US3736942A - Apparatus for comminuting and drying of tabacco leaves - Google Patents

Apparatus for comminuting and drying of tabacco leaves Download PDF

Info

Publication number
US3736942A
US3736942A US00141164A US3736942DA US3736942A US 3736942 A US3736942 A US 3736942A US 00141164 A US00141164 A US 00141164A US 3736942D A US3736942D A US 3736942DA US 3736942 A US3736942 A US 3736942A
Authority
US
United States
Prior art keywords
conveyor
tobacco
comminuted material
stream
shreds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00141164A
Other languages
English (en)
Inventor
U Elsner
W Wochnowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koerber AG
Original Assignee
Hauni Werke Koerber and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19702022816 external-priority patent/DE2022816C3/de
Application filed by Hauni Werke Koerber and Co KG filed Critical Hauni Werke Koerber and Co KG
Application granted granted Critical
Publication of US3736942A publication Critical patent/US3736942A/en
Assigned to KORBER AG reassignment KORBER AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). (HAMBURG) Assignors: HAUNI-WERKE KORBER & CO. KG (MERGED INTO), KORBER GESELLSCHAFT MIT BESCHRANKTER HAFTUNG (CHANGED TO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B7/00Cutting tobacco
    • A24B7/14Feeding or control devices for tobacco-cutting apparatus
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/39Tobacco feeding devices
    • A24C5/397Tobacco feeding devices with means for regulating the tobacco quantity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S131/00Tobacco
    • Y10S131/906Sensing condition or characteristic of continuous tobacco rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S131/00Tobacco
    • Y10S131/909Sensing condition in feed hopper for cigar or cigarette making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S131/00Tobacco
    • Y10S131/91Sensing or detecting malfunction in cigar or cigarette maker

Definitions

  • the present invention relates to a method and apparatus for the cutting or comminuting and drying of tobacco leaves. More particularly, the invention relates to improvements in a method and apparatus for shredding of tobacco leaves and for subjecting the shredded material to a drying or moisture-expelling treatment.
  • the drying of tobacco shreds subsequent to shredding and prior to conversion into a continuous tobacco filler rod represents a rather lengthy stage in the conversion of tobacco leaves into smokers products.
  • the duration of the treatment in a heating or moistureexpelling apparatus depends not only on the desired extent to which the moisture content is to be reduced but also on the regularity at which the tobacco shreds are fed into the heating apparatus.
  • the primary purpose of the heating apparatus is to reduce the moisture content to a desired value which, as mentioned before, cannot deviate from a predetermined optimum value by more than a small fraction of a percent.
  • the operation of the drying or heating apparatus is further complicated if such apparatus must be constructed to be adjustable not only to account for fluctuations in the moisture content of admitted tobacco shreds but also for fluctuations in the rate at which the shreds are being admitted into the heating or moisture-expelling zone. Fluctuations in the quantity of tobacco shreds which are being fed into the drying apparatus are due to the fact that a modern drying apparatus can take up and process the output of two or more tobacco shredding machines. Such shredding machines are normally arranged in parallel and their outputs are combined into a stream which is fed into the inlet of the drying apparatus.
  • An object of the invention is to provide a novel and improved method of comminuting and transporting tobacco leaves into a drying or moisture-expelling zone in such a way that the drying zone receives a constant stream of tobacco shreds.
  • Another object of the invention is to provide a method of the just-outlined character which can be carried out by resorting to presently available tobacco comminuting and drying apparatus and by necessitating only minor modifications or alterations in the construction and mode of operation of such apparatus.
  • a further object of the invention is to provide a method according to which the drying apparatus which is used to expel moisture from freshly formed tobacco shreds need not be provided with any means for adjusting its operation for the sole purpose of insuring that the drying operation is carried out by full consideration of eventual fluctuations in the rate of admission of tobacco shreds.
  • Still another object of the invention is to provide a novel and improved apparatus which can be utilized for the practice of the above outlined method.
  • a further object of the invention is to provide the improved apparatus with novel measuring means which can insure such adjustment of one or more tobaccoshredding machines that the rate of admission of tobacco shreds which are formed in such machines and are delivered to one or more moisture expelling apparatus remains constant without necessitating any attention on the part of the attendants.
  • Still another object of the invention is to provide the improved apparatus with novel means for supplying tobacco leaves to the shredding machines.
  • One feature of the present invention resides in the provision of a method of forming and manipulating comminuted fibrous material, particularly shredded tobacco.
  • the method comprises the steps of comminuting fibrous materialat a plurality of discrete cutting or severing stations, for example, by employing known tobacco shredding machines, introducing the thus obtained comminuted material into successive regions of a predetermined path wherein the comminuted material is conveyed in a predetermined direction and builds up a growing stream which is to be introduced into a drying or moisture expelling zone, measuring the quantities of comminuted material in at least one predetermined portion of the path, comparing the quantities which are determined in the measuring step with a predetermined or optimum quantity, and varying the rate of introduction of comminuted material from at least one of the cutting stations as a function of differences between the measured quantity and the predetermined quantity so that the combined quantity of comminuted material which is furnished by all of the stations remains constant.
  • the total number of cutting stations preferably exceeds two.
  • the region of admission of comminuted material from the station which accommodates an adjustable shredding machine is preferably located downstream of the other regions as considered in the direction of transport of comminuted material toward the drying zone.
  • the region of introduction of comminuted material from the one cutting station can be located upstream or downstream of the aforementioned predetermined portion of the path for comminuted material, i.e., the point of admission of variable quantities of comminuted material into the path for comminuted material can be located upstream or downstream of that portion of the path wherein the quantities of material in successive increments of the growing stream are measured in order to insure appropriate adjustment in the rate of admission of comminuted material from the one station.
  • the step of varying the rate of introduction of comminuted material from the one station includes changing the rate of comminution of fibrous material at the one station and introducing all of the thus comminuted material from the one station into the respective region of the path wherein the comminuted material advances toward the drying station.
  • the step of varying the rate of introduction of comminuted material preferably includes changing the output of the shredding machine at the one station in accordance with deviations of the measured quantity of comminuted material from the desired or predetermined quantity.
  • the measuring step may comprise weighing the comminuted material in one or more predetermined portions of the path wherein the comminuted material is transported to the drying station.
  • Such weighing step may include producing a first signal whose intensity increases proportionally with progressing transport of particles of comminuted material along the corresponding portion of the path and a second signal whose intensity is a function of the speed of transport of particles of comminuted material along such portion of the path.
  • the rate varying step then comprises utilizing at least one of these signals to adjust the introduction of comminuted material from the one station into the respective region of the path.
  • the method may further comprise the step of collecting comminuted material in the aforementioned predetermined portion of the path to accumulate and maintain in such portion a supply of comminuted material.
  • the measuring step then comprises monitoring the quantity of comminuted material in such supply.
  • the predetermined portion of the path wherein the supply is accumulated is located downstream of the regions where the comminuted material is admitted into the path for transport to the drying station.
  • the rate varying step then preferably comprises respectively reducing and increasing the rate of admission of comminuted material from the one station when the quantity of comminuted material in the supply respectively rises above and decreases below the predetermined quantity.
  • the material which is to be admitted into the drying zone is withdrawn from the supply at a constant rate so that the thus withdrawn comminuted material forms a constant second stream which can be fed directly into the drying zone.
  • the measuring step may comprise scanning the level of comminuted material in the supply.
  • the fibrous material is admitted into a second predetermined path and the rate of admission of fibrous material into such second path is maintained at a constant value so that the fibrous material forms a constant stream from which the material is withdrawn for admission into the cutting stations where the thus introduced material is subjected to a comminuting treatment.
  • FIGS. 1 and 1a there is shown an apparatus for forming and manipulating comminuted fibrous material 20.
  • the comminuted material 20 is shredded tobacco which is obtained in response to comminution or cutting of tobacco leaves 7.
  • the leaves 7 are supplied to four parallel cutting or severing stations A, B, C and D. These stations respectively accommodate tobacco cutting or severing machines la, 1b, 1c, 1d (hereinafter called cutters).
  • Each of the cutters la-1d is of the type known as KTF-I produced by Hauni-Werke, Kdrber & Co. K.G., of Hamburg- Bergedorf, Western Germany.
  • each of the cutters, 1a, lb, 10, 1d is identical. Therefore, the following part of this description will deal mainly with the cutter 1d. Similar parts of the four cutters are denoted by similar reference numerals followed by characters a, b, c, d.
  • the cutter 1d comprises a duct or inlet 6d which receives tobacco leaves 7 and serves to condense such leaves in order to form a cake which is thereupon fed to a rotary cutting device (see FIG. la).
  • the means for supplying tobacco leaves 7 to the inlets 6a-6d comprises an end less conveyor 8 which is preferably a belt having an upper stretch serving to transport tobacco leaves toward and past the inlets 6a, 6b and 6c.
  • a deflector 9d is disposed above the upper stretch of the conveyor 8 and makes an acute angle with the direction of travel of tobacco leaves. This deflector serves to deflect a certain quantity of tobacco leaves 7 into the inlet 6d of the cutter 1d.
  • the bottom wall of the inlet 6d is formed by the upper stretch of an endless conveying element here shown as a chain 11d which transports the tobacco.
  • the means for driving the chains 11d, 12d comprises a variable-speed motor Md.
  • the knives I 5 are mounted on a rotary drum-shaped holder I 0 which is driven by a motor 16d.
  • the knives shred the tobacco leaves 7 immediately adjacent to the outlet of the spout 13d and the resulting comminuted material is delivered by a pneumatic conveyor PL onto the upper stretch of an endless conveyor belt 22.
  • the shreds 20 formed in the cutters la-lc are delivered onto the upper end of an endless conveyor belt 18 which accumulates a stepwise growing stream of tobacco shreds.
  • the purpose of the illustrated apparatus is to form on the conveyor 22 a stream each increment of which contains a predetermined quantity of tobacco shreds.
  • the stream is fed into a conventional drying apparatus (see the apparatus 144 in FIG. 2) which expels therefrom excess moisture so that the moisture content of tobacco leaving the drying apparatus is within a very narrow predetermined range.
  • Such tobacco is then ready for introduction into a cigarette rod making machine.
  • the apparatus of FIG. 1 further comprises a measuring unit 19 here shown as constituting a weighing device which measures the quantities of tobacco shreds 20 furnished by the cutters la-llc and cooperates with a control system 17 to adjust the output of the last cutter id in such a way that the combined output of the cutters la-ld forms on the conveyor 22 a constant stream ready to be admitted into the drying apparatus.
  • the illustrated weighing device 19 constitutes but one of several measuring units which can be used in the apparatus of FIG. 1 to measure the quantities of shreds that are furnished by the cutters iii-1c.
  • the weighing device 19 can be replaced with a detector which employs beta rays and an ionization chamber or with a high-frequency measuring unit.
  • the weighing device 19 includes a potentiometer 21 having a wiper arm 21a whose position varies as a function of changes in the weight of tobacco shreds on the weighing device.
  • the signal furnished by the wiper arm 21a is indicative of variations in the weight of successive increments of shreds 20 on the conveyor 18.
  • the output signal of the potentiometer 21 is transmitted to one input of a signal comparing circuit 23 forming part of the aforementioned control system 17 for the last cutter 1d.
  • the conveyor 18 delivers a normally constant stream of tobacco shreds 20 to the conveyor 22 which further receives the output of the cutter 1d and delivers the resulting final stream to the aforementioned drying apparatus.
  • the control system 17 further comprises a detector 24 here shown as a tachometer generator which monitors the speed of the motor 14d in the cutter 1d and furnishes to a second input of the signal comparing circuits 23 a signal indicating the momentary speed of the motor Md.
  • the motors Ida-Md are preferably d-c motors.
  • the motor 14d regulates the speed of the chains 11d, 12d in the cutter id to thus determine the rate of feed of the cake of tobacco leaves 7 into the range of the respective rotary knives 15.
  • the cross-sectional area of the spout or mouthpiece 13d (see FIG. 1a) in the cutter id is adjustable, and such cross-sectional area also influences the rate at which the cutter M can furnish tobacco shreds 20 to the conveyor PC for delivery to the conveyor 22.
  • the changes in cross-sectional area of the mouthpiece 13d are monitored by the wiper arm 26 of a further potentiometer 27 which transmits signals to a third input of the signal comparing circuit 23 in the control system 17. lt will be readily understood that the output of the cutter M can be changed by adjusting the cross-sectional area of the mouthpiece 13d and/or by changing the rotational speed of the motor 14d which drives the chains 11.11, 12d.
  • the output signal from the circuit 23 is transmitted to the input of an operational amplifier 28 for the motor Md.
  • the intensity of such signal depends on the intensity of signals transmitted by the potentiometers 21, 27 and the tachometer generator 2d.
  • the signals transmitted to the circuit 23 by the potentiometer 27 and tachometer generator 24 are compared with the signal from the potentiometer 21 which latter signal is indicative of the quantity per unit length of the tobacco stream that is being delivered by the conveyor 18.
  • the amplifier 28 regulates the speed of the motor 14d in such a way that the quantity of tobacco shreds 20 furnished by the cutter 1d complements the combined quantity of tobacco shreds furnished by the cutters 1a, 1b, 10.
  • the combined quantity of shreds 20 furnished by the four cutters la-ld equals a predetermined quantity which is desirable to insure that the drying apparatus which receives the constant stream from the conveyor 22 requires no adjustment for the purpose of taking into consideration varying quantities of tobacco but only such adjustments as are needed to insure that the drying apparatus will expel from the tobacco stream moisture in such a way that the moisture content of the treated tobacco stream will remain within a predetermined very narrow range.
  • the operational amplifier 28 is preferably of the type known as MINISEMI produced by the West-German firm AEG.
  • the circuit 23 can compare the signal from the potentiometer 21 with a reference signal which is indicative of anticipated quantity of tobacco shreds furnished by the conveyor 18, and the signal which is transmitted to the amplifier 28 changes the speed of the motor 14d whenever the signal from the potentiometer 21 deviates from the reference signal. The adjustment is terminated when the signal from the tachometer generator 24 indicates that the speed of the motor 14d has been changed to the desired speed which is needed to insure that the combined output of the cutters la-lld is constant.
  • the inlet 6d contains a rake 2 which is pivotable to feed tobacco leaves 7 into the passage between the chains 11d, 12d.
  • the chain 12d is trained over sprocket wheels 3 and 4 and the shaft of the sprocket wheel 4 is movable along an are having its center of curvature on the axis of the stationary shaft for the sprocket wheel 3.
  • the means for moving the sprocket wheel 4 along this arc comprises a fluid-operated cylinder 5 having a piston rod which supports the wiper 26 of the potentiometer 27.
  • the chains 11d and 12d determines the position of the sprocket wheel 4 and hence the position of the upper portion of the mouthpiece 13d with reference to the lower portion.
  • the quantity of shreds 20 produced by the knives 15 increases provided that the speed of the motors 14d and 16d remains unchanged.
  • the cylinder 5 exerts pressure which is needed to effect satisfactory condensation of leaves 7 in the passage between the chains 11d and 12d.
  • the knives remove from the front end of the cake of condensed tobacco leaves 7 thin slices each of which consists of tobacco shreds which become separated from each other and enter the conveyor PC for transport onto the conveyor 22.
  • the position of the wiper 26 of the potentiometer 27 is indicative of the position of the upper portion of the mouthpiece 13d with reference to the lower portion.
  • the position of the wiper 16 is indicative of the quantity of shreds 20 which are formed in the cutter 1d.
  • the lower portion of the mouthpiece 13d serves as a counterknife for the orbiting knives 15.
  • FIG. 1 further shows a chute 29 which is disposed between the discharge end of the conveyor 18 and the re-.
  • the conveyors 18, 22 and the chute 29 together form a composite conveyor which serves to accumulate the shreds 20 furnished by the cutters la-ld and to convert such shreds into a continuous stream wherein each increment or unit length contains a predetermined quantity of tobacco shreds.
  • the left-hand end of the conveyor 8 receives tobacco leaves 7 from a magazine or hopper 41 which contains a supply of tobacco leaves and from which the leaves are withdrawn at a preferably constant rate by the upwardly moving stretch of an endless carded conveyor 42.
  • the parts 41 and 42 constitute a source 39 of tobacco leaves 7.
  • the conveyor 42 is driven by a variable-speed d-c motor 38 which is connected with an operational amplifier 37 preferably corresponding to the aforementioned amplifier 28 in the control system 17 and forming part of a second control system 31.
  • the amplifier 37 receives signals from a signal comparing circuit 36 which has two inputs one of which is connected with the wiper arm of an adjustable potentiometer 32 serving as a source of reference signals indicating the desired quantity of tobacco leaves 7 which are to be transported by the conveyor 8.
  • the other input of the signal comparing circuit 36 is connected with the wiper arm of a second potentiometer 34 which forms part of a measuring or weighing device 33 preferably similar to the aforementioned weighing device 19.
  • weighing device 33 receives tobacco leaves from the conveyor 42 and its potentiometer 34 transmits to the corresponding input of the circuit 36 signals which are indicative of the measured quantities of tobacco leaves.
  • the output signal from the circuit 36 to the amplifier 37 is indicative of the difference between the intensities of signals furnished by the potentiometers 32 and 34.
  • the arrangement is such that the motor 38 drives the conveyor 42 at a higher speed when the weighing device 33 detects that the quantity of tobacco leaves which are being furnished to the conveyor 8 is less than desired and that the speed of the motor 38 increases when the weighing device 33 detects that the quantity of tobacco leaves 7 furnished to the conveyor 8 exceeds such desired quantity (as indicated by the signal from the potentiometer 32).
  • the hopper 41 receives tobacco leaves 7 from a bale- I breaking machine or the like, not shown.
  • the discharge end of the conveyor 8 can deliver the surplus of tobacco leaves 7 to an endless recirculating conveyor 43 which cooperates with two additional recirculating conveyors 44, 46 to return the surplus into the hopper 41.
  • Such surplus normally develops when the last cutter 1d is to operate at less than full capacity or is idle, for example, when the cutters la-lc operate at full capacity so that the cutter 1d must furnish only a relatively small quantity of tobacco shreds 20 (or no shreds at all) in order to form on the conveyor 22 a constant stream which is to be delivered into the drying apparatus.
  • the deflectors 9a, 9b, 9c, 9d deliver tobacco leaves 7 from the upper stretch of the conveyor 8 into the respective inlets 6a, 6b, 6c, 6d.
  • the control system 31 insures that the inlet of the conveyor 8 receives tobacco leaves at a constant rate. This is achieved by regulating the speed of the aforementioned motor 38 for the conveyor 42.
  • the upwardly sloping stretch of the conveyor 42 draws tobacco leaves from the hopper 41 and showers tobacco leaves onto the weighing device 33.
  • the chains lla-l 1c and 12a-l2c of the cutters la-lc form three continuous cakes of condensed tobacco leaves which are fed through the respective mouthpieces into the range of rotating knives driven by the motors 16a, 16b, 160.
  • the resulting shreds 20 are discharged onto the upper stretch of the conveyor 18 so that such shreds form a stepwise growing stream which advances in the direction indicated by the arrow, namely, toward the weighing device 19.
  • the weighing device 19 weighs successive increments of the stream which is formed by the combined output of the cutters la-lc and the potentiometer 21 transmits to the corresponding input of the circuit 23 in the control system 17 a signal which is indicative of the measured quantity of tobacco shreds.
  • the other two inputs of the circuit 23 receive signals from the tachometer generator 24 which indicates the momentary speed of the motor 14d for the chains 11d, 12d and from the potentiometer 27 which indicates the cross-sectional area of the mouthpiece 13d in the cutter 1d.
  • the signal from the potentiometer 21 is compared with the signal from the tachometer generator 24 and the output signal from the circuit 23 determines the speed of the motor 14d in such a way that the quantity of tobacco shreds in the final stream, namely, on the stream which is conveyed by the conveyor 22 into the drying apparatus is constant.
  • the circuit 23 adjusts the motor 14d of the cutter 1d by way of the amplifier 28 in such a way that the output of the cutter 1d at the station D supplements.
  • the exact construction of the signal-comparing circuit 23 forms no part of the present invention.
  • the speed of the motor 14d is reduced when the weighing device 19 detects that the combined output of the cutters la-lc exceeds a predetermined quantity, and the speed of the motor 14d is increased when the quantity measured by the weighing device 19 is less than the aforementioned predetermined quantity.
  • the delivery of a constant stream of tobacco shreds 20 to the drying apparatus is of considerable importance because this insures that the drying apparatus need not be adjusted in order to compensate for fluctuations in the rate of admission of tobacco shreds, but merely to account for eventual changes in the moisture content of incoming shreds.
  • the positioning of the weighing device 19 is such that it measures the quantities of tobacco shreds 20 in successive increments of the composite stream formed by the output of the cutters la-lc, i.e., the weighing device 19 is located upstream in a portion of the path for shreds 20 which is disposed upstream of the region of the outlet of the last cutter 1d. Therefore, the cutter Id can furnish such quantities of tobacco shreds that each increment of the stream containing the combined output of the cutters la-ld contains a predetermined quantity of tobacco shreds.
  • An advantage of mounting of the weighing device 19 in the position 19' is that this weighing device measures quantities of tobacco shreds in that stream which is about to enter the drying apparatus.
  • the signal comparing circuit 23 of the control system 17 then comprises a further input which receives signals from the second weighing device located downstream of the cutter 1d whereby the output signal from the circuit 23 accounts for eventual deviations of the quantity per unit length of the final stream from the desired quantity.
  • the provision of two weighing devices prevents long-range fluctuations in the stream which leaves the conveyor 22 to enter the drying apparatus.
  • potentiometer 27 An advantage of the potentiometer 27 is that it insures that the circuit 23 can compensate for eventual changes in the cross-sectional area of the spout or mouthpiece 13d in the cutter 1d.
  • the last cutter 1d merely serves to complement the output of the first three cutters la-lc, its output can be much smaller than the output of the other three cutters.
  • a cutter Id whose maximum output at least matches the maximum output of the cutter 1a, lb, or 1c. This is desirable in the event that one of the cutters Ia-lc is out of commission.
  • the control system 17 then operates the cutter 1d at or close to maximum speed so that the output of the cutter ld replaces the output of that one of the cutters Ia, 1b, 1c which is temporarily out of commission.
  • the control system 17 automatically causes the motor Md to drive the chains 11d, 12d at a maximum speed so that the output of the cutter 1d reaches or is close to a maximum value when one of the cutters 1a, 1b, 1c is arrested.
  • the aforementioned system of recirculating conveyors 43, 44, 46 can be used in addition to or as a substi tute for the control system 31.
  • the conveyor 8 simply transports a continuous stream of tobacco leaves 7 along the inlets 6a to 6d and each of these inlets receives a certain quantity of tobacco leaves.
  • the surplus is recirculated by the conveyors 43, 44, 46 to reenter the hopper 41 and to be again withdrawn by the upwardly moving stretch of the carded conveyor 42.
  • the motor 38 is then replaced by a constant-speed motor.
  • the tachometer generator 24 can be of the type as disclosed in US. Pat. No. Re 25,476 to Radley.
  • the apparatus of FIG. 2 again comprises four cutters 101a, 101b, 101e, 101d.
  • the cutter 101d is adjustable in response to signals from a measuring or weighing device 151 the details of which are illustrated in FIG. 3.
  • the weighing device 151 comprises a support 162 which is pivoted at 161 and is biased in a counterclockwise direction, as viewed in FIG. 3, by a helical spring 163.
  • the support 162 carries two pulleys 162a, 162k for an endless conveyor belt 162c which receives a stream of tobacco shreds I20 from a conveyor 118 corresponding to the conveyor 18 of FIG. I.
  • the support 162 is connected to the wiper arm 164a of a potentiometer 164 which serves to transmit signals indicating the angular position of the support 162. Such angular position is indicative of the quantity of tobacco shreds in successive increments of that portion of the tobacco stream which advances with the upper stretch of the belt 1620.
  • the potentiometer 164 is mounted in a cabinet 152. This potentiometer constitutes a transducer which converts mechanical signals furnished by the support 162 into electrical signals.
  • the pulley 162a for the belt 1620 of the weighing device 151 is driven by a variable-speed d-c motor 166 by way of an endless chain or belt 166a.
  • the rotational speed of the output shaft of the motor 166 is monitored by a tachometer generator 167 which is capable of producing electric signals indicating the forward speed of the upper stretch of the belt 1620.
  • the potentiometer 164 and tachometer generator 167 are connected with a source 16? of constant potential which is in circuit with an adjustable resistor 168.
  • the output signals from the potentiometer 16d and tachometer generator 167 are transmitted to the corresponding inputs of a signal multiplying circuit 171 of conventional design.
  • a signal multiplying circuit 171 of conventional design.
  • Such circuits are disclosed, for example, in the German-language publication entitled Taschenbuch der sangen Norway by K. Steinbuch, pp. 1179-1 l90, published in 1962 by Springer-Verlag.
  • the output signal from the circuit 171 is transmitted to one input of a signal comparing circuit 172 which is further connected with an adjustable potentiometer 173 constituting a source of reference signals.
  • the output signal from the circuit, 172 is transmitted to an operational amplifier 174 which is preferably analogous to the amplifier 28 of FIG. 1 and regulates the speed of the d-c motor 166 for the belt 162C of the weighing device 151.
  • the adjustment of the motor 166 is such that the product of signals representing the speed of the upper stretch of the belt 3162c and the angular position of the support 162 is constant
  • the potentiometer 16% and/or the tachometer generator 167 transmits a signal to the corresponding input or inputs of the signal comparing circuit 223 in the control system 117 for the last cutter 101d.
  • the control system 117 adjusts the speed of the motor 114d in the cutter 101d in the same way as described in connection with FIG. 1.
  • the circuit 223 further receives a signal from the tachometer generator 124 and from the potentiometer 127.
  • the parts 124, 127 respectively correspond to the parts 24, 27 shown in FIG. 1.
  • the construction of the output amplifier 128 which receives signals from the circuit 223 of the control system 117 is preferably identical with or analogous to that of the amplifier 28 shown in FIG. 1.
  • the conveyor 108 delivers tobacco leaves to the inlets Won-106d.
  • the control system 131 comprises an adjustable potentiometer 132 which serves as a source of reference signals indicating a desired quantity of tobacco leaves 107 to be furnished to the receiving end of the conveyor 108.
  • the signals are transmitted to a signal comparing circuit 136 which further receives signals from a measuring or weighing device 133 corresponding to the weighing device 33 of FIG. 1.
  • the output signal from the circuit 136 regulates the speed of a variable-speed d-c motor 138 by way of an operational amplifier 137
  • the amplifier 137 is preferably identical with the amplifier 28 of FIG. 1.
  • the motor 138 drives a variable-speed withdrawing conveyor 142 which draws tobacco leaves 107 from a hopper 141 and delivers them onto the upper stretch of the conveyor 108.
  • the weighing device 133 is installed between two portions of a recirculating conveyor 154.
  • the latter receives surplus tobacco leaves 107 from the conveyor 108 by way of a second recirculating conveyor 153 and delivers the surplus back into the hopper 141 by way of a third recirculating conveyor 156.
  • the arrangement is such that when there is no tobacco transported by the weighing device 133 between the portions of the recirculating conveyor 154, the rotational speed of the motor 1138 increases so as to create a surplus which is transported from the conveyor 108 to the conveyor 1541 by way of the conveyor 153.
  • the output signal from the weighing device 133 causes the amplifier 137 to reduce the speed of the motor 138 so that the conveyor 142 withdraws a smaller quantity of leaves 107 from the hopper 141.
  • FIG. 2 further shows an inlet 143 which is located downstream of the aforementioned weighing device 151 and serves to admit a constant stream of comminuted tobacco particles 120 into a rotary drum forming part of the aforementioned drying apparatus 1144.
  • Drying apparatus which can be used to treat tobacco shreds furnished by the apparatus of FIGS. 1 or 2 are disclosed, for example, in US. Pat. No. 3,429,317 of Koch et al. or in US. Pat. Nos. 3,386,447, 3,389,707, 3,409,025 and 3,419,015 of Wochnowski.
  • the deflectors 109a-109d deflect tobacco leaves 107 from the upper stretch of the conveyor 108 into the respective inlets lime-106d.
  • the left-hand end of the conveyor 108 receives tobacco leaves from the conveyor 142 at the rate which 'is determined by the control system 131.
  • the chains Ulla-111d cooperate with the respective chains 112a-112d to condense the tobacco leaves which respectively enter the inlets 106a-106d, and the leading ends of the resulting cakes are fed through the corresponding mouthpieces 11311-1131! into the range of rotating knives driven by the motors 11611-11611.
  • the thus obtained tobacco shreds are discharged by the outlets of the cutters 10111-10111 and descend onto the upper stretch of the conveyor 118 for delivery to the conveyor belt 162:: of the weighing device 151 which is located downstream of the last cutter 101d.
  • the discharge end of the conveyor 1118 delivers successive increments of the combined stream of tobacco shreds onto that portion of the upper stretch of the belt 1620 which is close to the axis of the pulley 162a, namely, close to the pivot axis for the support 162. This insures that the dynamic forces which develop as the tobacco shreds 120 descend onto the upper stretch of the belt 1620 cannot unduly influence the angular position of the support 162.
  • the output signal from the circuit 171 is transmitted to the signal comparing circuit 172 which compares such signal with the signal from the source 173 and adjusts the speed of the motor 166 for the belt 1620 by way of the amplifier 174.
  • Such adjustments result in uniformization of the quantity of tobacco that is being transported by the belt 1620 into the inlet 143 of the drying apparatus 144. For example, if the weight of successive increments that are being delivered onto the belt 1620 increases, the inclination of the support 162 also increases and the output signal from the potentiometer 164 causes an amplifier 174 to reduce the speed of the motor 166 so that the quantity of tobacco shreds 120 that are being furnished to the inlet 143 per unit of time decreases.
  • the output signal from the potentiometer 164 causes the amplifier 174 to accelerate the motor 166 so that the upper stretch of the conveyor belt 1620 advances the tobacco shreds at a higher speed. This results in admission of larger quantities of tobacco shreds to the inlet 143 per unit oftime.
  • the output signal from the potentiometer 164 preferably also regulates the operating speed of the last cutter 101d and hence the quantity of tobacco shreds 120 which are delivered by the cutter 101d to the conveyor 118.
  • the signal from the potentiometer 164 can be transmitted to the circuit 223 of the control system 117 in addition to or instead of the signal from the tachometer generator 167.
  • An advantage of the op erative connection between the weighing device 151 and the control system 117 is that the apparatus reacts more rapidly to eventual changes in the rate of tobacco feed to the drying apparatus 144 because the speed of the belt 1620 can change simultaneously with changes in the rate of delivery of tobacco shreds 120 by the last cutter 101d.
  • the circuit 223 of the control system 117 causes the amplifier 128 to accelerate the motor 114d of the cutter 10111 when the quantity of tobacco shreds which are delivered to inlet 143 per unit of time is less than desired and to decelerate the motor 114d when the quantity of tobacco shreds which are being fed to the rotary drum 144 exceeds the desired value.
  • the output of the cutter 101d complements the combined output of the cutters 101a-101c and that changes in the output of the cutter 101d are effected in response to measurements of the tobacco stream in a portion of the path defined by the composite conveyor 118, 1620 downstream of the last cutter.
  • the weighing device 151 insures elimination of eventual minor deviations of the actually delivered quantity of tobacco shreds from a desired quantity.
  • the tobacco leaves 107 which bypass the last deflector 189d descend onto the recirculating conveyor 153 and are transported by the conveyor 154 over the belt of the weighing device 133 and back into the hopper 141 by way of the conveyor 156.
  • the weighing device 133 measures the weight of successive increments of the stream of tobacco leaves 167 and determines the speed of the motor 138 for the conveyor 142.
  • This conveyor forms with the hopper 141 a source 139 of fibrous material which is to be comminuted at the stations A, B, C and D.
  • the conveyor belt 1620 meters the contents of the stream of shreds 120 on the conveyor 118 to form a constant steam which is fed into the inlet 143.
  • the rate varying step (by the control system 117) at the station D accommodating the cutter 101d includes varying the output of the cutter 101d in dependency on the metering step, i.e., in dependency on the speed of the belt 162a.
  • FIG. 4 illustrates a portion of a third apparatus which constitutes a modification of the apparatus shown in FIGS. 2 and 3.
  • FIG. 4 merely shows a single cutter 301d which is adjacent to a conveyor 318 corresponding to the conveyor 118 of FIG. 3.
  • the conveyor 318 receives tobacco shreds 320 from one or more additional cutters which may or may not be adjustable in the same way as the cutter 301d.
  • the control system for the cutter 301d is shown at 317; the construction of this control system is preferably analogous to that of the system 117 shown in FIG. 3.
  • the conveyor 318 discharges tobacco shreds 320 onto the upwardly moving stretch of an endless carded conveyor 387 which is driven by a constant-speed motor 3870.
  • the upper end of the conveyor 387 discharges tobacco shreds 320 into a magazine 376 which accumulates and maintains a relatively small supply 379 of tobacco shreds.
  • the magazine 376 contains or supports a detector having including three photosensitive units 381a, 381b, 381s which are located at different levels and are connected with a circuit 383 which is connected with the control system 317 by way of a preamplifier 384 and an operational amplifier 386.
  • One side wall of the magazine 376 is formed by a carded conveyor 377 which transports a continuous stream of tobacco shreds 320 from the supply 379 in the magazine and discharges the continuous stream onto the conveyor belt 362c of the weighing device 351.
  • the construction of this weighing device is analogous to the construction of the weighing device 151 shown in FIG. 4, and the discharge end of the belt 3620 delivers a constant tobacco stream into the inlet 343 of the drying apparatus 344.
  • the purpose of the photosensitive detecting units 381a-381c is to scan the upper level of the supply 379 of tobacco shreds 320 in the magazine 376 and to furnish to the control system 317 signals whose intensity is indicative of the detected level.
  • the control system 317 then adjusts the output of the cutter 301d in dependency on such signals so as to insure that the combined output of the cutters including the cutter 301d and the cutters which are mounted upstream of this cutter is constant.
  • Each of the units 38 la-381c comprises a light source (not shown) and a photosensitive element which latter produces a signal in response to impingement on its photosensitive surface of the light beam issuing from the corresponding light source.
  • the photosensitive elements are connected with the circuit 383. This circuit constitutes a time-delay device which transmits signals to the aforementioned amplifier 384.
  • the parts 381a-381c, 383, 384, 386 together constitute a regulating circuit 382 which transmits signals to the control system 317.
  • the conveyor 318 delivers shredded tobacco to the upwardly moving stretch of the carded conveyor 387.
  • the conveyor 387 delivers the shreds into the magazine 376 to build up and to maintain the supply 379.
  • This supply is relatively small because conveyor 377 is capable of withdrawing from such small supply a constant stream of tobacco shreds which are fed onto the belt 3620 of a weighing device 351.
  • the supply 379 contains loose tobacco shreds and the upper level of the supply is scanned by the units 3810-381c which transmit appropriate signals to the time-delay device 383.
  • the latter causes the amplifiers 384 and 386 to transmit signals to the control system 317 for the purpose of regulating or varying the output of the cutter 381d so that the rate of admission of shreds 320 from the cutter 301d to the conveyor 318 either increases or decreases, depending on the position of the upper level of the supply 379.
  • the regulating unit 382 insures that the supply 379 does not fluctuate beyond a permissible narrow range. As mentioned before, this enables the conveyor 377 to withdraw a continuous stream of tobacco shreds 320 for delivery into the inlet 343 of the drying apparatus 344.
  • the purpose of the weighing device 351 is to insure that the drying apparatus 344 receives a constant stream of tobacco shreds 320.
  • the potentiometer 364 produces signals which are indicative of the inclination of the support 362 and the tachometer generator 367 produces signals which are indicative of the momentary operating speed of the motor 366 for the conveyor 377.
  • the speed of the motor 366 is changed so that the weight of successive increments on the conveyor belt 362a either increases or decreases.
  • a modern high-speed cigarette making machine is normally installed in an air conditioned area in order to insure that the moisture content of tobacco which is fed into such machine does not deviate from the desired content as a result of eventual changes in the moisture content of the surrounding air.
  • the drying apparatus 344 is capable of delivering to the cigarette rod making machine a continuous stream of dried tobacco shreds having an accurately determined moisture content if the apparatus 344 receives a constant stream of tobacco shreds.
  • the apparatus of FIG. 4 has been found to be capable of forming a constant stream of shreds 320, and this is attributed to the provision of the magazine 376 which accumulates and maintains a relatively small supply of loose shreds 320.
  • the conveyor 377 is capable of withdrawing from the magazine 376 a constant stream of shreds 320 if the quantity of shreds in the supply 379 fluctuates within a narrow range.
  • the apparatus of FIG. 4 regulates the quantity of tobacco shreds 320 in the stream which enters the drying apparatus 344 in three successive stages.
  • adjustments of the output of the machine 301d by means of the control system result in an initial or coarse equalization of the stream.
  • a second and more precise equalization is achieved with the conveyor 377 which draws a constant stream of tobacco shreds 320 from the magazine 376 wherein the supply 379 is maintained at a constant value.
  • the third and final equalization is achieved with the belt 3620 of the weighing device 351 which can be driven at a variable speed depending on the intensity of signals furnished by the potentiometer 364.
  • drying apparatus 144 or 344 need not be provided with any adjusting means to compensate for eventual fluctuations in the rate of delivery of tobacco shreds.
  • the drying apparatus merely embodies adjusting means which insures that the drying or moisture-expelling action can be regulated to account for eventual fluctuations in the moisture content of shreds 20, 120 or 320. As mentioned before, this contributes to a substantial simplification of the controls for the drying apparatus.
  • control system 117, 117 or 317 can be used to accelerate the chains lib-11d and 112b-l2d of the cutters lb-ld if the cutter la must be arrested for the purposes of inspection and/or repair, or to accelerate the cutters Ha, lb, id or la, 1c, 1d if the cutter or 1b is idle.
  • Apparatus for forming and manipulating comminuted fibrous material, particularly for shredding and drying of tobacco comprising conveyor means defining an elongated path; a plurality of parallel comminuting machines each arranged to furnish to said conveyor means comminuted material to form thereon a growing stream, at least one of said machines being adjustable to vary the rate of admission of comminuted material to said conveyor means; measuring means arranged to determine the quantities of comminuted material in at least one predetermined portion of said path; and control means operatively connected with said measuring means and with said one machine to adjust the latter in response to deviations of measured quantities from a predetermined quantity so that the combined quantity of comminuted material furnished by all of said machines remains constant.
  • said one machine comprises a pair of conveying elements defining a tapering passage for condensation of fibrous material, variable-speed drive means for said conveying elements, and severing means for serving the condensed fibrous material, said control means being arranged to regulate the speed of said drive means.
  • said one machine further comprises an adjustable spout for guiding the condensed fibrous material from said passage into the range of said severing means, said control means being arranged to adjust said drive means in response to adjustment of said spout.
  • said measuring means comprises a metering device arranged to transport successive increments of said stream along said portion of said path andwsignal generating means for adjusting said one machine by way of said control means in response to deviations of quantities of comminuted material in said increments from a predetermined quantity.
  • said weighing device comprises an elongated support pivotable about a predetermined axis to change its position of inclination as a function of changes in the weight of said increments of comminuted material thereon, an endless conveyor mounted on said support to transport such increments of comminuted material along said support in a direction away from said axis, and variable-speed drive means for said endless conveyor
  • said signal generating means comprises a signal generating device for producing first signals which are indicative of the angular position of said support and a second signal generating device arranged to produce second signals which are indicative of the speed of said drive means, said control means being arranged to adjust said one machine in response to at least one of said signals.
  • measuring means further comprises means for adjusting said drive means in response to signals from said first signal generating device.
  • measuring means is arranged to scan the upper level of the supply of comminuted material in said magazine.
  • Apparatus as defined in claim 1 further comprising second conveyor means for supplying fibrous material to said machines and means for delivering fibrous material to said second conveyor means at a substantially constant rate.

Landscapes

  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)
US00141164A 1970-05-11 1971-05-07 Apparatus for comminuting and drying of tabacco leaves Expired - Lifetime US3736942A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19702022816 DE2022816C3 (de) 1970-05-11 1970-05-11 Verfahren und Anlage zum Schneiden und Trocknen von Tabak
DE2062343A DE2062343C2 (de) 1970-05-11 1970-12-17 Verfahren und Anlage zum Schneiden und anschließenden Trocknen von Tabak

Publications (1)

Publication Number Publication Date
US3736942A true US3736942A (en) 1973-06-05

Family

ID=25759107

Family Applications (2)

Application Number Title Priority Date Filing Date
US00141164A Expired - Lifetime US3736942A (en) 1970-05-11 1971-05-07 Apparatus for comminuting and drying of tabacco leaves
US00342320A Expired - Lifetime US3807415A (en) 1970-05-11 1973-03-16 Method of comminuting and drying of tobacco leaves

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00342320A Expired - Lifetime US3807415A (en) 1970-05-11 1973-03-16 Method of comminuting and drying of tobacco leaves

Country Status (4)

Country Link
US (2) US3736942A (de)
JP (1) JPS5749190B1 (de)
DE (1) DE2062343C2 (de)
NL (1) NL170590C (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051969A1 (de) * 2008-11-07 2010-05-14 Hauni Maschinenbau Ag Vorrichtung und verfahren zur zufuhr von schnitttabak von einer tabakaufgabeeinheit zu einer tabakverarbeitungsmaschine
EP3108757A1 (de) * 2015-06-23 2016-12-28 International Tobacco Machinery Poland Sp. z o.o. System von vorrichtungen für eine produktionsanlage der tabakindustrie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045657A (en) * 1973-06-07 1977-08-30 Svenska Tobaks Aktiebolaget Method of facilitating exact evaluation or control of the processing of a product mass, and apparatus for carrying said method into effect
US4172515A (en) * 1976-01-30 1979-10-30 Hauni-Werke Korber & Co. K.G. Method and apparatus for supplying tobacco to tobacco cutting machines
DE2841470A1 (de) * 1978-09-23 1980-04-03 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum bilden eines gewichtskonstanten tabakstromes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791223A (en) * 1954-07-23 1957-05-07 Molins Machine Co Ltd Tobacco-cutting machinery
US2827058A (en) * 1955-04-04 1958-03-18 Proctor & Schwartz Inc Method and apparatus for continuously processing tobacco
DE1914466A1 (de) * 1969-03-21 1970-10-01 Hauni Werke Koerber & Co Kg Verfahren und Vorrichtung zum Abnehmen von Tabak von einem gepressten Vorrat

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1704216A (en) * 1924-07-28 1929-03-05 Paraffine Co Inc Paper-manufacturing system
GB750535A (en) * 1954-02-04 1956-06-20 F L Smidth & Company As Improvements in controlling the feed of material to crushers
FR1533937A (fr) * 1967-05-31 1968-07-26 Babbitless Sa Procédé de réglage automatique de la granulométrie à la sortie des broyeurs et concasseurs, notamment giratoires et appareils équipés selon ce procédé

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791223A (en) * 1954-07-23 1957-05-07 Molins Machine Co Ltd Tobacco-cutting machinery
US2827058A (en) * 1955-04-04 1958-03-18 Proctor & Schwartz Inc Method and apparatus for continuously processing tobacco
DE1914466A1 (de) * 1969-03-21 1970-10-01 Hauni Werke Koerber & Co Kg Verfahren und Vorrichtung zum Abnehmen von Tabak von einem gepressten Vorrat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051969A1 (de) * 2008-11-07 2010-05-14 Hauni Maschinenbau Ag Vorrichtung und verfahren zur zufuhr von schnitttabak von einer tabakaufgabeeinheit zu einer tabakverarbeitungsmaschine
CN102209475A (zh) * 2008-11-07 2011-10-05 豪尼机械制造股份公司 用于将生切烟丝从烟丝加料单元输送给烟丝加工机的装置和方法
EP3108757A1 (de) * 2015-06-23 2016-12-28 International Tobacco Machinery Poland Sp. z o.o. System von vorrichtungen für eine produktionsanlage der tabakindustrie

Also Published As

Publication number Publication date
US3807415A (en) 1974-04-30
DE2062343A1 (de) 1972-06-22
DE2062343C2 (de) 1984-10-31
NL170590C (nl) 1982-12-01
JPS5749190B1 (de) 1982-10-20
NL170590B (nl) 1982-07-01
NL7106275A (de) 1971-11-15

Similar Documents

Publication Publication Date Title
US4037712A (en) Method and apparatus for supplying tobacco to tobacco cutting machines
US4054145A (en) Method and apparatus for conditioning tobacco
US3948277A (en) Method and apparatus for changing the moisture content of tobacco
US4346524A (en) Method and apparatus for conditioning tobacco
US4452256A (en) Method and apparatus for conditioning tobacco
US3799176A (en) Method and apparatus for conditioning tobacco
US3794049A (en) Method and apparatus for processing tobacco
US6782890B2 (en) Apparatus for building tobacco rods in cigarette making machines
US4172515A (en) Method and apparatus for supplying tobacco to tobacco cutting machines
US4373538A (en) Method and apparatus for forming a stream from several types of tobacco
US4220164A (en) Tobacco distributor for cigarette rod making machines or the like
US4155367A (en) Apparatus for producing a continuous tobacco stream
US4463767A (en) Continuous twin rod cigarette-making machine
US3736942A (en) Apparatus for comminuting and drying of tabacco leaves
US4143471A (en) Method and apparatus for conditioning tobacco
US4556071A (en) Method and apparatus for forming rod-shaped articles of the tobacco processing industry
US4251925A (en) Apparatus for drying tobacco
US4254781A (en) Method and apparatus for delivering particles of tobacco to shredding machines
US4926886A (en) Method of and apparatus for making a trimmed stream of tobacco fibers or the like
US4685476A (en) Apparatus for supplying particles of tobacco to processing machines
US4848369A (en) Method of and machine for simultaneously making two or more rods from fibrous material
US4856539A (en) Method of and apparatus for uniformizing the moisture content of tobacco
US4676769A (en) Method and apparatus for regulating the resistance of filter rod sections to the flow of gases therethrough
US4243054A (en) Method and apparatus for forming an equalized tobacco stream
US3825152A (en) Method and apparatus for measuring the rate of feed of fibrous material

Legal Events

Date Code Title Description
AS Assignment

Owner name: KORBER AG

Free format text: CHANGE OF NAME;ASSIGNORS:HAUNI-WERKE KORBER & CO. KG (MERGED INTO);KORBER GESELLSCHAFT MIT BESCHRANKTER HAFTUNG (CHANGED TO);REEL/FRAME:004889/0874;SIGNING DATES FROM 19870617 TO 19870713