US3731916A - Discriminating apparatus for moving translucent sheets - Google Patents
Discriminating apparatus for moving translucent sheets Download PDFInfo
- Publication number
- US3731916A US3731916A US00148744A US3731916DA US3731916A US 3731916 A US3731916 A US 3731916A US 00148744 A US00148744 A US 00148744A US 3731916D A US3731916D A US 3731916DA US 3731916 A US3731916 A US 3731916A
- Authority
- US
- United States
- Prior art keywords
- output signal
- sheet
- sheets
- pulse
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H7/00—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
- B65H7/02—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
- B65H7/06—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed
- B65H7/12—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to double feed or separation
- B65H7/125—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to double feed or separation sensing the double feed or separation without contacting the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H7/00—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
- B65H7/02—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
- B65H7/14—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors by photoelectric feelers or detectors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06M—COUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
- G06M7/00—Counting of objects carried by a conveyor
- G06M7/02—Counting of objects carried by a conveyor wherein objects ahead of the sensing element are separated to produce a distinct gap between successive objects
- G06M7/06—Counting of flat articles, e.g. of sheets of paper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/10—Handled articles or webs
- B65H2701/17—Nature of material
- B65H2701/171—Physical features of handled article or web
- B65H2701/1712—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/10—Handled articles or webs
- B65H2701/19—Specific article or web
- B65H2701/1912—Banknotes, bills and cheques or the like
Definitions
- Cl ..271/57 signal every time the photoelectric device detects [51] IntiCl. ??2B065h 7/0711 tenuation of the light source in excess of a first [58] d Search predetermined value, and a second differential amplifier havin an in ut also in circuit with the said detecg P tion device and adapted to produce a second output [56] Relerences Clted signal every time the photoelectric device detects at- UNITED STATES PATENTS tenuation of the light source in excess of a second different predetermined value.
- This invention relates to apparatus adapted to discriminate between lengths and thickness of translucent sheet material travelling along a flow-line at high speed and optionally to count some or all of such sheets. More especially, the invention relates to such apparatus which includes a photoelectric detection means and an associated light source disposed on opposite sides of the flow-line in such a manner that the photoelectric means is subjected to variations of light intensity during the passage of the sheets.
- a known method of achieving the above requirement is to feed the notes through a critical gauging throat which may be arranged to hold back superposed notes, or to stop the machine when sheets of abnormal thickness are present, or more preferably to actuate a divertor means which serves to remove multiple notes from the flow-line before they are fed to a counting and delivery stage.
- a critical gauging throat which may be arranged to hold back superposed notes, or to stop the machine when sheets of abnormal thickness are present, or more preferably to actuate a divertor means which serves to remove multiple notes from the flow-line before they are fed to a counting and delivery stage.
- the gauging throat comprises a nip of a critical dimension formed between a pair of driven gauging rollers. It is so arranged that normal thickness notes pass through the nip, but multiple or excess thickness notes cause a displacement of the axis center of one of the rollers which brings into effect a solenoid actuated divertor.
- Counting is carried out by means of an electrical make-andbreak circuit disposed downstream of the divertor which advances a digital counter in an incremental manner.
- Such an arrangement possesses a finite operating speed because of the mechanical inertia of the detection means and, furthermore, because of the difficulties in differentiating between relatively small differences of thickness at high speed, considerable constructional problems are created. It has been found in practice that the gauging nip must be adjusted within fine limits to promote the desired sensitivity to abnormal thickness and furthermore mechanical wear of certain critical components necessitates careful maintenance to retain the desired degree of reliability.
- apparatus for discriminating between moving translucent sheets comprise a sheet transportation means adapted to convey the sheets in spaced relationship along a flow-line, a photoelectric detection device sited on one side of the flow-line and an associated light source sited on the other side of the flow-line, a first differential amplifier having an input in circuit with the said detection device and adapted to produce a first output signal every time the photoelectric device detects attenuation of the light source in excess of a first predetermined value, and a second differential amplifier having an input also in circuit with the said detection device and adapted to produce a second output signal every time the photoelectric device detects attenuation of the light source in excess of a second different predetermined value.
- apparatus for handling sheets of a like-kind may be so adapted that the output of the said first differential amplifier controls a first digital counting circuit to record the total quantity of single sheets or groups of adhered-together sheets fed along the flow-line, and that the output of the said second differential amplifier controls a second digital counting circuit to record solely the number of groups of adhered-together sheets.
- the apparatus also includes a sheet divertor means disposed downstream of the said detection device and under the control of the said second differential amplifier, the arrangement being such that the divertor, which is normally inoperative, is moved to an operative position every time the said second output signal is created.
- the divertor which is normally inoperative, is moved to an operative position every time the said second output signal is created.
- it may be arranged for a count pulse to be inhibited from the said first counting circuit every time the divertor is moved to the operative position thereby to record only the passage of single sheets.
- the apparatus also includes a pulsecounter unit fed from a pulse generator via a gate under the control of the output of the first differential amplifier, said unit being capable of ascertaining the length of a sheet or the overall length of overlapping sheets in the direction of the flow-line thereby, in conjunction with the output of the second differential amplifier, to detect the presence of superposed, partially overlapping or edge-abutting sheets.
- a pulsecounter unit fed from a pulse generator via a gate under the control of the output of the first differential amplifier, said unit being capable of ascertaining the length of a sheet or the overall length of overlapping sheets in the direction of the flow-line thereby, in conjunction with the output of the second differential amplifier, to detect the presence of superposed, partially overlapping or edge-abutting sheets.
- the said pulse generator is driven in unison with the linear travel of the sheets in the flowline.
- the pulse generator comprises a circumferentially perforated or notched wheel member positively driven by the drive mechanism of the said sheet transportation means, and adapted to. influence a transducer which may be of the optical or magnetic kind.
- FIG. 1 is a side elevation of a banknote feeding and transportation mechanism showing the basic parts thereof;
- FIG. 1a is a fragmentary end view of some of the parts of the mechanism of FIG. 1;
- FIG. 2 is a diagram of part of an electrical circuit for performing the optically discriminating aspect of the invention.
- FIG. 3 is a schematic block plan showing the interconnection of various electronic assemblies useful in the performance of the invention.
- the banknote feeding, transporting and deflecting mechanisms are substantially similar to those disclosed in our British Pat. No. 898,715 and comprise essentially an inclined stack support member 1 adapted to support a stack of banknotes N on edge.
- the notes are biassed (by means not shown) towards an oscillatory suction arm 2 provided with an angled suction port 3 which contacts the lower central face of the frontmost note in the stack and feeds it into the nip of a pair of primary feed rollers 4 and 5.
- the lower roller 5 is provided with a cut-away portion 6 to facilitate entry of the leading side edge of the note.
- the arm is oscillated by means of a tubular shaft member 7 which is adapted to be moved in a bi-rotational manner by a cam system driven in unison with the primary feed rollers 4 and 5; the interior of the shaft 7 is in communication with a source of suction (not shown).
- a source of suction not shown.
- the note is pulled from the face of the suction port 3, and is passed between a light source L1 and an associated photoelectric detector PE1, and thence into the nips of three pairs of conveying rollers 8,9; 10,1 1; and 12,13 respectively.
- the nips of the primary and conveying rollers collectively define a substantially linear flowline for the notes which terminates at the arrow 14; delivery means beyond the arrow form no part of the present invention.
- a note divertor means provided between the conveying rollers 10,11 and 12, 13 comprises a plurality of spaced fork members 15 rigidly attached to a shaft 16 which also includes an actuating lever 17 connected to the slidable armature 18 of a solenoid 19 by means of a connecting link 20.
- the divertor assembly is biassed to an inoperative position, as shown, by means of a tension spring 21.
- An auxiliary rubber-surfaced driven roller 22 is provided above the upper conveying roller 10, and a reject note hopper 23 is provided above the rollers 4 and 8 to receive diverted notes.
- solenoid 19 causes the divertor assembly to move to the position indicated by the chain-dotted line, whereupon the tips of the fork members 15 descend into the flow-line thereby to cause a note or notes to be propelled around 180 of the circumference of the roller 10 and thence into the hopper 23.
- the entire roller system is driven at a constant peripheral speed through a gear train generally indicated at 25, by an electric motor 26 via a two-stage gear reduction disposed on secondary shafts 27 and 28.
- the shaft 27 mounts a fixedly attached disc member 29 which is provided with an equally pitched circumferential row of holes 30.
- a light source L2 and an associated photoelectric detector PE2 are disposed in alignment with the holes 30 on the opposite sides of the disc.
- FIGS. 2 and 3 The electronic circuitry of the apparatus will now be described with reference to FIGS. 2 and 3. It should be noted that the two outputs x and y of FIG. 2 are connected respectively to the left-hand side of FIG. 3.
- the output of the photoelectric detector PEl is fed into a linear amplifier 50 the output of which feeds into two substantially similar networks, and thence through respective differential amplifiers to points x and y.
- the assembly I serves to provide an output signal at x for each single note or group of partially or wholly superposed notes that pass between L] and PEI, and the assembly II (which is of course pre-set in a different manner), serves to provide an output signal at y for each multiple thickness note or notes, or each single note having an abnormally high opacity that passes between L1 and PEI.
- the output of the linear amplifier 50 passes through a rectifier MR which, with a capacitor C1, forms a peak level detection means.
- a rectifier MR which, with a capacitor C1
- the linear amplifier produces a peak output proportional to the intensity of the light falling on the photoelectric detector PEI.
- the rectifier MR permits only the positive peak to charge the capacitor C1 and effectively prevents reverse flow of current from C1 when the light falling upon PE] is attenuated by the presence of a note.
- An R/C network comprising C1, R1, RVl and R2 provides a time-constant sufficiently long to prevent any significant discharge of C1 during the period when light is attenuated.
- the arrangement is self-compensating insofar that a gradual fall-off of light output created by the ageing effect of the light source, a deterioration in the sensitivity of the photoelectric detector or a reduction of gain of the linear amplifier, is compensated for automatically because the charge of Cl will also reduce at the same rate.
- the potentiometer thus provides a presetting means for adjusting the sensitivity of the assembly.
- the full output of the linear amplifier taken from a point upstream of the rectifier MR, is connected to the positive non-inverting input of the differential amplifier.
- the assembly II which terminates at an output y, is substantially similar to that described above and serves to produce an output pulse of changed polarity when the light is attenuated to a greater degree, for example on the passage of a plurality of adhered-together notes.
- Operation of the roller system of the machine also causes, through the medium of the gearing system, the perforated disc member 29 to rotate, with the result that a succession of electrical pulses is created in the photoelectric detector PE2.
- These pulses are fed into a Pulse Counter" via a "Latched Gate” (see FIG. 3) which is opened at the commencement of every period of attenuation of PEI, via the electronic assembly I and closed after a preset number of pulses have been fed into the Pulse Counter.
- the number of pulses fed into the Pulse Counter” is directly proportional to the angular displacement of the shafts in the drive mechanism, and hence to the length of the sheet being fed.
- the Pulse Counter provides outputs in accordance with three different preset and ascending numbers of datum counts which permit decisions to be effected in accordance with the overall length of a sheet or sheets passing through the optical system. These counts are routed in the following manner:
- the Divert Command Generator is provided with two alternative outputs viz, a YES output to the divertor solenoid 19 and a Count Pulse Generator", or a NO output to a Warning Gererator".
- COUNT B into the Warning Generator (which also receives signals from the x connection during the entire period of the attenuation of the light of L1) and thence to a warning device shown diagrammatically at symbol 51.
- COUNT C into the Count Pulse Generator (which, as mentioned above, also receives INHIBIT signals when the divertor is actuated) and thence into a digital counter and display unit shown diagrammatically at symbol 52.
- a RE-SET pulse is fed back to unlatch the LATCHED GATE upon attainment of COUNT C. Actuation of the Apparatus,
- Energization of the driving motor 26 will cause banknotes to be fed sequentially from the front of the stack N into the roller system along the flow-line thereby to attenuate in an intermittent manner the light falling upon the photoelectric detector PEI. Pulses will also be generated by the photoelectric detector PE2 through rotation of the disc member 29.
- the Gate passes pulses to the Pulse Counter but in this case, a multiple-thickness pulse is generated by the assembly II through the connection y and Divert Command Generator". If the y signal, which is indicative of the commencement of the multiple thickness during the passage of the sheets, is created before COUNT A is reached the sheets are capable of diversion and accordingly the Divert Command Generator generates a YES signal and energizes the solenoid 19 of the divertor thereby to cause the superposed notes to be conveyed into the reject note hopper 23. At the same time the count pulse at Count C is inhibited and no count is recorded in the counter unit 52. If signal y is created after COUNT A is reached, diversion is not possible and the superposed or substantially superposed sheets are treated as partially overlapping sheets (see Case 3 below).
- the above described apparatus is capable of counting and discriminating translucent sheets at a very high speed, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the above described apparatus is capable of counting and discriminating translucent sheets at a very high speed, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the above described apparatus is capable of counting and discriminating translucent sheets at a very high speed, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of which is dependent only upon the mechanical limitations of the feeding mechanism. Furthermore, the upper limit of
- photoelectric detection means and associated circuitry is self-compensating and thus after an initial setting-up, is capable of operating for long periods without attention.
- Apparatus for discriminating between moving translucent sheets comprising a sheet transportation means for conveying the sheets in spaced relationship along a flow-line, a single photoelectric detection device positioned on one side of the flow-line and an associated light source positioned on the other side of the flow-line, a first differential amplifier means for producing a first output signal every time the photoelectric detection device detects attenuation of the light source in excess of a first predetermined value and having an input in circuit with the said detection device, and a second differential amplifier means for producing a second output signal every time the photoelectric detection device detects attenuation of the light source in excess of a second different predetermined value greater than said first predetermined value and having an input also in circuit with the said detection device.
- the first output signal serves to indicate the passage of (a) each single sheet having an opacity greater than the first predetermined value and less than the second predetermined value; (b) each folded single such sheet; (c) each single sheet having an opacity greater than the second predetermined value; and (d) each group of partially or wholly superposed single sheets having an opacity greater than the second predetermined value, and the second output signal serves to indicate the passage of any sheet in category (b), (c) or (d).
- Apparatus as claimed in claim 1 together with means for coupling the first output signal to a first digital counter for actuating the same and means for coupling the second output signal to a second digital counter for actuating the same.
- Apparatus as claimed in claim 3 together with means for inhibiting the first output signal to the first digital counter upon the production of the second output signal.
- Apparatus as claimed in claim 1 in which a sheet divertor is provided in the flow-line at a point downstream of the photoelectric detection device, said divertor being normally inoperative with respect to the sheets, but being operable to move into the flow-line every time the said second output signal is produced.
- Apparatus as claimed in claim 5 which additionally includes length discrimination means for inhibiting actuation of the sheet divertor if the length of a sheet, or the overall length of a group of partially or wholly superposed sheets in the direction along the flow-line, exceeds a predetermined dimension.
- the said length discrimination means comprises a pulse generator driven in unison with the sheet transportation means, a pulse-counting means, gate-switching means for directing a train of pulses to the pulse-counting means whilst a sheet is present between the light source and the photoelectric detection device, and a countdiscriminator for activating the sheet divertor only if less than a predetermined number of pulses are directed into the pulse-counting means.
- the said pulse generator comprises a circumferentially perforated wheel positively driven by the sheet transportation means, a second light source disposed on one side of the wheel in alignment with the said perforations, a second photoelectric-detection means disposed on the other side of the wheel in alignment with the said perforations and operable upon rotation of the wheel to feed a train of pulses into the said gate-switching means.
- Apparatus as claimed in claim 5 so constructed that the creation of the said first output signal, and the termination thereof before the attainment of the second datum count and the creation of the said second output signal before the attainment of the first datum count indicates the passage ofa plurality of overlapping sheets and further adapted to cause said divertor to move into the flow-line upon the passage of such sheets.
- Apparatus as claimed in claim 5 so constructed that the creation of the said first output signal and the termination thereof after the attainment of the second datum count and the creation of the said second output signal after the attainment of the first datum count indicates the passage of a plurality of overlapping sheets, and further adapted to inhibit the movement of said divertor into the flow-line and to actuate a warning means.
- each differential amplifier means is provided with manually adjustable means adapted to permit the initial setting up of its output level.
- each differential amplifier means includes one input dependent upon the effect of attenuated light upon said photo-electric device and a second input dependent upon the effect of direct light upon said photoelectric device, said second input including said adjustable means.
- Apparatus as claimed in claim 1 which additionally includes length discriminator means including a pulse generator driven in unison with the sheet transportation means, a pulse-counting means, gate switching means for directing a train of pulses to the pulse-counting means during production of said first output signal, the pulse counter being operable to produce successive first and second sheet length-indicative datum counts.
- length discriminator means including a pulse generator driven in unison with the sheet transportation means, a pulse-counting means, gate switching means for directing a train of pulses to the pulse-counting means during production of said first output signal, the pulse counter being operable to produce successive first and second sheet length-indicative datum counts.
- Apparatus as claimed in claim 13 so constructed that the creation of the first output signal and the termination thereof after the attainment of the first datum count, but before the attainment of the second datum count, indicates the passage of a sheet of predetermined opacity and length.
- Apparatus as claimed in claim 13 so constructed that the creation of the first output signal and the termination thereof after the attainment of the second datum count indicates the passage of at least one sheet having an overall length in excess of a predetermined length.
- Apparatus as claimed in claim 15 including warning means operable upon the passage of one or more sheets having an overall length in excess of a predetermined length.
- the said pulse generator comprises a circumferentially perforated wheel positively driven by the sheet transportation means, a light source disposed on one side of the wheel in alignment with the said perforations, a photoelectric detection means disposed on the other side of the wheel in alignment with the said perforations and adapted upon rotation of the wheel to feed a train of pulses into the said gate-switching means.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Controlling Sheets Or Webs (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2694070 | 1970-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3731916A true US3731916A (en) | 1973-05-08 |
Family
ID=10251614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00148744A Expired - Lifetime US3731916A (en) | 1970-06-04 | 1971-06-01 | Discriminating apparatus for moving translucent sheets |
Country Status (6)
Country | Link |
---|---|
US (1) | US3731916A (de) |
CA (1) | CA951400A (de) |
DE (1) | DE2127816A1 (de) |
FR (1) | FR2095916A5 (de) |
GB (1) | GB1344986A (de) |
SE (1) | SE377211B (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918704A (en) * | 1973-04-27 | 1975-11-11 | Tokyo Shibaura Electric Co | Storage controlling apparatus for a sheet-like material sorting system |
US4073488A (en) * | 1974-11-29 | 1978-02-14 | Laurel Bank Machine Co., Ltd. | Device for detecting the thickness of sheets |
US4533133A (en) * | 1982-09-28 | 1985-08-06 | Bell & Howell Company | Method and apparatus for preventing insertion errors |
US5110105A (en) * | 1990-08-17 | 1992-05-05 | Ncr Corporation | Sheet handling apparatus |
US5709293A (en) * | 1994-03-10 | 1998-01-20 | Kabushiki Kaisha Nippon Conlux | Bill processing device |
US6000693A (en) * | 1995-12-05 | 1999-12-14 | Unisys Corporation | Article detection via pinch-roll motion |
US6568591B2 (en) * | 1997-11-28 | 2003-05-27 | Diebold, Incorporated | Document sensor for currency recycling automated banking machine |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870868A (en) * | 1972-07-21 | 1975-03-11 | Pennsylvania Res Ass Inc | Control mechanisms for document-handling apparatus |
US4237378A (en) * | 1977-12-28 | 1980-12-02 | Brandt-Pra, Inc. | Photoelectric apparatus for document counting and overlap detection |
DE2936573A1 (de) * | 1978-09-15 | 1980-03-27 | De La Rue Crosfield | Blattzaehlverfahren und -vorrichtung |
FR2448751A1 (fr) * | 1979-02-09 | 1980-09-05 | Etude Const App Prec | Dispositif pour le comptage et la distribution de feuilles |
JPS57501927A (de) * | 1980-11-07 | 1982-10-28 | ||
FR2729751A1 (fr) * | 1995-01-20 | 1996-07-26 | Perto Sa | Dispositif et mesure numerique de l'epaisseur de feuilles |
US7387236B2 (en) | 2001-10-09 | 2008-06-17 | Delaware Capital Formation, Inc. | Dispensing of currency |
GB2429767B (en) * | 2005-09-06 | 2010-05-12 | Int Currency Tech | Banknote output control device that prevents supply of stacked banknotes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3186708A (en) * | 1960-08-15 | 1965-06-01 | Int Standard Electric Corp | Photoelectric control device |
US3520404A (en) * | 1967-07-13 | 1970-07-14 | Robert M Pine | Method and apparatus for indicating a change within a grouping |
US3525433A (en) * | 1968-08-12 | 1970-08-25 | Raymond Earl Babb | Apparatus for sorting products |
US3578315A (en) * | 1968-10-04 | 1971-05-11 | Honeywell Inf Systems | Overlapped document detector |
US3611887A (en) * | 1969-08-21 | 1971-10-12 | Hamada Printing Press | Apparatus for feeding and stacking folded printed articles in bundles |
-
1971
- 1971-05-28 GB GB2694070A patent/GB1344986A/en not_active Expired
- 1971-06-01 US US00148744A patent/US3731916A/en not_active Expired - Lifetime
- 1971-06-01 CA CA114,454,A patent/CA951400A/en not_active Expired
- 1971-06-03 SE SE7107175A patent/SE377211B/xx unknown
- 1971-06-03 FR FR7120257A patent/FR2095916A5/fr not_active Expired
- 1971-06-04 DE DE19712127816 patent/DE2127816A1/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3186708A (en) * | 1960-08-15 | 1965-06-01 | Int Standard Electric Corp | Photoelectric control device |
US3520404A (en) * | 1967-07-13 | 1970-07-14 | Robert M Pine | Method and apparatus for indicating a change within a grouping |
US3525433A (en) * | 1968-08-12 | 1970-08-25 | Raymond Earl Babb | Apparatus for sorting products |
US3578315A (en) * | 1968-10-04 | 1971-05-11 | Honeywell Inf Systems | Overlapped document detector |
US3611887A (en) * | 1969-08-21 | 1971-10-12 | Hamada Printing Press | Apparatus for feeding and stacking folded printed articles in bundles |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918704A (en) * | 1973-04-27 | 1975-11-11 | Tokyo Shibaura Electric Co | Storage controlling apparatus for a sheet-like material sorting system |
US4073488A (en) * | 1974-11-29 | 1978-02-14 | Laurel Bank Machine Co., Ltd. | Device for detecting the thickness of sheets |
US4533133A (en) * | 1982-09-28 | 1985-08-06 | Bell & Howell Company | Method and apparatus for preventing insertion errors |
US5110105A (en) * | 1990-08-17 | 1992-05-05 | Ncr Corporation | Sheet handling apparatus |
US5709293A (en) * | 1994-03-10 | 1998-01-20 | Kabushiki Kaisha Nippon Conlux | Bill processing device |
US6000693A (en) * | 1995-12-05 | 1999-12-14 | Unisys Corporation | Article detection via pinch-roll motion |
US6568591B2 (en) * | 1997-11-28 | 2003-05-27 | Diebold, Incorporated | Document sensor for currency recycling automated banking machine |
Also Published As
Publication number | Publication date |
---|---|
DE2127816A1 (de) | 1971-12-16 |
SE377211B (de) | 1975-06-23 |
FR2095916A5 (de) | 1972-02-11 |
CA951400A (en) | 1974-07-16 |
GB1344986A (en) | 1974-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3731916A (en) | Discriminating apparatus for moving translucent sheets | |
US3976198A (en) | Method and apparatus for sorting currency | |
US4166030A (en) | Apparatus for handling sheets of paper | |
US4326636A (en) | Apparatus for processing sheets | |
CA1122173A (en) | Banking machine control | |
DE69108636T2 (de) | Vorrichtung zum Feststellen der Steifheit eines Bogens. | |
US4570801A (en) | Document handling machine | |
US3479932A (en) | Bucket drive | |
US3683943A (en) | Automatic sheet storage apparatus | |
DE2533972A1 (de) | Vorrichtung zum transport von schriftstuecken | |
DE2366185C2 (de) | Steuereinrichtung für Geräte zum Zählen und Stapeln von Belegen | |
EP0431267A1 (de) | Vorrichtung zum Ausrichten von Blättern | |
US3930581A (en) | Sheet feeding mechanisms | |
JPS6211392B2 (de) | ||
SU1017175A3 (ru) | Устройство дл сортировки ценных бумаг, например, банкнот | |
US4318484A (en) | Device for sorting out individual articles which differ from the main quantity in a consecutive feedout | |
US4737627A (en) | Method of detecting the improper separation of documents being fed through a document counter or the like | |
US3706450A (en) | Folding apparatus | |
US3315956A (en) | High speed sheet feeding and overlapping system | |
GB1410436A (en) | Classifying apparatus | |
JP3406659B2 (ja) | 紙葉類処理装置 | |
DE19904853A1 (de) | Verfahren und Vorrichtung zur Bildung eines Bündels von Einzelblättern | |
USRE28660E (en) | Discriminating apparatus for moving translucent sheets | |
US3749241A (en) | Process for selecting an off-size material during travel | |
US6378859B1 (en) | Method for controlling a device used to remove packages from a pile |