US3768348A - Dryshaver operation - Google Patents
Dryshaver operation Download PDFInfo
- Publication number
- US3768348A US3768348A US3768348DA US3768348A US 3768348 A US3768348 A US 3768348A US 3768348D A US3768348D A US 3768348DA US 3768348 A US3768348 A US 3768348A
- Authority
- US
- United States
- Prior art keywords
- shear
- elements
- force
- dryshaver
- abutment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26B—HAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
- B26B19/00—Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
- B26B19/38—Details of, or accessories for, hair clippers, or dry shavers, e.g. housings, casings, grips, guards
- B26B19/3853—Housing or handle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26B—HAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
- B26B19/00—Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
- B26B19/14—Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers of the rotary-cutter type; Cutting heads therefor; Cutters therefor
- B26B19/16—Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers of the rotary-cutter type; Cutting heads therefor; Cutters therefor involving a knife cylinder or a knife cone or separate cutting elements moved like a rotating cylinder or a rotating cone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26B—HAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
- B26B19/00—Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
- B26B19/38—Details of, or accessories for, hair clippers, or dry shavers, e.g. housings, casings, grips, guards
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
Definitions
- ABSTRACT An electrically driven dryshaver has a shear system composed of an outer shear element and an inner shear element which cooperates with the outer shear element and at least one of these elements is driven for movement with reference to the other. The shear elements are biased into abutment with a force in excess of 4 kg/cm?
- the present invention relates generally to dryshavers, and more particularly to electrically driven dryshavers. Still more particularly the invention relates to a method of operating a novel dryshaver construction.
- electrically operated dryshavers utilize an outer shear foil which is apertured and which is usually arcuately curved, and an inner sheet element which presses against the inner side of the outer shear foil and is moved with reference thereto, either linearly or in rotation.
- the inner element usually is in form of a block or member provided with a plurality of cutting edges which are in contact with the inner side of the shear foil, with the block being pressed against the inner side of the shear foil and being linearly reciprocated.
- Another constuction utilizes a more or less cylindrical or part-cylindrical element which is turnable or pivotably mounted in the housing of the shaver and pressed against the semi-cylindrically curved shear foil. Either rotational motors or oscillating-armature motors are utilized.
- shear foil is essentially of planar configuration and relatively rigid, and a plurality of cutter blades are located at the inner side of the shear foil and are pressed by springs against the latter when the cutter element of the shear system is rotated.
- one feature of the invention resides in a method of operating an electrically driven dryshaver having a shear system which comprises an outer shear element and an inner shear element for cutting off beard stubble in cooperation with the outer shear element. At least one of these elements is driven for movement with reference to the other, and the shear elements are biased into abutment with one another with a force in excess of 4 kglcm It has been found, quite surprisingly, that the shear effectiveness of a dryshaver can actually be increased by increasing the contact pressure with which the shear elements of the shear system are pressed against one another. This is an approach which is contradictory to all beliefs heretofore held by the industry and which was entirely unpredictable.
- the inner shear element moves slower than heretofore, it will not become significantly heated despite the increased contact pressure.
- a single set of batteries or a single charge of a rechargeable battery permits the use of a battery-operated dryshaver without changing batteries or recharging for periods of time which heretofore could not be achieved except in overly largedimensioned shavers.
- motors having between substantially 2000 and 2500 RPM, although these are not binding values. If the motor is of the polarized oscillatingarmature type, an operating frequency of substantially 3000-3600 cycles is advantageous, meaning that the driven shear component will move between 3000 and 3600 times over the juxtaposed surface of the stationary shear system component.
- the invention is suitable with all currently known types of dryshaver, but it is especially advantageous when used with the type of dryshaver having an apertured shear foil because in this type of construction there is more of a tendency for the shear foil components to move out of engagement with one another and such movement will result in a more marked deterioration of the shear effectiveness than in other types.
- the invention also contemplates to make the pressure at which the shear foil components are pressed against one another variable.
- an additional spring can be provided which can be added or subtracted from the contact pressure as desired.
- the pretension of the spring or springs can be varied to obtain such a change in the contact pressure.
- a dryshaver is provided with a separate long-hair trimmer, that is in addition to the main cutter which is a cutter for the beard stubble, then it is customary in the art to drive the movable component of the long-hair trimmer with the same frequency as the movable component of the shear system, that is at high frequency.
- the present inventiomhowever suggests that the movable component of such a long-hair trimmer be driven at a lower frequency, by interposing an additional stepdown drive. It has been found particularly advantageous if the movable component of the long-hair trimmer is driven at a frequency of less than I000 up to approximately 1500.
- the long-hair trimmer according to the present invention can also be subjected to the increased contact pressure mentioned before, so that long hair can also be cut much more effectively than heretofore.
- the lower force requirements for operating such a long-hair trimmer make it possible to include it for the first time economically and reasonably in battery-operated dryshavers, where heretofore the utilization of long-hair trimmers resulted in a substantial and rapid draining of the battery charge.
- FIG. 1 is a somewhat diagrammatic section illustrating a shear-foil type dryshaver with a linearly reciprocable movable shear component
- FIG. 2 is a view similar to FIG. 1 illustrating a dryshaver having a long-hair trimmer
- FIG. 3 is a view similar to FIG. 1 but illustrating a dry shaver of the shear-foil type with a turnably mounted cutting component of the shear system.
- reference numeral 1 identifies an electromotor which may be of any known type utilized heretofore in the art.
- Reference numeral 2 identifies a step-down drive which is composed of a gear 3 and a gear 21 in the illustrated embodiment, it being understood that such a step-down drive could also be composed of more than two components.
- the step-down drive acts via a shaft 22 on the eccentric 30 of a rod 33 which in turn acts upon an arm .41 of the angular lever 4 which is journalled at 40.
- the other arm 42 of the lever 4 engages in known manner the movable cutting member 5, that is the movable component of the shear system, which is composed of a plurality of blade portions 50 whose free circumferential edges are approximately of semi-circular contour.
- the stationary component of the shear system is an apertured shear foil 51 which is connected rigidly or movably to the housing so that it surrounds these portions 50 approximately semicylindrically.
- springs 6, and 61 which press the member 5 against the inner side of this outer shear component, namely the outer shear foil 51, so that the two are in constant good contact with one another.
- the contact pressure achieved by the springs 6, 60 and 61 should be at least 5 kglcm and preferably no more than approximately 15 kg/cm
- the springs 60 and 61 can be made to supply this contactpressure by themselves, and the spring 6 -which in the illustrated position does not provide contact pressure can be moved by the lever 62 to another position (see the other position of the lever 62) in which it adds its own pressure to the contact pressure supplied by the springs 60 and 61.
- the entire contact pressure can be supplied by a single spring, and the spring characteristic of such a member could be varied, for instance via a lever such as the lever 62, so that depending upon its length it will supply a contactpressure ranging between substantially 5 and 15 kg/cm.
- the illustrated drive additionally has a long-hair trimmer 7 composed of the components 71 and 72 which, as pointed out above, may also contact with one another with the increased contact pressure according to the present invention.
- the step-down drive 2 comprises an additional pair of gears 23 and 24, and the eccentric 80 is connected via shaft 25 with the rod 8, which in turn is connected with the arm 91 of a lever 9 which is journalled at 90.
- the other arm 92 of the lever 9 is connected with the movable component 72 of the long-hair trimmer 7.
- the movable component 72 is driven at a frequency of below 1000 up to approximately 1500.
- FIG. 3 finally, there is illustrated a somewhat modified embodiment analogous to that of FIG. 1, in which the inner movable shear system component is constructed as a rotary element 52. It has inclined blades 53, but in place of these it would also be possible to provide helical or axially parallel straight blades and cutting edges, which themselves are known per se.
- springs 63 and 64 are provided which draw the shear foil 51 over the member 52, in order to obtain the necessary contact pressure between them.
- the springs could also be connected with the journals 54 and 55 of the member 52 in order to press the latter with the required contact pressure against the inner side of the shear foil 51, and this is illustrated by way of example with respect to the journal 54 and the springs 65, Again, combinations of. the arrangements of the springs 63, 64 and can also be provided.
- the contact pressure which again should be at least 5 kg/cm", and preferably, no more than approximately 15 kglcm is obtained by appropriate dimensioning of the springs or spring combinations.
- the motor 1 drives the member 52 via the modified step-down drive 2, and the gears 26, 27 and 28 in order to reduce the RPM of the motor to the desired lower RPM which are to be imparted to the member 52.
- a method of operating an electrically driven dryshaver having a shear system composed of an outer shear element and a cooperating inner shear element comprising the steps of pressing said shear elements into abutment with one another with a force in excess of 4 kglcm and effecting movement of one of said elements with reference to the other while they are in such abutment.
- said dryshaver having an electromotor which drives said one element; and further comprising stepping down the output speed of said motor to provide between substantially 2000 and 2500 movements of said one element per minute.
- step of effecting movement comprises reciprocating said one element with reference to the other of said elements.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dry Shavers And Clippers (AREA)
Abstract
An electrically driven dryshaver has a shear system composed of an outer shear element and an inner shear element which cooperates with the outer shear element and at least one of these elements is driven for movement with reference to the other. The shear elements are biased into abutment with a force in excess of 4 kg/cm2.
Description
United States Patent [1 1 Braun et al.
[ Oct. 30, 1973 DRYSHAVER OPERATION [75] lnventors: Arthur Braun, Koenigstein;
Friedrich Schreiber, Bad Homburg, both of Germany [73] Assignee: Braun Aktiengesellschaft, Frankfurt Main, Germany [22] Filed: Feb. 15, 1973 21 Appl. No.: 332,750
Related us. Application Data [62] Division of Ser. No. 179,968, Sept. 13, i971.
[30] Foreign Application Priority Data Sept. I4, 1970 Luxembourg 61683 [52] US. Cl 83/13, 30/4392 [51] Int. Cl B26b 19/04 [58] Field of Search 83/13; 30/43-43.92
[56] References Cited UNlTED STATES PATENTS 2,822,610 2/1958 Kleinman 30/4392 X Primary Examiner-J. M. Meister Att0meyMichael S. Striker [57] ABSTRACT An electrically driven dryshaver has a shear system composed of an outer shear element and an inner shear element which cooperates with the outer shear element and at least one of these elements is driven for movement with reference to the other. The shear elements are biased into abutment with a force in excess of 4 kg/cm? 0 9 Claims, 3 Drawing Figures I [Ill/VII VII/l PATENTEU UN 3 0 I975 SHEET 2 BF 2 F/GJ 1 DRYSHAVER OPERATION CROSS-REFERENCE TO RELATED APPLICATION This application is a division of application Ser. No. 179,968, filed Sept. 13, 1971 entitled DRYSI-IAVER CONSTRUCTION AND OPERATION.
BACKGROUND OF THE INVENTION The present invention relates generally to dryshavers, and more particularly to electrically driven dryshavers. Still more particularly the invention relates to a method of operating a novel dryshaver construction.
Generally speaking, electrically operated dryshavers utilize an outer shear foil which is apertured and which is usually arcuately curved, and an inner sheet element which presses against the inner side of the outer shear foil and is moved with reference thereto, either linearly or in rotation. The inner element usually is in form of a block or member provided with a plurality of cutting edges which are in contact with the inner side of the shear foil, with the block being pressed against the inner side of the shear foil and being linearly reciprocated. Another constuction utilizes a more or less cylindrical or part-cylindrical element which is turnable or pivotably mounted in the housing of the shaver and pressed against the semi-cylindrically curved shear foil. Either rotational motors or oscillating-armature motors are utilized.
Of course, there is a constant endeavor on the part of industry to improve the shaving'effect'iveness of such dryshavers. Generally speaking, all such improvements have three basic purposes, namely to improve the quality and quantity of the shear or shaving operation, to make the power requirements as low as possible, and to make the vibration and noise resulting from operation of the dryshaver as insignificant as possible.
Evidently, to increase the quality and quantity of the shear effectiveness means that the beard stubble should be cut off as rapidly as possible, as close to the skin as possible and with the minimum possibleskin irritation. Attempts to provide improvements in this respect heretofore were seen in various changes as to the size and configuration of the apertures in the outer shear foil, usually a highly flexible'thin foil of metallic material, as well as by improving the cutting edges bounding these apertures and the cutting edges on the cutting element itself. In fact, it is generally assumed that the maximum improvement which can be achieved in this respect has now been obtained with the present state of the art, and that further improvements at least of any significance cannot be achieved in this respect, that is by further changing the aforementioned considerations.
The other problem, namely to makethe power requirements as small as possible, particularly important when the dryshaver is battery-operated so that it can operate for relatively long periods of time, and also im portant in dryshavers which are to be operated off the net and in which undesired heating of the device is to be avoided, has largely been achieved by proper selection of the motors and drives which are used.
Improvements have also been forthcoming in suppressing vibration andnoise during the operation of the dryshavers, but particularly where the motor is of the oscillating-armature type these improvements are not considered solved.
Attempts have been made in the prior art to improve the sheareffectiveness of a dryshaver further by utilizing a motor having several operational stages, that is a motor. which can be operated at different numbers of cycles per unit of time. It was thought that a higher number of rotations, or a higher frequency of operation, would provide for a generally improved shaving effectiveness. Such apparatuses are known .in which motors can be adjusted between 6000 and 12000 RPM, with 8000 RPM being utilized for readily irritated sensitive skin,l0000 RPM for normal shaving, and 12000 RPM for strong and/or heavy beards. However, despite all attempts at providing an improvement in this respect it was found in the final analysis that no actual improvement was achieved thereby.
It was therefore determined that any further improvements in shear effectiveness would have to come from improvements in the shear system itself. One of the basic considerations in constructing such a shear system is, of course, that the inner and outer elements be in good contact or abutment. In the so-called combtype shear systems this was achieved in that both cooperating shear elements were ground to configurations and tolerances which assured tight engagement. In the so-called circular-head dryshavers, that is the type originated by Norelco, the shear foil is essentially of planar configuration and relatively rigid, and a plurality of cutter blades are located at the inner side of the shear foil and are pressed by springs against the latter when the cutter element of the shear system is rotated. This abutment of the cutter blades against the outer shear foil is simpler than other constructions because these cutting blades have sharpened edges, which is not usually the case in other types of constructions. Thus, in the Norelco-type dryshaver the beard stubble is .cut off, whereas in other dryshavers sheared or punched off because the cutting edges are usually only in form of a relatively sharp. right-angular edge which cooperates with the edge bounding the respective aperture in theshear foil to sever the beard stubble.
Any improvements whichhad been attempted heretofore in the type of construction in which specific sharpened cutter blades are not utilized, that is in .the type other than the Norelco-type, were heretofore only seen in attempting to provide proper biasing pressure in order to maintain the two elements of the shear system in good abutment with one another. A variety of approaches has been attempted in this respect, and the forces with which the two elements of the shear systems in different constructions are pressed against one another, vary widely, but, as extensive tests have shown, are all of such magnitude that they do not assure proper and continuous contact of the elements of the shear system during operation.
The cause of this is that a high biasing pressure would at the same time require a stronger motor, and this in turn would require more power. This, at least, is the conviction which has heretofore been held in the industry and it was also believed that as a result of greater pressure with which the elements of the shear system are biased against one another, the shear system would become excessively warm or'hot if the elements were to be pressed against one another by a force stronger than that required to bring them into good. contact when the device is in the rest position, that is when the system is not in movement.
It has been determined that the known dryshavers of the type here under discussion have a specific contact pressure of the two shear elements or components of the shear system with reference to one another, of approximately l2 kg/cm The Norelco-type dryshavers have a contact pressure of just slightly below 1 kg/cm The apertured-foil dryshavers (as opposed to the firstmentioned ones, which utilize the properly ground upper and lower shear elements) have been found to have a specific contact pressure which may vary between 2 and 4 kg/cm It was believed that if these values were exceeded to any appreciable extent, so many disadvantages would have to be accepted that the total effectiveness of the apparatus would decrease significantly.
SUMMARY OF THE INVENTION It is, accordingly, an object of the present invention to overcome the aforementioned disadvantages of the prior art.
More particularly it is an object of the present invention to provide a method of operating an improved electrically driven dryshaver.
With these objects in view, and others which will become apparent hereafter, one feature of the invention resides in a method of operating an electrically driven dryshaver having a shear system which comprises an outer shear element and an inner shear element for cutting off beard stubble in cooperation with the outer shear element. At least one of these elements is driven for movement with reference to the other, and the shear elements are biased into abutment with one another with a force in excess of 4 kglcm It has been found, quite surprisingly, that the shear effectiveness of a dryshaver can actually be increased by increasing the contact pressure with which the shear elements of the shear system are pressed against one another. This is an approach which is contradictory to all beliefs heretofore held by the industry and which was entirely unpredictable. Although values in excess of at least 4.kg/cm are already capable of affording such improvements, values of 7 kg/cm already provide substantially improved effectiveness and it is currently believed that the optimum increase in effectiveness if obtained at a value of 10 kg/cm. However, it has been determined that it is possible to utilize values on the order of between and kg/cm If the contact pressure is increased with reference to what is known in the art by not more than 50 percent, then it is not necessary to provide additional means to make the dryshaver, particularly'apertured-foil type,
properly operational because the motors used in such I constructions until now are entirely capable to overcome the resistance resulting from the increased contact pressure. Of course, there will be a noticeable increase in the heating of the shear system and the motor will require more power; however, the improved shear effectiveness of the dryshaver overcomes these considerations and'compensates for them.
However, if the optimum improvement is to be achieved, then it is necessary to provide additional means to obtain proper operation. Thus, it is possible according to the invention to correspondingly decrease the number of rotations of the drive motor per unit of time, or the frequency thereof, so that the same drive motor can be utilized but will yield a higher torque. In case of rotary motors this can be achieved by interposing between the motor and the driven component of the shear system a step-down drive or gear. If the motor is of the oscillating-armature type, 'a polarized oscillating-armature motor can be used to obtain the increased output. True, both measures required an increased expense, and of course a step-down drive will itself require some additional power. However, what appears initially to be advantageous has been found to actually provide advantages which were entirely surprising and not to be expected.
Thus, when the driven usually the inner shear element moves slower than heretofore, it will not become significantly heated despite the increased contact pressure. The lower power requirement of the motor and despite the provision of a step-down driveprevents the heating of the motor and substantially increases the period for which a battery-operated dryshaver can be utilized with the charge of the battery. In fact, it has been found that a single set of batteries or a single charge of a rechargeable battery permits the use of a battery-operated dryshaver without changing batteries or recharging for periods of time which heretofore could not be achieved except in overly largedimensioned shavers.
Also, when the driven shear foil component moves slower than heretofore, better and deeper entrance of the beard stubble through the apertures of the apertured shear foil is achieved, because there is more time available for such entry than in the more rapidly operating devices, meaning that they can be cut off much more closely to the skin than was the case heretofore.
It is thus clear that each of the aforementioned two featuresnamely increasing the contact pressure and operating the shear system at lower speed than heretoforeprovides substantial advantages. By combining them, however, a complete range of advantages is achieved which are entirely surprising and completely unexpected. Not only will a dryshaver constructed along these lines provide a better shave and have a much lesser tendency to irritate the skin, but it will be subject to substantially lesser wear and lesser heating of all components involved, it will require less power, it will be quieter and it will be subject to fewer vibrations. All of these are features which heretofore could not be realized or, if they were indeed realized, could be achieved only at substantial additional expense.
It is preferred to use motors having between substantially 2000 and 2500 RPM, although these are not binding values. If the motor is of the polarized oscillatingarmature type, an operating frequency of substantially 3000-3600 cycles is advantageous, meaning that the driven shear component will move between 3000 and 3600 times over the juxtaposed surface of the stationary shear system component.
The invention is suitable with all currently known types of dryshaver, but it is especially advantageous when used with the type of dryshaver having an apertured shear foil because in this type of construction there is more of a tendency for the shear foil components to move out of engagement with one another and such movement will result in a more marked deterioration of the shear effectiveness than in other types.
The invention also contemplates to make the pressure at which the shear foil components are pressed against one another variable. For instance, an additional spring can be provided which can be added or subtracted from the contact pressure as desired. Also, the pretension of the spring or springs can be varied to obtain such a change in the contact pressure.
If a dryshaver is provided with a separate long-hair trimmer, that is in addition to the main cutter which is a cutter for the beard stubble, then it is customary in the art to drive the movable component of the long-hair trimmer with the same frequency as the movable component of the shear system, that is at high frequency. The present inventiomhowever, suggests that the movable component of such a long-hair trimmer be driven at a lower frequency, by interposing an additional stepdown drive. It has been found particularly advantageous if the movable component of the long-hair trimmer is driven at a frequency of less than I000 up to approximately 1500.
It has been found that if the trimmer for long hair is driven in this slower manner, the shear effectiveness which it obtains is a multiple of that achieved with the conventional constructions of the prior art. The rapidly driven long-hair trimmer hardly affords time for the long hair to enter into the openings in which it is to be cut, whereas the openings are exposed for relatively long periods of time with the slower-driven long-hair trimmer so that the hair can enter properly into the openings and then be cut off.
Of course, the long-hair trimmer according to the present invention can also be subjected to the increased contact pressure mentioned before, so that long hair can also be cut much more effectively than heretofore. Also, the lower force requirements for operating such a long-hair trimmer make it possible to include it for the first time economically and reasonably in battery-operated dryshavers, where heretofore the utilization of long-hair trimmers resulted in a substantial and rapid draining of the battery charge.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a somewhat diagrammatic section illustrating a shear-foil type dryshaver with a linearly reciprocable movable shear component;
FIG. 2 is a view similar to FIG. 1 illustrating a dryshaver having a long-hair trimmer; and
FIG. 3 is a view similar to FIG. 1 but illustrating a dry shaver of the shear-foil type with a turnably mounted cutting component of the shear system.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Discussing firstly the embodiment in FIG. 1, it will be seen that reference numeral 1 identifies an electromotor which may be of any known type utilized heretofore in the art. Reference numeral 2 identifies a step-down drive which is composed of a gear 3 and a gear 21 in the illustrated embodiment, it being understood that such a step-down drive could also be composed of more than two components. The step-down drive acts via a shaft 22 on the eccentric 30 of a rod 33 which in turn acts upon an arm .41 of the angular lever 4 which is journalled at 40. The other arm 42 of the lever 4 engages in known manner the movable cutting member 5, that is the movable component of the shear system, which is composed of a plurality of blade portions 50 whose free circumferential edges are approximately of semi-circular contour. The stationary component of the shear system is an apertured shear foil 51 which is connected rigidly or movably to the housing so that it surrounds these portions 50 approximately semicylindrically.
According to the present invention there are provided springs 6, and 61 which press the member 5 against the inner side of this outer shear component, namely the outer shear foil 51, so that the two are in constant good contact with one another. The contact pressure achieved by the springs 6, 60 and 61 should be at least 5 kglcm and preferably no more than approximately 15 kg/cm Actually, the springs 60 and 61 can be made to supply this contactpressure by themselves, and the spring 6 -which in the illustrated position does not provide contact pressure can be moved by the lever 62 to another position (see the other position of the lever 62) in which it adds its own pressure to the contact pressure supplied by the springs 60 and 61.
Of course, the entire contact pressure can be supplied by a single spring, and the spring characteristic of such a member could be varied, for instance via a lever such as the lever 62, so that depending upon its length it will supply a contactpressure ranging between substantially 5 and 15 kg/cm.
In the embodiment of FIG. 2 it will be seen that the illustrated drive additionally has a long-hair trimmer 7 composed of the components 71 and 72 which, as pointed out above, may also contact with one another with the increased contact pressure according to the present invention. In this embodiment the step-down drive 2 comprises an additional pair of gears 23 and 24, and the eccentric 80 is connected via shaft 25 with the rod 8, which in turn is connected with the arm 91 of a lever 9 which is journalled at 90. The other arm 92 of the lever 9 is connected with the movable component 72 of the long-hair trimmer 7. As pointed out earlier, it is found to be particularly advantageous if the movable component 72 is driven at a frequency of below 1000 up to approximately 1500.
In FIG. 3, finally, there is illustrated a somewhat modified embodiment analogous to that of FIG. 1, in which the inner movable shear system component is constructed as a rotary element 52. It has inclined blades 53, but in place of these it would also be possible to provide helical or axially parallel straight blades and cutting edges, which themselves are known per se.
In this embodiment springs 63 and 64 are provided which draw the shear foil 51 over the member 52, in order to obtain the necessary contact pressure between them. However, the springs could also be connected with the journals 54 and 55 of the member 52 in order to press the latter with the required contact pressure against the inner side of the shear foil 51, and this is illustrated by way of example with respect to the journal 54 and the springs 65, Again, combinations of. the arrangements of the springs 63, 64 and can also be provided. The contact pressure, which again should be at least 5 kg/cm", and preferably, no more than approximately 15 kglcm is obtained by appropriate dimensioning of the springs or spring combinations.
Here, also, the motor 1 drives the member 52 via the modified step-down drive 2, and the gears 26, 27 and 28 in order to reduce the RPM of the motor to the desired lower RPM which are to be imparted to the member 52.
In the embodiment of FIG. 3, as in the embodiments of FIGS. 1 and 2, the entire drive is accommodated in a lower housing portion 11, whereas the shear system or head is covered by a frame 12 or 13.
it will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of constructions differing from the types described above.
While the invention has been illustrated and described as embodied in an electrically driven dryshaver, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that from the standpoint of prior art fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
What is claimed as new and desired to be secured by Letters Patent is set forth in the appended claims.
We claim:
1. A method of operating an electrically driven dryshaver having a shear system composed of an outer shear element and a cooperating inner shear element, comprising the steps of pressing said shear elements into abutment with one another with a force in excess of 4 kglcm and effecting movement of one of said elements with reference to the other while they are in such abutment.
2. A method as defined in claim 1, said dryshaver having an electromotor which drives said one element; and further comprising stepping down the output speed of said motor to provide between substantially 2000 and 2500 movements of said one element per minute.
3. A method as defined in claim 1; and further comprising the step of varying said force to suit different operational conditions.
4. A method as defined in claim 1, wherein said force is in excess of 7 kglcm 5. A method as defined in claim 1, wherein said force is in excess of 10 kg/cm'.
6. A method as defined in claim 1, wherein said force is greater than 15 but smaller than 20 kg/cm.
7. A method as defined in claim 1, wherein the step of effecting movement comprises reciprocating said one element with reference to the other of said elements.
8. A method as defined in claim 1, wherein said elements are pressed into abutment by biasing springs; and further comprising the step of changing the biasing force exerted by said springs so as to vary said force with which said elements are pressed into abutment, to suit different operational conditions.
9. A method as defined in claim 1, wherein said elements are pressed into abutment by biasing springs; and further comprising the step of varying said force to suit different operational conditions, by adding or removing the biasing force exerted by an addtiional biasing spring.
Claims (9)
1. A method of operating an electrically driven dryshaver having a shear system composed of an outer shear element and a cooperating inner shear element, comprising the steps of pressing said shear elements into abutment with one another with a force in excess of 4 kg/cm2; and effecting movement of one of said elements with reference to the other while they are in such abutment.
2. A method as defined in claim 1, said dryshaver having an electromotor which drives said one element; and further comprising stepping down the output speed of said motor to provide between substantially 2000 and 2500 movements of said one element per minute.
3. A method as defined in claim 1; and further comprising the step of varying said force to suit different operational conditions.
4. A method as defined in claim 1, wherein said force is in excess of 7 kg/cm2.
5. A meThod as defined in claim 1, wherein said force is in excess of 10 kg/cm2.
6. A method as defined in claim 1, wherein said force is greater than 15 but smaller than 20 kg/cm2.
7. A method as defined in claim 1, wherein the step of effecting movement comprises reciprocating said one element with reference to the other of said elements.
8. A method as defined in claim 1, wherein said elements are pressed into abutment by biasing springs; and further comprising the step of changing the biasing force exerted by said springs so as to vary said force with which said elements are pressed into abutment, to suit different operational conditions.
9. A method as defined in claim 1, wherein said elements are pressed into abutment by biasing springs; and further comprising the step of varying said force to suit different operational conditions, by adding or removing the biasing force exerted by an addtiional biasing spring.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU61683 | 1970-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3768348A true US3768348A (en) | 1973-10-30 |
Family
ID=19726484
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17996871 Expired - Lifetime US3802073A (en) | 1970-09-14 | 1971-09-13 | Dryshaver construction and operation |
US3768348D Expired - Lifetime US3768348A (en) | 1970-09-14 | 1973-02-15 | Dryshaver operation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17996871 Expired - Lifetime US3802073A (en) | 1970-09-14 | 1971-09-13 | Dryshaver construction and operation |
Country Status (16)
Country | Link |
---|---|
US (2) | US3802073A (en) |
AT (1) | AT317040B (en) |
AU (1) | AU3337071A (en) |
BE (1) | BE772290A (en) |
BR (1) | BR7105867D0 (en) |
CA (1) | CA953898A (en) |
CH (1) | CH538335A (en) |
DE (1) | DE2139419A1 (en) |
FR (1) | FR2107383A5 (en) |
GB (1) | GB1356824A (en) |
IL (1) | IL37670A (en) |
IT (1) | IT940349B (en) |
NL (1) | NL7112300A (en) |
SE (1) | SE363131B (en) |
TR (1) | TR17271A (en) |
ZA (1) | ZA715947B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1449627A1 (en) * | 2003-02-24 | 2004-08-25 | Izumi Products Company | A reciprocating type electric shaver |
US20050097751A1 (en) * | 1996-07-05 | 2005-05-12 | Ray Parsonage | Dry shaving apparatus |
US20090100680A1 (en) * | 2005-02-11 | 2009-04-23 | The Gillette Company | Electric razor assembly |
US20140026726A1 (en) * | 2012-07-26 | 2014-01-30 | Shavelogic, Inc. | Pivoting razors |
US20140083265A1 (en) * | 2012-09-27 | 2014-03-27 | Shavelogic, Inc. | Shaving systems |
US9475202B2 (en) | 2012-09-27 | 2016-10-25 | Shavelogic, Inc. | Shaving systems |
US9623575B2 (en) | 2012-12-18 | 2017-04-18 | Shavelogic, Inc. | Shaving systems |
US10328587B2 (en) | 2012-09-28 | 2019-06-25 | Shavelogic, Inc. | Shaving systems |
US10500747B2 (en) | 2013-12-09 | 2019-12-10 | Shavelogic, Inc. | Multi-material pivot return for shaving systems |
US11325270B2 (en) | 2014-03-21 | 2022-05-10 | Sl Ip Company Llc | Metal spring return and method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT327735B (en) * | 1973-02-16 | 1976-02-10 | Braun Ag | DRY SHAVER |
FR2548572B1 (en) * | 1983-07-04 | 1988-03-18 | Novation Indle Ste Civile Et | ELECTRIC RAZOR |
DE3340661C2 (en) * | 1983-11-10 | 1991-03-07 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Shaving head for a dry shaver with a curved shaving foil |
DE3346656C1 (en) * | 1983-12-23 | 1988-12-22 | Braun Ag, 6000 Frankfurt | Device for converting the rotary movement of an eccentric into a reciprocating movement |
US7251896B2 (en) | 2004-09-14 | 2007-08-07 | Ideavillage Products Corp. | Hair clipper with pivot head |
KR200413831Y1 (en) * | 2006-01-23 | 2006-04-11 | 오태준 | A round trip electric shave by linktype |
DE102017003965B4 (en) | 2017-04-25 | 2019-12-12 | Zapp Precision Metals Gmbh | Martensitic chrome steel, steel foil, perforated and / or perforated steel foil component, process for producing a steel foil |
USD1013957S1 (en) | 2021-04-05 | 2024-02-06 | Church & Dwight Co., Inc. | Angled shaver |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2822610A (en) * | 1951-05-16 | 1958-02-11 | Jacob L Kleinman | Shaving implement having a frictional motor compartment cover |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1806116A (en) * | 1930-04-22 | 1931-05-19 | Logan S Peterson | Hedge trimmer |
CH276797A (en) * | 1948-10-20 | 1951-07-31 | Ryser Jean | Mechanical razor of the mower type. |
US3521093A (en) * | 1968-07-26 | 1970-07-21 | Braun Ag | Oscillating motor driving arrangement |
-
1971
- 1971-08-06 DE DE19712139419 patent/DE2139419A1/en active Pending
- 1971-09-06 BR BR586771A patent/BR7105867D0/en unknown
- 1971-09-07 IT IT967671A patent/IT940349B/en active
- 1971-09-07 FR FR7132315A patent/FR2107383A5/fr not_active Expired
- 1971-09-07 NL NL7112300A patent/NL7112300A/xx unknown
- 1971-09-07 GB GB4172971A patent/GB1356824A/en not_active Expired
- 1971-09-07 SE SE1131471A patent/SE363131B/xx unknown
- 1971-09-07 AT AT777971A patent/AT317040B/en not_active IP Right Cessation
- 1971-09-07 ZA ZA715947A patent/ZA715947B/en unknown
- 1971-09-07 BE BE772290A patent/BE772290A/en unknown
- 1971-09-07 IL IL3767071A patent/IL37670A/en unknown
- 1971-09-07 TR TR1727171A patent/TR17271A/en unknown
- 1971-09-07 CH CH1312271A patent/CH538335A/en not_active IP Right Cessation
- 1971-09-13 US US17996871 patent/US3802073A/en not_active Expired - Lifetime
- 1971-09-13 CA CA122,641A patent/CA953898A/en not_active Expired
- 1971-09-13 AU AU33370/71A patent/AU3337071A/en not_active Expired
-
1973
- 1973-02-15 US US3768348D patent/US3768348A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2822610A (en) * | 1951-05-16 | 1958-02-11 | Jacob L Kleinman | Shaving implement having a frictional motor compartment cover |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050097751A1 (en) * | 1996-07-05 | 2005-05-12 | Ray Parsonage | Dry shaving apparatus |
US7237339B2 (en) * | 1996-07-05 | 2007-07-03 | Brann Gmbh | Dry shaving apparatus |
US20040163260A1 (en) * | 2003-02-24 | 2004-08-26 | Izumi Products Company | Reciprocating type electric shaver |
EP1449627A1 (en) * | 2003-02-24 | 2004-08-25 | Izumi Products Company | A reciprocating type electric shaver |
US20090100680A1 (en) * | 2005-02-11 | 2009-04-23 | The Gillette Company | Electric razor assembly |
US8065801B2 (en) | 2005-02-11 | 2011-11-29 | The Procter & Gamble Company | Electric razor assembly |
US9844887B2 (en) | 2012-07-26 | 2017-12-19 | Shavelogic, Inc. | Pivoting razors |
US20140026726A1 (en) * | 2012-07-26 | 2014-01-30 | Shavelogic, Inc. | Pivoting razors |
US10974404B2 (en) * | 2012-07-26 | 2021-04-13 | Shavelogic, Inc. | Pivoting razors |
US9283685B2 (en) * | 2012-07-26 | 2016-03-15 | Shavelogic, Inc. | Pivoting razors |
US20190210234A1 (en) * | 2012-07-26 | 2019-07-11 | Shavelogic, Inc. | Pivoting razors |
US10272580B2 (en) * | 2012-07-26 | 2019-04-30 | Shavelogic, Inc. | Pivoting razors |
US10052776B2 (en) | 2012-09-27 | 2018-08-21 | Shavelogic, Inc. | Shaving systems |
US11077569B2 (en) * | 2012-09-27 | 2021-08-03 | Shavelogic, Inc. | Shaving systems |
US11642804B2 (en) | 2012-09-27 | 2023-05-09 | Sl Ip Company Llc | Shaving systems |
US10183407B2 (en) | 2012-09-27 | 2019-01-22 | Shavelogic, Inc. | Shaving systems |
US9486930B2 (en) * | 2012-09-27 | 2016-11-08 | Shavelogic, Inc. | Shaving systems |
US20140083265A1 (en) * | 2012-09-27 | 2014-03-27 | Shavelogic, Inc. | Shaving systems |
US9475202B2 (en) | 2012-09-27 | 2016-10-25 | Shavelogic, Inc. | Shaving systems |
US10507588B2 (en) * | 2012-09-27 | 2019-12-17 | Shavelogic, Inc. | Shaving systems |
US10744661B2 (en) | 2012-09-28 | 2020-08-18 | Shavelogic, Inc. | Shaving systems |
US10328587B2 (en) | 2012-09-28 | 2019-06-25 | Shavelogic, Inc. | Shaving systems |
US10391654B2 (en) | 2012-12-18 | 2019-08-27 | Shavelogic, Inc. | Shaving systems |
US10967533B2 (en) | 2012-12-18 | 2021-04-06 | Shavelogic, Inc. | Shaving systems |
US10022882B2 (en) | 2012-12-18 | 2018-07-17 | Shavelogic, Inc. | Shaving systems |
US9623575B2 (en) | 2012-12-18 | 2017-04-18 | Shavelogic, Inc. | Shaving systems |
US10500747B2 (en) | 2013-12-09 | 2019-12-10 | Shavelogic, Inc. | Multi-material pivot return for shaving systems |
US11130248B2 (en) | 2013-12-09 | 2021-09-28 | Shavelogic, Inc. | Multi-material pivot return for shaving systems |
US11325270B2 (en) | 2014-03-21 | 2022-05-10 | Sl Ip Company Llc | Metal spring return and method |
Also Published As
Publication number | Publication date |
---|---|
DE2139419A1 (en) | 1972-03-23 |
CA953898A (en) | 1974-09-03 |
IT940349B (en) | 1973-02-10 |
ZA715947B (en) | 1972-05-31 |
AU3337071A (en) | 1973-03-22 |
FR2107383A5 (en) | 1972-05-05 |
US3802073A (en) | 1974-04-09 |
NL7112300A (en) | 1972-03-16 |
CH538335A (en) | 1973-06-30 |
SE363131B (en) | 1974-01-07 |
IL37670A0 (en) | 1971-11-29 |
IL37670A (en) | 1974-07-31 |
BR7105867D0 (en) | 1973-05-10 |
TR17271A (en) | 1975-03-24 |
AT317040B (en) | 1974-08-12 |
GB1356824A (en) | 1974-06-19 |
BE772290A (en) | 1972-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3768348A (en) | Dryshaver operation | |
US3962784A (en) | Dry-shaving apparatus | |
US4038747A (en) | Electric razor having an oscillating cutting head | |
JP7457482B2 (en) | rotary electric razor | |
US3962783A (en) | Trimming unit | |
US4393585A (en) | Dry-shaving apparatus with hair-trimming means | |
CA1077696A (en) | Hair-cutting | |
GB1339364A (en) | Rotary dry shavers | |
US3699655A (en) | Power driven hand tool | |
GB1419314A (en) | Shaving head for a dry-shaving apparatus | |
US2965966A (en) | Electric razor with multiple rotary cutter head and oscillating combs | |
US3156045A (en) | Dry shaver with reciprocating inner cutter and compound oscillating outer shear plate | |
US3264734A (en) | Dry shaver having rotary inner cutter and an oscillating shear plate | |
US2370542A (en) | Shaving implement | |
US3921270A (en) | Electric razor having an oscillating cutting head | |
GB994624A (en) | Improvements in and relating to dry-shaving apparatus | |
WO2024065902A1 (en) | New shaver head | |
US3290774A (en) | Electric shaver with trimmer | |
US3090119A (en) | Electric dry shaver | |
US2998648A (en) | Electric razor pivotally mounted in an outer casing | |
CN213352517U (en) | Hair trimming device with cutter head cutting angle capable of being adjusted by 360 degrees | |
GB1272501A (en) | Shaver | |
US1970518A (en) | Hair clipper | |
US2837819A (en) | Dry shaver with reciprocating circular bevelled blades | |
SU411988A1 (en) |