US3691781A - Method and apparatus for forming model ice sheets - Google Patents

Method and apparatus for forming model ice sheets Download PDF

Info

Publication number
US3691781A
US3691781A US167783A US3691781DA US3691781A US 3691781 A US3691781 A US 3691781A US 167783 A US167783 A US 167783A US 3691781D A US3691781D A US 3691781DA US 3691781 A US3691781 A US 3691781A
Authority
US
United States
Prior art keywords
pool
ice
thermally insulated
sheet
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US167783A
Other languages
English (en)
Inventor
Roderick Y Edwards Jr
David L Benze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arctec Inc
Original Assignee
Arctec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arctec Inc filed Critical Arctec Inc
Application granted granted Critical
Publication of US3691781A publication Critical patent/US3691781A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/20Designing vessels; Predicting their performance using towing tanks or model basins for designing

Definitions

  • ABSTRACT A process is described for rapidly forming upon the surface of a Saline solution, a sheet of ice, the rehological properties of which permit the use of the sheet in conjunction with properly scaled models of structures LN SPRAY HEADERS LN SUPPLY LINE TOWING CARRIAGE ON I ROUNDWAY RAILS ROOF OF STEEL SHEET BACKED WITH HARDBOARD PERSONNEL ENTRY LOCK such as offshore oil drilling platforms, ships and other vehicles to predict reliably the full scale behavior of such vehicles or structures during interactions between the structures and natural ice cover.
  • An inert cryogenic fluid is sprayed through finely atomizing nozzles into the region above a pool of saline water, the surface layers of which are maintained at the fluids freezing temperature.
  • the vaporization of the liquid refrigerant is accompanied by the absorption of heat from the surface of the pool.
  • This process is sufficiently violent to cause a relatively homogeneous turbulent flow of expanding cold gas over the pool surface such that the rate of heat transfer to the water surface is significantly enhanced over that which would prevail in free convention heat transfer.
  • the growth of the ice sheet is extremely rapid (e.g. 3 X 10 cm./sec.). Consequently, the growth of the individual ice crystals is inhibited in the horizontal direction, and'the inclusion of salt is accelerated.
  • the resultant sheet of ice is comprised of extremely small crystals.
  • the structural properties of the ice sheet depend upon ambient temperature and salinity of the ice layer (FIG. 1). By controlling growth rate, pool salinity and temperature which is maintained subsequent to freezing, the structural properties of the ice sheet may be varied at will.
  • This sheet of fine crystal ice with variable properties provides an excellent model of full scale ice sheets.
  • the present system in its the loads which the full scale device must withstand. To preferred embodiment requires 4 hours. Second, this do so requires that the properties of the vehicle-ice 10 system requires no moving parts such as mechanical sheet-fluid system conform to a set of rules which refrigeration or paraffin boilers. The refrigeration porevolve from forming the set of dimensionless diftion of the system requires no maintenance and very litferential equations which apply to the behavior of the tle first cost.
  • This refrigerant acts also as a dehumidifier, a, (7 reducing further the threat of corrosion within the H room containing the tank.
  • p 40 pressure sprayed system described herein causes the formation of very fine grained ice crystals.
  • the process described herein may be used to produce model ice sheets with a strength, elastic modulus and thickness between one-twentieth and one-hunmist of microscopic particles of condensed water vapor and liquid nitrogen which fall to the water surface acting as nucleation points for very fine crystals.
  • Extremely fine grained ice is important in model tests since it is desirable to have the crystal size in the model equal to l/k th the full scale ice crystal size.
  • FIG. I is a perspective view, with the ceiling removed, of an ice model test basin utilizing the principles of the invention
  • FIG. 2 is a schematic perspective view of the nitrogen distribution system of the test basin of FIG. 1;
  • FIG. 2A is a cross-sectional view of the circled portion A of FIG. 2, drawn on a larger scale;
  • FIG. 2B is a cross-sectional view of the circled portion B of FIG. 2 drawn on a larger scale;
  • FIG. 3 is a schematic perspective view of the temperature sensing system and the pool water circulating system of the test basin;
  • FIG. 4 is a plot of freezing temperature and temperature of maximum density of the saline solution versus salinity
  • FIG. 5 is a plot of ice strength versus salinity
  • FIG. 6 is a composite plot of solute distribution coefficient versus growth rate, and growth rate and liquid nitrogen flow versus room temperature.
  • FIG. 1 A preferred embodiment of an ice model basin is shown in FIG. 1.
  • the nitrogen supply tank, control valve and temperature sensing system are not shown.
  • the basin consists of a pool, the sides and bottom of which are insulated with efficient moisture resistant insulation such as polyurethane foam. This is necessary to prevent heat flow out of the pool except through the surface. This unidirectional flow of heat best approximates natural conditions.
  • the tank is surrounded by a room with insulated walls.
  • the insulation must be of an efficient moisture-resistant type such as polyurethane. All entrances to the tank which are used frequently during experiments are equipped with double doors or locks.
  • a network of piping Suspended from the overhead of the cold room and spanning the surface of the tank is a network of piping (see FIG. 2) which distributes a mist of liquid and gaseous nitrogen in the air space between the roof of the cold room and the pool surface.
  • the roof of the cold room just above the pool is steel plate painted with a flat black paint to approximate a black body and consequently encourage radiant transfer of heat from the pool to this surface which is maintained at a temperature very close to -320F. due to its proximity to the liquid nitrogen distribution system.
  • the nitrogen gas is permitted to leave the cold room through ducts which run under the floor boards of the cold room. In case of anemergency, motor driven blowers in these ducts can clear the room of nitrogen within one minute of shutting down the nitrogen supply valve.
  • the water in the model basin may be circulated with the auxiliary circulating pump.
  • the ice sheet may be disposed of after completion of a test by breaking up the ice sheet by hand and allowing the circulating system to bring warmer water up from the lower levels of the basin to melt the ice.
  • FIG. 2 shows the nitrogen distribution system and FIG. 3 the temperature monitoring system.
  • the distribution system is divided into four sections. Each of these sections consists of four spray headers g which are aligned 'with the long axis of the model basin.
  • Each of the four headers g are fed in pairs from a T junction h which is, in turn, fed by a T junction i which is, in turn, fed by one of four sectioninlet lines j.
  • Those four inlet lines to the four sections of the tank each has in it a ball valve d.
  • These valves provide the capability to trim the balance between the four sections of the basin. During the initial freezing runs these valves are adjusted until uniform temperature is obtained along the longitudinal axis of the model basin.
  • the two lines e which feed the four supply lines for the spray header divisions have ball valves 1 installed in them. These valves are fully open, when it is desirable to freeze an ice sheet over the entire surface of the pool. Should it be desirable to use only half of the pool, one or the other valves c may be closed. Should it be desirable to have two distinct ice thicknesses proceeding down the pool, one or the other of these valves may be throttled accordingly, and a temporary baffle placed between the two halves of the ice model basin.
  • each of the 16 spray headers 3 there are shown six spray engineering company IIOOM l/4 nozzles e with an orifice diameter of 0.037 inches. These nozzles are of two piece construction and cause the liquid to rotate prior to ejection through the orifice with a resulting hollow cone-shaped finely atomized spray issuing from the nozzle.
  • FIG. 2A shows a nozzle e connected to the header. At each end of each spray header there is a nozzle connected to the top of the header (see details in FIG. 2B).
  • the selection of the orifice size and the number of these gas nozzles is base upon a careful calculation of the amount of gas generated in the lines as a result of the absorption of heat by these cold pipes through the process of radiant and free convection transfer from the pool surface.
  • the liquid nozzles are arranged along the bottom of the headers as shown in FIG. 2.
  • the number of nozzles and nozzle orifice size is base upon the desired liquid nitrogen flow rate, nitrogen supply pressure and vaporization rate in the pipes.
  • a pressure building coil mounted on the nitrogen supply tank maintains the supply pressure between 25 and psig.
  • the nozzles will function at pressures as low as 10 psig. It is possible to treble the liquid nitrogen flow rate obtainable at 10 psig.
  • the distribution and orientation of the nozzles is determined by the requirement for uniform coverage of the tank surface by the atomized liquid nitrogen gas.
  • the nozzles are aimed along the longitudinal axis of the tank.
  • the nozzle spray axis on any particular header aims in one direction while the nozzles on the adjacent header all aim in the opposite direction.
  • the ultimate aim of the refrigeration system is to produce a sheet of ice on the pool surface which is uniform in thickness along the tank. Provision has been made to adjust distribution between the four headers.
  • An accurate measure of temperature distribution along the ice-air interface in the pool is obtained by thermocouples 2, 3, 4, 6, 7, 8, 10, ll, 12, I4, 15 and I6 in FIG. 3 and is plotted on a time record by recorder 0 in FIG. 3.
  • the water temperature just under the surface is also'measured and recorded (probes 3, 5, 9 and 13 in FIG. 4). By observing the temperature distribution and adjusting the valves (d in FIG. 2), the operator can insure that uniform distribution is maintained.
  • the mean temperature in the model basin may be maintained by adjusting the main pressure regulating control valve (b in FIG. 2).
  • This valve is backed up by a quick closing valve (a in FIG. 2) which can quickly cut off the supply of nitrogen to the cold room in case of emergency.
  • a chilled air intake system with a liquid nitrogen dehumidifying heat exchanger is installed. (See FIG. 1). This system is used after the ice sheet has been produced by the direct contact process. The supply to the spray headers is cut down. Liquid nitrogen is supplied to the dehumidifying heat exchanger in the chilled air inlet. Nitrogen gas in the room is removed at a rate required to permit occupation of the cold room by humans, via the ducting under the floor and is replaced with cold fresh air entering via the dehumidifying precooler.
  • the air is tested with an oxygen analyzer to insure that it is breathable.
  • the vent systems are run at low speed, and the room is maintained at the desired temperature by supplying liquid nitrogen at a reduced rate to the spray headers. Terriperatures of 30F. may be maintained in this manner without producing hazardous levels.
  • the selection of the ice growth rate is base upon a desired value of ice strength.
  • the length of time over which the freezing process is continued is selected on the basis of desired ice thickness.
  • FIG. 5 shows the relationship between ice strength (from in situ cantilever beam tests) and salinity of the ice. Entering this curve with desired ice strength, an ice salinity is selected. Dividing this salinity by the salinity of the tank water (which may also be varied), a value of solute distribution coefficient (S-ice/S-solution) is obtained. Entering the lower curve in FIG. 6 (S-ice/S-solution vs. Growth Rate) results in an appropriate value of growth rate. Using the upper portion of FIG. 6 (Air Temperature vs. Growth Rate), the appropriate value of air temperature for the growth cycle is selected. An estimate of the liquid nitrogen use rate may also be obtained from this portion of FIG. 6. I
  • the formation of the sheet is started by placing full pressure on the system to bring the room air temperature down rapidly.
  • the temperature is monitored on the recorder (FIG. 3), and the nitrogen control value (b in FIG. 2) is controlled accordingly. Once the desired value of air temperature is attained along the tank, little, if any, adjustment will be necessary to maintain steady temperature. (The freezing process is characterized by relatively steady heat flow over time for ice thickness less than 2 inches). Consequently, automatic control is not necessary.
  • the remainder of the preferred practice of the invention includes providing the selected flow of pressurized low boiling liquified gas having a boiling point at atmospheric pressure below 80C., and at a temperature corresponding to a vapor pressure above 10 psig.; controllably dispensing this low boiling liquified gas in liquid and gaseous form into an insulated cold room from a pressurized container; spraying such pressurized liquid from atomizing nozzles and pressurized gas from other of those nozzles at above atmospheric pressure into the chamber containing the pool of saline water; maintaining the temperature desired by control of the flow of the liquified gas into the chamber; upon attaining an ice sheet of the desired thickness, the purging of the compartment with chilled dehumidified fresh air until the compartment is safe for occupancy by a human being suitably protected against cold; and the maintenance of the compartment at desired temperature levels by reduced flow of low boiling liquifled gas to the spray system and by admitting chilled and dehumidified air to the chamber at a rate necessary to produce
  • a method for modelling the behavior of a marine structure comprising:
  • the method of claim 1 comprising the initial step of dividing the pool into a plurality of physically separated segments; and wherein the spraying step comprises spraying the liquified gas from a plurality of spaced sites disposed over each segment of the pool, at differing amounts of liquified gas per unit area per unit time for at least two adjacent segments, to produce ice at a greater rate upon at least one segment than upon at least another segment.
  • thermoly insulated environment is bounded, over the pool, by a black surface facing the pool surface, and the method further comprises maintaining the black surface over the pool at about -320F.
  • a method for forming an ice sheet of controlled elastic modulus and fiexural bending strength upon the surface of a saline water solution of selected salinity contained in a pool in a thermally insulated environment comprising:
  • a low boiling liquified gas having a boiling point at atmospheric pressure of below minus 80C. at a sufficient rate to produce ice in a sheet at a rate of l X to 4 X W' -centimeters thickness per second upon the pool from the saline water solution therein.
  • the method of claim 18 further comprising the prior step of disposing a temporary barrier across the pool to divide the pool in two segments with some of said sites disposed over one segment of the pool and the remainder of the sites disposed over the other segment of the pool; and wherein the spraying step consists of spraying more liquified gas per unit area per unit time from said some sites than from said remainder thereof to produce ice at a greater rate upon said one segment than upon said other segment.
  • Apparatus for forming model ice sheets comprismg:
  • wall means defining an enclosed, thermally insulated environment
  • wall means defining an upwardly open pool within the enclosed, thermally insulated environment for containing an aqueous solution upon which a sheet of ice is to be formed from the solution;
  • header and spray nozzle means disposed within the thermally insulated environment over the pool and connected by conduit means to a source of liquified, low boiling gas; the spray nozzle means being aimed to direct a spray of said liquified gas toward said pool.
  • header and spray nozzle means and conduit means are suitable for spraying liquid nitrogen and wherein the conduit means is communicated to a source of liquid nitrogen maintained under a pressure of 10-100 psig.
  • the apparatus of claim 29 wherein the wall means defining the enclosed, thermally insulated environment includes downwardly facing surface means extending over the pool and arranged to accept heat radiated from the pool.
  • the apparatus of claim 30 further including indirect heat transfer means for said downwardly facing surface means for maintaining said downwardly facing surface means at about 3 20F.
  • header means comprise at least two distinct headers, each having at least one said nozzle means thereon; and valving means between each header and said conduit means for permitting adjusting the flow rate of liquified gas issuing from the nozzle means of each header.
  • baffle means dividing said pool into a plurality of separated segments; the location(s) of said baffle means so corresponding to the dispositions of said header means and the nozzles thereof that said valving means may be regulated relative to one another to produce ice sheets of varying properties at varying rates upon the separated pool segments simultaneously.
  • the apparatus of claim 28 further including conduit means for exhausting gas from the thermally insulated environment; means for chilling air outside t hg thermally insulated environment and means for admitting the air so chilled into the thermally insulated environment after ice has been frozen upon said pool, for purging the atmosphere of the thermally insulated environment, to make it possible for humans suitably protected against the cold to work therein.
  • nozzle means further include at least one nozzle for each header communicating from an upper portion of that header for releasing into the thermally insulated environment portions of the liquified gas which have vaporized before being sprayed.
  • the apparatus of claim 28 further including carriage means disposed within the thermally insulated environment for towing models of marine structures through the ice-covered pool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
US167783A 1971-07-30 1971-07-30 Method and apparatus for forming model ice sheets Expired - Lifetime US3691781A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16778371A 1971-07-30 1971-07-30

Publications (1)

Publication Number Publication Date
US3691781A true US3691781A (en) 1972-09-19

Family

ID=22608813

Family Applications (1)

Application Number Title Priority Date Filing Date
US167783A Expired - Lifetime US3691781A (en) 1971-07-30 1971-07-30 Method and apparatus for forming model ice sheets

Country Status (8)

Country Link
US (1) US3691781A (enrdf_load_stackoverflow)
JP (1) JPS4934640A (enrdf_load_stackoverflow)
CA (1) CA948869A (enrdf_load_stackoverflow)
DE (1) DE2260299C3 (enrdf_load_stackoverflow)
FR (1) FR2149141A5 (enrdf_load_stackoverflow)
GB (1) GB1367230A (enrdf_load_stackoverflow)
NL (1) NL158746B (enrdf_load_stackoverflow)
NO (1) NO136425C (enrdf_load_stackoverflow)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2538091A1 (fr) * 1982-12-17 1984-06-22 Waertsilae Oy Ab Procede de fabrication de glace pour essais de maquettes
US4587841A (en) * 1984-02-22 1986-05-13 Etat Francais Hydrodynamic test apparatus
WO1992015827A1 (de) * 1991-03-05 1992-09-17 Hamburgische Schiffbau-Versuchsanstalt Gmbh Verfahren und vorrichtungen zur erzeugung einer eisdecke, insbesondere für modellversuche mit schiffen oder meeresbauwerken
RU2168438C2 (ru) * 1999-08-30 2001-06-10 Центральный научно-исследовательский институт им. акад. А.Н. Крылова Устройство для буксировочных испытаний модели буровой платформы в опытовом бассейне
RU2210516C2 (ru) * 2001-06-20 2003-08-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт им.акад. А.Н.Крылова" Ледовый опытовый бассейн для испытаний моделей судов и морских инженерных сооружений и способ его использования
RU2352493C1 (ru) * 2007-07-16 2009-04-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Опытовый бассейн для испытаний моделей судов преимущественно во льдах
RU2383462C2 (ru) * 2008-04-08 2010-03-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Способ испытания модели морского инженерного сооружения в ледовом опытовом бассейне и устройство для его осуществления
RU2385252C1 (ru) * 2008-07-03 2010-03-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.П. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Способ проведения буксировочных модельных испытаний судов в ледовом опытовом бассейне
RU2440271C1 (ru) * 2010-07-01 2012-01-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Ледовый опытовый бассейн
RU2535398C2 (ru) * 2013-01-10 2014-12-10 Федеральное государственное бюджетное учреждение "Арктический и антарктический научно-исследовательский институт" Способ и устройство для моделирования ледяного покрова в ледовом опытовом бассейне
CN107192187A (zh) * 2017-05-16 2017-09-22 长兴威威制冷科技有限公司 一种节能制冰机
CN107218028A (zh) * 2017-06-12 2017-09-29 中国石油天然气股份有限公司 深水导管下入过程中钻头伸出量的模拟方法及系统
RU2698976C1 (ru) * 2018-11-06 2019-09-02 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Устройство для обеспечения проведения испытаний среднемасштабных образцов лабораторного морского льда в ледовом бассейне
CN110775220A (zh) * 2019-11-07 2020-02-11 哈尔滨工程大学 一种用于拖曳水池内部的非冻结模型冰均匀铺设装置
CN111024364A (zh) * 2019-12-04 2020-04-17 三峡大学 一种多工况的冰区航行船舶推进轴系试验台架
GB2585345A (en) * 2019-04-20 2021-01-13 David Furs Edward Global warming control
CN112735246A (zh) * 2020-12-29 2021-04-30 中国电建集团昆明勘测设计研究院有限公司 模拟静水条件下冰盖生长及生长速率的方法
US11530862B2 (en) * 2017-10-05 2022-12-20 Liconic Ag Low-temperature storage plant with a nitrogen withdrawal apparatus
RU2807540C1 (ru) * 2023-03-29 2023-11-16 Федеральное государственное бюджетное учреждение "Арктический и Антарктический научно-исследовательский институт" (ФГБУ "ААНИИ") Стенд для моделирования процессов торошения

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2310142C1 (ru) * 2006-11-09 2007-11-10 Борис Алексеевич Кузнецов Способ получения искусственного льда
RU2556908C2 (ru) * 2013-08-06 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный сельскохозяйственный институт" Способ намораживания ледовых покрытий
JP6712200B2 (ja) * 2016-08-25 2020-06-17 大陽日酸株式会社 スラリーアイス製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2538091A1 (fr) * 1982-12-17 1984-06-22 Waertsilae Oy Ab Procede de fabrication de glace pour essais de maquettes
US4587841A (en) * 1984-02-22 1986-05-13 Etat Francais Hydrodynamic test apparatus
WO1992015827A1 (de) * 1991-03-05 1992-09-17 Hamburgische Schiffbau-Versuchsanstalt Gmbh Verfahren und vorrichtungen zur erzeugung einer eisdecke, insbesondere für modellversuche mit schiffen oder meeresbauwerken
RU2168438C2 (ru) * 1999-08-30 2001-06-10 Центральный научно-исследовательский институт им. акад. А.Н. Крылова Устройство для буксировочных испытаний модели буровой платформы в опытовом бассейне
RU2210516C2 (ru) * 2001-06-20 2003-08-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт им.акад. А.Н.Крылова" Ледовый опытовый бассейн для испытаний моделей судов и морских инженерных сооружений и способ его использования
RU2352493C1 (ru) * 2007-07-16 2009-04-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Опытовый бассейн для испытаний моделей судов преимущественно во льдах
RU2383462C2 (ru) * 2008-04-08 2010-03-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Способ испытания модели морского инженерного сооружения в ледовом опытовом бассейне и устройство для его осуществления
RU2385252C1 (ru) * 2008-07-03 2010-03-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.П. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Способ проведения буксировочных модельных испытаний судов в ледовом опытовом бассейне
RU2440271C1 (ru) * 2010-07-01 2012-01-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") Ледовый опытовый бассейн
RU2535398C2 (ru) * 2013-01-10 2014-12-10 Федеральное государственное бюджетное учреждение "Арктический и антарктический научно-исследовательский институт" Способ и устройство для моделирования ледяного покрова в ледовом опытовом бассейне
CN107192187A (zh) * 2017-05-16 2017-09-22 长兴威威制冷科技有限公司 一种节能制冰机
CN107192187B (zh) * 2017-05-16 2023-03-17 长兴威威制冷科技有限公司 一种节能制冰机
CN107218028A (zh) * 2017-06-12 2017-09-29 中国石油天然气股份有限公司 深水导管下入过程中钻头伸出量的模拟方法及系统
CN107218028B (zh) * 2017-06-12 2020-10-09 中国石油天然气股份有限公司 深水导管下入过程中钻头伸出量的模拟方法及系统
US11530862B2 (en) * 2017-10-05 2022-12-20 Liconic Ag Low-temperature storage plant with a nitrogen withdrawal apparatus
RU2698976C1 (ru) * 2018-11-06 2019-09-02 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Устройство для обеспечения проведения испытаний среднемасштабных образцов лабораторного морского льда в ледовом бассейне
GB2585345A (en) * 2019-04-20 2021-01-13 David Furs Edward Global warming control
GB2585345B (en) * 2019-04-20 2021-08-11 David Furs Edward Global warming control
CN110775220A (zh) * 2019-11-07 2020-02-11 哈尔滨工程大学 一种用于拖曳水池内部的非冻结模型冰均匀铺设装置
CN111024364A (zh) * 2019-12-04 2020-04-17 三峡大学 一种多工况的冰区航行船舶推进轴系试验台架
CN112735246A (zh) * 2020-12-29 2021-04-30 中国电建集团昆明勘测设计研究院有限公司 模拟静水条件下冰盖生长及生长速率的方法
RU2807540C1 (ru) * 2023-03-29 2023-11-16 Федеральное государственное бюджетное учреждение "Арктический и Антарктический научно-исследовательский институт" (ФГБУ "ААНИИ") Стенд для моделирования процессов торошения
RU2811173C1 (ru) * 2023-10-25 2024-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ проведения испытаний моделей судов в ледовом опытном бассейне

Also Published As

Publication number Publication date
CA948869A (en) 1974-06-11
FR2149141A5 (enrdf_load_stackoverflow) 1973-03-23
DE2260299B2 (de) 1979-06-28
GB1367230A (en) 1974-09-18
DE2226136A1 (de) 1973-03-15
NO136425B (enrdf_load_stackoverflow) 1977-05-23
NL158746B (nl) 1978-12-15
DE2226136B2 (de) 1976-06-24
NL7210291A (enrdf_load_stackoverflow) 1973-02-01
DE2260299C3 (de) 1980-02-21
DE2260299A1 (de) 1973-05-03
NO136425C (no) 1977-08-31
JPS4934640A (enrdf_load_stackoverflow) 1974-03-30

Similar Documents

Publication Publication Date Title
US3691781A (en) Method and apparatus for forming model ice sheets
US3287925A (en) Intransit liquefied gas refrigeration system
CN106769417A (zh) 一种宽温域低温环境试验箱
US2976695A (en) System for refrigerated lpg storage
CN109262474A (zh) 一种利用过冷水制备冰粒气体射流的装置和方法
CN103723245B (zh) 一种覆雪模型冰盖的制备方法
JPS59225274A (ja) 冷却コンテナ−内に窒素および二酸化炭素の一定の組成の不活性ガス雰囲気を生じさせる方法
DE69104274T2 (de) Verfahren zur Beseitigung von Kohlendioxid.
US4343634A (en) Process for operating a fluidized bed
US4373344A (en) Methods and apparatus for producing refrigeration
RU2535398C2 (ru) Способ и устройство для моделирования ледяного покрова в ледовом опытовом бассейне
US3166913A (en) Method for refrigerating
Bilanin et al. Ice accretion with varying surface tension
Al-Khalil et al. Development of the Cox icing research facility
Sherif et al. Psychrometrics in the supersaturated frost zone/Discussion
Johnson et al. Prediction of aerosol formation from the release of pressurized, superheated liquids to the atmosphere
JP6454452B1 (ja) 宇宙環境試験装置および宇宙環境試験装置の初期冷却方法
DE2226136C3 (de) Verfahren und Anlage zur modellmäßigen Untersuchung des Verhaltens eines Meereslahrzeugs oder -bauwerke
DE621568C (de) Mit fester Kohlensaeure gekuehlter Eisenbahnwagen
Bronson Frost formation on a cylinder at cryogenic temperatures
SU1064091A1 (ru) Устройство дл низкотемпературного охлаждени изотермического контейнера
Kilgore et al. The application of cryogenics to high Reynolds number testing in wind tunnels. Part 2: Development and application of the cryogenic wind tunnel concept
McNelis et al. A summary of the slush hydrogen technology program for the National Aero-Space Plane
WO1994000713A1 (en) Method and plant for converting gas into hydrate
WO2019043686A1 (en) SURFACES NOT GIVING NOT