US3709594A - Method and apparatus for electrostatic color printing - Google Patents

Method and apparatus for electrostatic color printing Download PDF

Info

Publication number
US3709594A
US3709594A US00047273A US3709594DA US3709594A US 3709594 A US3709594 A US 3709594A US 00047273 A US00047273 A US 00047273A US 3709594D A US3709594D A US 3709594DA US 3709594 A US3709594 A US 3709594A
Authority
US
United States
Prior art keywords
carriage
developer
path
units
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00047273A
Other languages
English (en)
Inventor
P Hastwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Savin Corp
Original Assignee
Savin Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Savin Business Machines Corp filed Critical Savin Business Machines Corp
Application granted granted Critical
Publication of US3709594A publication Critical patent/US3709594A/en
Assigned to FOOTHILL CAPITAL CORPORATION, A CA. CORP. reassignment FOOTHILL CAPITAL CORPORATION, A CA. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SAVIN CORPORATION
Anticipated expiration legal-status Critical
Assigned to SAVIN CORPORATION reassignment SAVIN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOOTHILL CAPITAL CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/0121Details of unit for developing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0178Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
    • G03G15/0194Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image primary transfer to the final recording medium

Definitions

  • Horan Attorney-Shenier and OConnor 57 ABSTRACT A process of and apparatus for rapidly producing a multicolor print from a multicolor original such as a transparency in which there are carried out successive cycles of operations each of which cycles comprises electrostatically charging a photoconductive surface, exposing the surface to a particular color radiation pattern derived from the original, wetting the surface with clear resistive liquid, and thereafter applying a developing agent to the surface for the particular color being developed during that cycle.
  • the apparatus produces the multicolored copy automatically, and, with but minor changes in the apparatus, the sequence of colors to be developed can be readily changed for successive sequences.
  • the major object of my invention is to provide a process for electrophotographically producing color prints of high quality.
  • Another object of my invention is to provide an electrophotographic machine for automatically producing high quality and inexpensive color prints.
  • a further object of my invention is to provide a machine for producing a color print electrophotographically by means of an automatic cycle of operations which can be controlled to a high degree of sensitivity.
  • a still further object of my invention is to provide an automatic sequencing machine for providing color copies electrophotographically in which the color sequence can be readily changed.
  • my invention contemplates the provision of a process of and apparatus for producing color prints from a transparency or the like in which the print material is successively carried through a plurality of cycles, each of which includes charging the photoconductive surface of the material, exposing the charged surface to one of the component colors of the original, wetting the exposed surface with clear resistive liquid, and then developing the image of that color.
  • FIG. 1 is a front perspective view of a machine in accordance with a first embodiment of the invention, the exterior housing of the machine having been removed to show the interior thereof;
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;
  • FIG. 3 is a sectional view taken along line 3-3 of FIG. 1;
  • FIG. 4 is an exploded perspective view of a wetting liquid tray as used herein;
  • FIG. 5 is a schematic view of one form of control circuit which may be employed in the form of my invention shown in FIGS. 1 to 4.
  • FIG. 6 is a block diagram of the sequence of steps of the embodiment of my invention shown in FIGS. 1 to 4.
  • FIG. 7 is a schematic view of the developer particle size control system for the developing tray of FIG. 4;
  • FIG. 8 is an exploded perspective view of an alternative form of developer tank
  • FIG. 9 is a schematic view, of one form of a wetting agent filtration system for a wetting agent tray of FIG.
  • FIG. 9a is a schematic view of an alternate filter member for the system of FIG. 9;
  • FIG. 10 is a front elevation of the interior of an alternate form of my apparatus with parts broken away and with other parts shown in section;
  • FIG. 11 is a side elevation of the apparatus shown in FIG. 10 taken along line llll of FIG. 10;
  • FIG. 12 is a schematic view of one form of control circuit which may be used in the form of my invention shown in FIGS. 10 and 11;
  • FIG. 13 is an exploded perspective view of one form of developing tray of the embodiment of my apparatus shown in FIGS. 10 and 11;
  • FIG. 14 is a side elevation of the copy material clamping mechanism of the embodiment shown in FIGS. 10 and 11 with the parts thereof in released condition;
  • FIG. 15 is a side elevation of the copy material clamping mechanism with the parts in clamping position
  • FIG. 16 is a perspective view of a corona unit and a wetting unit of the form of my apparatus shown in FIGS. 10 and 11;
  • FIG. I7 is a perspective view of a third embodiment of my invention with the housing thereof partially broken away;
  • FIG. 18 is a fragmentary view of the form of my apparatus shown in FIG. 17 illustrating the interaction between the paper carriage and the wetting unit during the prewetting step;
  • FIG. 19 is a fragmentary view of the form of my apparatus shown in FIG. 17 illustrating a developing step
  • FIG. 20 is an end elevation of the apparatus shown in FIG. 19, with a part shown in section and with other parts broken away;
  • FIG. 21 is a fragmentary view of the form of my machine shown in FIG. 17 illustrating the after-wetting and drying actions thereof;
  • FIG. 22 is a fragmentary view of the developer of the form of my apparatus shown in FIG. 17 illustrating my developer tank stabilizing system
  • FIG. 23 is a perspective view of one form of electrostatic filtering system which I may employ in the form of my invention illustrated in FIGS. 17 and 18;
  • FIG. 24 is a schematic view illustrating one form of control system which I may employ in the form of my apparatus illustrated in FIG. 17.
  • FIGS. 1 to 3 the first embodiment of my electrostatic copying machine, indicated generally by the reference character 10, normally is encased in an opaque housing, (not shown).
  • a carriage, indicated generally by the reference character 12 supports the projector, the copy paper and the paper feed system, to be described in detail hereinbelow.
  • the carriage 12 is translatable along a linear travel path transversely of the machine past a bank of processing stations indicated generally by the numeral 14, and disposed between the side walls 16 of the machine 10.
  • Carriage 12 includes a front wall 18, a back wall 20 and side walls 21. Respective pitch chains 22 extending around sprocket wheels 24 on the machine frame are connected to the carriage 12 so as to move the carriage across the machine on guide rails 26 when the chains are driven in a manner to be described.
  • a bracket 28 secured to the wall 20 carries a roll 30 of copy material 34. From the roll 30 the copy material extends over a paper length measuring roll 42 under a guide roll 44, through the space between an exposure window 36 and a vertically shiftable clamping pad 38, under a guide roll 37 through the nip between feed rolls 48, and through the space between a rotary cutting blade 51 and a stationary cutting blade 52 to an outlet slot 50 in front wall 18.
  • Respective shafts 32 supported by side walls 21 adjacent the front of the carrier 12 carry supplies of blotting material 35 lengths of which extend under the guide rolls 37 and 44 and under clamping pad 38 over the edges of the material 34 to take-up rolls 40 on side walls 21.
  • a solenoid 39 is actuated to move pad 38 downwardly to move the blotting material into engagement with the copy material edges to remove any developer which tends to flow over the edges of the copy material during development.
  • Suitable clutches are provided for the feed rolls 48 and for the rotary paper cutter 51. The clutches are controlled by the control circuit to be described hereinafter and by operationof measuring roll 42.
  • Carriage 12 also supports the projection and exposure unit, indicated generally by the reference character 60 of my system. Owing to the fact that the exposure system and the paper transport system are mounted on the same carriage proper registry of the image produced by the projection system with an already developed image on the copy material is ensured.
  • the unit 60 includes a projector 70 mounted on the base 62 of carriage l2.
  • Projector 70 may be a slide projector of known design in which a holder 77 supports a transparency to be copied between a lamp 72 and a lens 74.
  • the radiation pattern emitted through the lens is directed towards the outer annulus of an optical filter wheel 80.
  • This filter wheel has its outer annulus comprising a series of angularly spaced color filter screens, each filter screen being of a different color.
  • the filter wheel 80 may be stepped angularly through an arc of proper length by a solenoid or a motor 82 to position successive filters in the line of transmission from lens during successive projection periods.
  • the radiation pattern transmitted through a filter strikes the surface of an inclined mirror 84 on base 62 and is reflected upwardly toward the length of blank copy paper 34 resting on window 36.
  • a reversible drive motor 66 is adapted to be energized to drive a shaft carrying sprocket wheels 24 at the left of the machine as-viewed in FIG. 2 to move carriage 12 back and forth between limits defined by switches 67 and 68.
  • switches 67 and 68 In FIG. 2 the left hand limit position of carriage 12 is shown in full lines and the right hand limit position thereof in broken lines.
  • bank 14 of color processing units is located intermediate the limit positions of the carriage 12 at a height between the mirror 84 and the window 36.
  • the side walls 21 of the carriage 12 are so shaped as to permit the bank 14 of units to move through this space as the carriage reciprocates.
  • bank 14 includes a corona charging unit 101, a wetting unit 102, a group of developing units 103 to 106 corresponding to four different colors, another wetting unit 107, and another corona unit 108.
  • the charging units 101 and 108 each include corona wires normal or approximately normal to the travel path of the carriage structure 12.
  • the charging wires at both stations 101 or 108 are connected in parallel to a high voltage direct current source, each charger being connected to the negative source lead, while the conductive layer of the paper length 34 is connected to ground.
  • the charger When one of the chargers is energized individually by the high voltage direct current source, the charger emits an electrostatic charging corona to apply a charge to paper 34, as is well known in the art.
  • Tank 122 has ends 124 provided with bearing journals 128 for receiving semicircular bearings 130 which pivotally carry rollers 126 formed of any suitable material such as rubber or aluminum or the like.
  • Tank 122 is filled with a resinous liquid insulating material to such a level that rollers 126 are partially immersed in the liquid. As the copy material passes over the tray 122 in contact with rollers 126 the latter rotate to apply liquid to the underside of the material 34.
  • Solenoids 162 to 167 associated with the respective units 102 to 107 are adapted selectively to be energized to raise the corresponding tray in a manner to be described to bring rollers 126 to positions at which they will engage the material 34 or the carriage 12. Any suitable means such as vertically extending pins 132 may support the tank 122 as it is lifted by the solenoid 162 or 167.
  • I may provide a filtration and recirculation system for the wetting liquid in trays 122.
  • a drain tube 185a passes wetting liquid from the wetting tray 122 to a filler chamber 186a formed from insulating material.
  • a mass of steel wool 188a or other large surface area conductor within the chamber 186a is connected to the negative terminal of the high voltage direct current supply 190.
  • a pump 192a removes liquid from chamber 186a through a line 191a and delivers it to tray 122 through a tube 194a.
  • any toner particles carried into the circulated wetting liquid will precipitate onto the charged conductor and will be held there.
  • the liquid provides sufficient grounding to eliminate the need for a connection from the positive or ground lead of source 190 to chamber 186.
  • FIG. 9a as an alternative to the system of FIG. 9, I use a conductive cylinder 195a to which the inlet 185a and the outlet 191a are connected.
  • a cylindrical mesh conducting screen 196a is spaced from the wall of cylinder 195a by insulators 197.
  • the mesh screen 196a is connected to the negative lead of a low voltage (30 volt d.c) source 198, while the cylinder 195a is connected to the positive terminal.
  • the low voltage causes toner particles carried in the liquid to be attracted to the mesh screen and the clean liquid will be pumped back to the wetting tray.
  • each of the units such as the unit 103, comprises a generally rectangular tray 140 for receiving developer liquid.
  • Blocks 142 adjacent the sides of the tray are formed with vertically extending slotted bores 144 for slidably receiving bearings 146 which rotatably receive the shaft ends of rollers 148.
  • Springs 150 in bores 144 below the bearings 146 resiliently urge the bearings upwardly in bores 144 to position the upper portions thereof out of the liquid and into contact with the material 34 passing by the station.
  • rollers 148 Preferably l form the rollers 148 from anodized aluminum or the like and l serrate or knurl the surfaces thereof. 1 further so arrange the rollers 148 as to have progressively decreasing diameters in the direction of movement of the copy material past the unit. Anodizing the rollers produces an insulating surface thereon while the surface knurling ensures good distribution of the developer.
  • the rollers are of different diameters they are so spring loaded that a plane in the path of movement of the copy material is tangent to all rolls. Positioning of the smallest roll last in the direction of movement of the copy material during developing provides a wiping action which leaves the material relatively dry after development.
  • the pad of foam has a sloping upper face to maintain contact with the underside of each of the rollers 1460f the tray. I maintain the developer liquid at a level adjacent the top of the pad 160 to saturate the pad and keep a supply of liquid toner in contact with the rollers at all times.
  • a voltage of from 2.0 volts to 5.0 d.c. volts may be applied between the body of the rollers 148 and the conductive backing of the photoconductive paper, the negative voltage terminal being connected to all of the rollers 148 in any suitable fashion. Such a bias voltage aids in the removal of excess developer.
  • FIG. 7 l have shown a system for inhibiting agglomeration of toner particles in the developer.
  • Such a system may be applied to all developer units. Agglomeration of toner particles produces a coarseness or graininess in the developed copy and prevents production of copies with fine gradations in density or contrast.
  • a drain tube conducts developer liquid from tray 140 to the toner supply bottle 172 through a stopper 174 in the mouth of the inverted supply bottle 172.
  • An overflow tube 175 leads from tray 140 at a level adjacent the top of sponge 160 to the inside of the bottle 172 at a location above the normal level of liquid therein.
  • a pump 178 draws liquid from bottle 172 through a tube 176 and feeds the liquid through a line 179 to an agitator 180 the outlet of which is connected to the interior of tray 140 by a line 181.
  • Agitator 180 may, for example, be a wedge jet-edge whistle of the type shown on pages l30l32 of Ultrasonics (2nd Edition 1960) by Benson Corlin, published by McGraw Hill, New York, NY.
  • the agitator 180 when energized produces internal cavitation to disperse the particles in the liquid and reduce the average particle size.
  • I employ a comparatively small diameter tube 170 as my drain tube so that the amount of liquid fed to the
US00047273A 1970-06-18 1970-06-18 Method and apparatus for electrostatic color printing Expired - Lifetime US3709594A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4727370A 1970-06-18 1970-06-18

Publications (1)

Publication Number Publication Date
US3709594A true US3709594A (en) 1973-01-09

Family

ID=21948030

Family Applications (1)

Application Number Title Priority Date Filing Date
US00047273A Expired - Lifetime US3709594A (en) 1970-06-18 1970-06-18 Method and apparatus for electrostatic color printing

Country Status (5)

Country Link
US (1) US3709594A (de)
CA (1) CA939725A (de)
DE (3) DE7122707U (de)
FR (1) FR2099176A5 (de)
GB (2) GB1362528A (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879122A (en) * 1973-02-21 1975-04-22 Agfa Gevaert Ag Electrostatic color copying machine
DE2516446A1 (de) * 1974-07-19 1976-01-29 Canon Kk Entwicklungsvorrichtung
US3980404A (en) * 1974-07-26 1976-09-14 Xerox Corporation Xerographic apparatus having improved fluid dispensing member
US3991709A (en) * 1971-02-09 1976-11-16 Canon Kabushiki Kaisha Regenerating device for developing liquid
US4030445A (en) * 1975-02-28 1977-06-21 Hitachi, Ltd. Multicolor developing device
FR2352327A1 (fr) * 1976-05-21 1977-12-16 Canon Kk Appareil de reproduction en couleurs a commande electronique
EP0007193A1 (de) * 1978-06-28 1980-01-23 Archie Ramsden Grace Projektions-Farbkopierer
US4622916A (en) * 1984-10-18 1986-11-18 Canon Kabushiki Kaisha Color image forming apparatus
US5010366A (en) * 1989-06-15 1991-04-23 Eastman Kodak Company Slide transparency projector apparatus for use with an electrophotographic reproduction machine
US5245388A (en) * 1992-04-27 1993-09-14 Eastman Kodak Company Image forming apparatus including indexible toning units
US5627722A (en) * 1994-12-05 1997-05-06 Hewlett-Packard Company Single high voltage supply for use in a multiple developer electrophotographic printer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518246A (en) * 1983-05-12 1985-05-21 Eastman Kodak Company Apparatus and method for forming multicolor electrophotographic images
JPS6085675A (ja) * 1983-10-17 1985-05-15 Fuji Xerox Co Ltd カラ−複写機
CN112881305B (zh) * 2021-01-14 2022-11-25 河南天子铝业有限公司 一种用于铝型材的快速检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129115A (en) * 1961-04-17 1964-04-14 Xerox Corp Xerographic developing apparatus
US3130655A (en) * 1963-01-21 1964-04-28 Minnesota Mining & Mfg Photographic apparatus
US3420151A (en) * 1965-11-16 1969-01-07 Fairchild Camera Instr Co Apparatus for electrophotographic printing
US3450473A (en) * 1964-06-04 1969-06-17 Harris Intertype Corp Electrophotographic apparatus
US3574456A (en) * 1966-10-18 1971-04-13 Ricoh Kk Apparatus for producing electrophotographic copies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129115A (en) * 1961-04-17 1964-04-14 Xerox Corp Xerographic developing apparatus
US3130655A (en) * 1963-01-21 1964-04-28 Minnesota Mining & Mfg Photographic apparatus
US3450473A (en) * 1964-06-04 1969-06-17 Harris Intertype Corp Electrophotographic apparatus
US3420151A (en) * 1965-11-16 1969-01-07 Fairchild Camera Instr Co Apparatus for electrophotographic printing
US3574456A (en) * 1966-10-18 1971-04-13 Ricoh Kk Apparatus for producing electrophotographic copies

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991709A (en) * 1971-02-09 1976-11-16 Canon Kabushiki Kaisha Regenerating device for developing liquid
US3879122A (en) * 1973-02-21 1975-04-22 Agfa Gevaert Ag Electrostatic color copying machine
DE2516446A1 (de) * 1974-07-19 1976-01-29 Canon Kk Entwicklungsvorrichtung
US3987756A (en) * 1974-07-19 1976-10-26 Canon Kabushiki Kaisha Developing device
US3980404A (en) * 1974-07-26 1976-09-14 Xerox Corporation Xerographic apparatus having improved fluid dispensing member
US4030445A (en) * 1975-02-28 1977-06-21 Hitachi, Ltd. Multicolor developing device
FR2352327A1 (fr) * 1976-05-21 1977-12-16 Canon Kk Appareil de reproduction en couleurs a commande electronique
EP0007193A1 (de) * 1978-06-28 1980-01-23 Archie Ramsden Grace Projektions-Farbkopierer
US4622916A (en) * 1984-10-18 1986-11-18 Canon Kabushiki Kaisha Color image forming apparatus
US5010366A (en) * 1989-06-15 1991-04-23 Eastman Kodak Company Slide transparency projector apparatus for use with an electrophotographic reproduction machine
US5245388A (en) * 1992-04-27 1993-09-14 Eastman Kodak Company Image forming apparatus including indexible toning units
US5627722A (en) * 1994-12-05 1997-05-06 Hewlett-Packard Company Single high voltage supply for use in a multiple developer electrophotographic printer

Also Published As

Publication number Publication date
DE2129225A1 (de) 1972-02-17
DE7122707U (de) 1974-04-11
GB1362526A (en) 1974-08-07
CA939725A (en) 1974-01-08
FR2099176A5 (de) 1972-03-10
DE2166123A1 (de) 1973-04-26
GB1362528A (en) 1974-08-07

Similar Documents

Publication Publication Date Title
US3709594A (en) Method and apparatus for electrostatic color printing
CA1144821A (en) Method and apparatus for liquid-developing latent electrostatic images
US4504138A (en) Method and apparatus for developing electrostatic latent images
US3770345A (en) Electrophotographic copying apparatus
US3861306A (en) Combined electrostatic-lithographic duplicating process and apparatus
US3348523A (en) Automatic toner control system
US3345925A (en) Electrostatic printing and developing apparatus
US3375806A (en) Xerographic donor development apparatus
US3713736A (en) Toner cleaning apparatus for a photocopy machine
EP0250098A2 (de) Flüssigkeitsentwicklungssystem
US3672326A (en) Method and apparatus for applying liquid developer to copy sheets
US4259005A (en) Device and method for developing latent electrostatic images
EP0082562B1 (de) Vorrichtung zur Übertragung eines Tonerbildes von einer photoleitenden Schicht zu einem Druckblatt
US4378422A (en) Method and apparatus for transferring developed electrostatic images to a carrier sheet
US3415223A (en) Development apparatus for electrostatic copiers
JPH07111611B2 (ja) 電解写真プリント機
US3514203A (en) Automatic toner replenisher
US3730708A (en) Electrophotographic multi-color process employing liquid developer
JP3702523B2 (ja) 液体現像剤を用いた現像装置
US3647294A (en) Materials application and cleaning apparatus for xerographic apparatus
US4610939A (en) Method and apparatus for the transfer of an electrostatically deposited toner image
EP0246362B1 (de) Verfahren und Gerät zur Entwicklung eines elektrostatischen Ladungsbildes
US3389863A (en) Xerographic toner dispenser
AU587595B2 (en) Developing electrophotographic images
USRE29323E (en) Electrophotographic copying apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOOTHILL CAPITAL CORPORATION, A CA. CORP., CALIFOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SAVIN CORPORATION;REEL/FRAME:004831/0089

Effective date: 19880113

AS Assignment

Owner name: SAVIN CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOOTHILL CAPITAL CORPORATION;REEL/FRAME:008113/0213

Effective date: 19951218