 株式会社日立製作所 | 液晶表示装置の製造方法 |
JPS5536843A (en) * | 1978-09-07 | 1980-03-14 | Seiko Epson Corp | Liquid display panel |
JPS59176026U (ja) * | 1983-05-10 | 1984-11-24 | オリンパス光学工業株式会社 | モ−タドライブ装置 |
JPS59176027U (ja) * | 1983-05-11 | 1984-11-24 | オリンパス光学工業株式会社 | モ−タドライブ装置 |
DE19817478B4 (de) * | 1998-04-20 | 2004-03-18 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flache Entladungslampe und Verfahren zu ihrer Herstellung |
DE19826809A1 (de) * | 1998-06-16 | 1999-12-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dielektrische Schicht für Entladungslampen und zugehöriges Herstellungsverfahren |
FR2781308A1 (fr) * | 1998-07-15 | 2000-01-21 | Thomson Plasma | Procede de realisation de moyens d'entretoisement pour panneaux de visualisation |
DE19936864A1 (de) | 1999-08-05 | 2001-02-15 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Verfahren zum Einsetzen eines Pumpstengels in ein Entladungsgefäß |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340347A (en) * | 1964-10-12 | 1967-09-05 | Corning Glass Works | Enclosed electronic device |
US3499167A (en) * | 1967-11-24 | 1970-03-03 | Owens Illinois Inc | Gas discharge display memory device and method of operating |
US3559190A (en) * | 1966-01-18 | 1971-01-26 | Univ Illinois | Gaseous display and memory apparatus |
US3602756A (en) * | 1969-12-22 | 1971-08-31 | Engelhard Min & Chem | Gas ionization display device |
US3614509A (en) * | 1969-05-07 | 1971-10-19 | Westinghouse Electric Corp | Large area plasma panel display device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1247372A (en) * | 1967-10-18 | 1971-09-22 | Burroughs Corp | Display panel |
BE755849A (fr) * | 1969-09-09 | 1971-03-08 | Owens Illinois Inc | Panneau a decharges gazeuses |
NL7004088A (enrdf_load_stackoverflow) * | 1970-03-21 | 1971-09-23 |
-
1971
- 1971-12-30 US US00214298A patent/US3778127A/en not_active Expired - Lifetime
-
1972
- 1972-09-28 DE DE2247630A patent/DE2247630C3/de not_active Expired
- 1972-11-30 JP JP11948272A patent/JPS539832B2/ja not_active Expired
- 1972-12-12 IT IT32752/72A patent/IT971735B/it active
- 1972-12-21 FR FR7247122A patent/FR2166228B1/fr not_active Expired
- 1972-12-27 CA CA159,876A patent/CA1007052A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340347A (en) * | 1964-10-12 | 1967-09-05 | Corning Glass Works | Enclosed electronic device |
US3559190A (en) * | 1966-01-18 | 1971-01-26 | Univ Illinois | Gaseous display and memory apparatus |
US3499167A (en) * | 1967-11-24 | 1970-03-03 | Owens Illinois Inc | Gas discharge display memory device and method of operating |
US3614509A (en) * | 1969-05-07 | 1971-10-19 | Westinghouse Electric Corp | Large area plasma panel display device |
US3602756A (en) * | 1969-12-22 | 1971-08-31 | Engelhard Min & Chem | Gas ionization display device |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3837724A (en) * | 1971-12-30 | 1974-09-24 | Ibm | Gas panel fabrication |
US3858284A (en) * | 1972-05-08 | 1975-01-07 | Ibm | Method of spacing the plates of a gaseous discharge device |
USB351672I5 (enrdf_load_stackoverflow) * | 1973-04-16 | 1975-01-28 | ||
US3914000A (en) * | 1973-04-16 | 1975-10-21 | Ibm | Method of making tubeless gas panel |
US3909094A (en) * | 1974-01-16 | 1975-09-30 | Ibm | Gas panel construction |
US4119378A (en) * | 1974-07-30 | 1978-10-10 | Owens-Illinois, Inc. | Segmented gas discharge display panel device and method of manufacturing same |
US4125307A (en) * | 1974-08-26 | 1978-11-14 | Owens-Illinois, Inc. | Method of making a gaseous discharge display panel with spacer beads in seal frame |
US4139250A (en) * | 1975-10-27 | 1979-02-13 | U.S. Philips Corporation | Gas discharge display panel and method of manufacturing the same |
US4071287A (en) * | 1976-03-15 | 1978-01-31 | International Business Machines Corporation | Manufacturing process for gaseous discharge device |
EP0008782A1 (en) * | 1978-09-01 | 1980-03-19 | E.I. Du Pont De Nemours And Company | Process for providing overglaze for fired metallizations and AC plasma display panel comprising two overglazed substrates |
US4346951A (en) * | 1980-06-19 | 1982-08-31 | Burroughs Corporation | Method for providing a gas reservoir for a gas display panel |
US4407658A (en) * | 1981-03-02 | 1983-10-04 | Beckman Instruments, Inc. | Gas discharge display device sealing method for reducing gas contamination |
US4588261A (en) * | 1984-06-07 | 1986-05-13 | Rca Corporation | IR-CCD imager and method of making the same |
US5657607A (en) * | 1989-08-23 | 1997-08-19 | University Of Sydney | Thermally insulating glass panel and method of construction |
US5902652A (en) * | 1993-06-30 | 1999-05-11 | University Of Sydney | Methods of construction of evacuated glazing |
US6103324A (en) * | 1993-06-30 | 2000-08-15 | The University Of Sydney | Methods of construction of evacuated glazing |
US5562517A (en) * | 1994-04-13 | 1996-10-08 | Texas Instruments Incorporated | Spacer for flat panel display |
US5811926A (en) * | 1996-06-18 | 1998-09-22 | Ppg Industries, Inc. | Spacer units, image display panels and methods for making and using the same |
US5834891A (en) * | 1996-06-18 | 1998-11-10 | Ppg Industries, Inc. | Spacers, spacer units, image display panels and methods for making and using the same |
WO1998043280A1 (de) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum |
US6590332B1 (en) * | 1999-08-06 | 2003-07-08 | Samsung Sdi Co., Ltd. | Plasma display panel including front and rear substrate assemblies |
US6913502B2 (en) | 1999-08-06 | 2005-07-05 | Samsung Sdi Co., Ltd. | Method of fabricating plasma display panel |
US6452323B1 (en) * | 1999-09-20 | 2002-09-17 | Omnion Technologies, Inc. | Luminous gas discharge display having dielectric sealing layer |
WO2001061721A1 (de) * | 2000-02-15 | 2001-08-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Herstellungsverfahren für eine flache gasentladungslampe |
RU2188463C1 (ru) * | 2000-12-05 | 2002-08-27 | Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" | Газоразрядная индикаторная панель переменного тока |
US20040100180A1 (en) * | 2001-11-02 | 2004-05-27 | Byrum Bernard W. | Low voltage high efficiency illuminated display having capacitive coupled electrodes |
US6836072B2 (en) | 2001-11-02 | 2004-12-28 | Electro Plasma, Inc. | Low voltage high efficiency illuminated display having capacitive coupled electrodes |
US7832177B2 (en) | 2002-03-22 | 2010-11-16 | Electronics Packaging Solutions, Inc. | Insulated glazing units |
US20060157274A1 (en) * | 2002-03-22 | 2006-07-20 | Stark David H | Wafer-level hermetic micro-device packages |
US7517712B2 (en) | 2002-03-22 | 2009-04-14 | Electronics Packaging Solutions, Inc. | Wafer-level hermetic micro-device packages |
US7550921B2 (en) * | 2003-09-25 | 2009-06-23 | Samsung Sdi Co., Ltd. | Plasma display panel assembly |
US20050067956A1 (en) * | 2003-09-25 | 2005-03-31 | Doo-Young Kim | Plasma display panel assembly |
US20050116647A1 (en) * | 2003-11-29 | 2005-06-02 | Jin-Sub Kim | Plasma display apparatus |
US7368871B2 (en) * | 2003-11-29 | 2008-05-06 | Samsung Sdi Co., Ltd. | Plasma display apparatus with improved substrates |
US20060066238A1 (en) * | 2004-09-24 | 2006-03-30 | Seok-Gyun Woo | Plasma display panel and plasma display device |
US7514869B2 (en) * | 2004-09-24 | 2009-04-07 | Samsung Sdi Co., Ltd. | Plasma display panel and plasma display device |
US20080042566A1 (en) * | 2006-03-29 | 2008-02-21 | Jung-Suk Song | Plasma display panel |
US7679288B2 (en) * | 2006-03-29 | 2010-03-16 | Samsung Sdi Co., Ltd. | Plasma display panel |
US7989040B2 (en) | 2007-09-14 | 2011-08-02 | Electronics Packaging Solutions, Inc. | Insulating glass unit having multi-height internal standoffs and visible decoration |
US20100034996A1 (en) * | 2008-08-09 | 2010-02-11 | Lawrence Mott | Asymmetrical flexible edge seal for vacuum insulating glass |
US8283023B2 (en) | 2008-08-09 | 2012-10-09 | Eversealed Windows, Inc. | Asymmetrical flexible edge seal for vacuum insulating glass |
US20100178439A1 (en) * | 2009-01-15 | 2010-07-15 | Eversealed Windows, Inc. | Flexible edge seal for vacuum insulating glazing units |
US20100175347A1 (en) * | 2009-01-15 | 2010-07-15 | Bettger Kenneth J | Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units |
US8329267B2 (en) | 2009-01-15 | 2012-12-11 | Eversealed Windows, Inc. | Flexible edge seal for vacuum insulating glazing units |
US8512830B2 (en) | 2009-01-15 | 2013-08-20 | Eversealed Windows, Inc. | Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units |
US8950162B2 (en) | 2010-06-02 | 2015-02-10 | Eversealed Windows, Inc. | Multi-pane glass unit having seal with adhesive and hermetic coating layer |
US9328512B2 (en) | 2011-05-05 | 2016-05-03 | Eversealed Windows, Inc. | Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit |
US11035168B2 (en) | 2011-05-05 | 2021-06-15 | Astravac Glass, Inc. | Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit |
Also Published As
Publication number | Publication date |
---|---|
JPS4879573A (enrdf_load_stackoverflow) | 1973-10-25 |
CA1007052A (en) | 1977-03-22 |
DE2247630C3 (de) | 1982-03-04 |
JPS539832B2 (enrdf_load_stackoverflow) | 1978-04-08 |
FR2166228B1 (enrdf_load_stackoverflow) | 1975-03-28 |
DE2247630B2 (de) | 1981-06-25 |
DE2247630A1 (de) | 1973-12-20 |
IT971735B (it) | 1974-05-10 |
FR2166228A1 (enrdf_load_stackoverflow) | 1973-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3778127A (en) | Sealing technique for gas panel | |
US3778126A (en) | Gas display panel without exhaust tube structure | |
KR100229586B1 (ko) | 전계방출 디스플레이의 배기 및 밀봉 방법 | |
US5827102A (en) | Low temperature method for evacuating and sealing field emission displays | |
US4204721A (en) | Manufacture of gas filled envelopes | |
EP0687379B1 (en) | Gas discharge display and method for producing such a display | |
JP2000082410A (ja) | プラズマディスプレイパネル | |
US5876260A (en) | Method for assembling a flat display screen | |
US4071287A (en) | Manufacturing process for gaseous discharge device | |
KR100406840B1 (ko) | 플라즈마 디스플레이 패널 제조 장치와 그 제조 방법 | |
US4195892A (en) | Batch production of plasma display panels | |
US3879629A (en) | Gas display panel and method of making same | |
US3900305A (en) | Method of forming conductive layer on oxide-containing surfaces | |
US3849190A (en) | Dielectric glass overlays and method for producing said glass compositions | |
US3808497A (en) | Gaseous discharge device and method of spacing the plates thereof | |
US4428764A (en) | Method of making fusible spacer for display panel | |
US3862831A (en) | Glass fabrication process | |
EP0042003B1 (en) | Method for forming a fusible spacer for plasma display panel | |
US3961114A (en) | Glass composition | |
US3746420A (en) | Manufacture and operation of gas discharge panel | |
US6257945B1 (en) | Method for sealing a gas within a picture display device | |
US3973815A (en) | Assembly and sealing of gas discharge panel | |
US4613312A (en) | Gas discharge display device and method for its production | |
GB2029084A (en) | Constructing gas discharge displays | |
JPH0210542B2 (enrdf_load_stackoverflow) |