US3684978A - Capacitor switching arrangement for regulating power output of heating magnetron - Google Patents
Capacitor switching arrangement for regulating power output of heating magnetron Download PDFInfo
- Publication number
- US3684978A US3684978A US98735A US3684978DA US3684978A US 3684978 A US3684978 A US 3684978A US 98735 A US98735 A US 98735A US 3684978D A US3684978D A US 3684978DA US 3684978 A US3684978 A US 3684978A
- Authority
- US
- United States
- Prior art keywords
- switch
- over switch
- capacitance change
- capacitors
- switching device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H15/00—Switches having rectilinearly-movable operating part or parts adapted for actuation in opposite directions, e.g. slide switch
- H01H15/02—Details
- H01H15/06—Movable parts; Contacts mounted thereon
- H01H15/08—Contact arrangements for providing make-before-break operation, e.g. for on-load tap-changing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/68—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having two operating members, one for opening and one for closing the same set of contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/72—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard wherein the switch has means for limiting the number of operating members that can concurrently be in the actuated position
- H01H13/74—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard wherein the switch has means for limiting the number of operating members that can concurrently be in the actuated position each contact set returning to its original state only upon actuation of another of the operating members
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6414—Aspects relating to the door of the microwave heating apparatus
- H05B6/6417—Door interlocks of the microwave heating apparatus and related circuits
Definitions
- .-33l/86 219/ 10.55, 315/239, hi h tension rectifier circuit of the magnetron to vary 323/61, 328/253, 328/263, 331/182, 331/ 8 the power output from the magnetron, and are [51] Int. Cl. ..H03b 9/10, H05b 9/00 Changed over by the same number f Switches as the [58] Field of Search ..33l/86, 87, 182, 185; 328/253,
- CAPACITOR SWITCHING ARRANGEMENT FOR REGULATING POWER OUTPUT OF HEATING MAGNETRON SUMMARY OF THE INVENTION ferent power levels the microwave output from a magl netron that produces microwave energy in a dielectric heating apparatus.
- a step-up transformer for supplying a secondary high tension which is rectified by a rectifier to feed a magnetron.
- a plurality of capacitors are provided in the high tension circuit, that is, between the high tension winding of the transformer, and the rectifier and are arranged to be alternatively or selectively connected into circuit by a change-over switch for varying the effective impedance in the dc. high tension circuit. It is another feature of the invention to effect the switching of the capacitors only when the primary circuit of the transformer is opened.
- the primary circuit of the transformer includes an electromagnetic contactor which is normally energized to close the primary circuit and which is deenergized by an auxilliary switch connected in series therewith which is interlocked by suitable means, e.g. by mechanical means, with the operation of the change-over switch in a manner to be operated prior to the operation of the change-over switch.
- suitable means e.g. by mechanical means
- FIG. 2 is wiring diagram of another embodiment of the invention.
- FIG. 3 is a wiring diagram of a further embodiment of the invention.
- FIG. 4 is a perspective view, partially broken away, of an example of a change-over switch used to change capacitance
- FIG. 5 is a block diagram of an electrical circuit which is equivalent in function to the change-over switch of FIG. 4.
- the apparatus includes a step-up transformer 2 having its primary side connected with a plug 1 through a pair of contacts 31 and 32 of an electromagnetic contactor 3.
- the plug l is adapted to be used with a convenience outlet.
- a pushbutton start switch 4 Across the wires leading to the plug 1 are connected a pushbutton start switch 4, the coil of the contactor 3 and a normally closed auxilliary switch 5 in series, the start switch 4 being operated to energize the contactor 3 when cooking is to be initiated.
- the auxilliary switch 5 is interlocked with a capacitance change-over switch to be described later in a suitable manner, e.g. mechanically.
- a magnetron 10 is connected in parallel with the rectifier 9, with the anode of the magnetron 10 being connected with .the cathode of the rectifier 9.
- the magnetron 10 is of the direct heated cathode or filament type and the filament current is supplied by a separate transformer 1111. It should be obvious that the magnetron 10 includes a field means (not shown) to establish a steady magnetic field to sustain oscillation.
- the capacitor 6 is shunted by another capacitor 7 connected in series with a capacitance change-over switch 8. It will be noted that the magnetron 10 is fed by a voltage doubler circuit.
- FIG. 2 is similar to the arrangement of FIG. 1 except that the capacitors 6 and 7 are connected in series rather than being in parallel connection as shown in FIG. 1, with the capacitor 7 being shunted by the change-over switch 8.
- the single diode rectifier 9 of FIG. 1 is replaced by a full-wave rectifier.
- the plug 1 is inserted into a convenience outlet, and the start switch 4 is depressed to energize the coil of the contactor 3 through the normally closed switch 5, whereby the pair of contacts 31 and 32 are closed.
- a self-holding circuit is established for the contactor 3 by closure of the contacts 31, thereby closing and feeding the primary circuit of the transformer 2.
- the capacitance changeover switch 8 is open as shown, the capacitor 7 remains without connection with the circuit, so that in the arrangement of FIGS. 1 and 3, the secondary winding of the transformer 2 and the capacitor 6 form a relatively high impedance to supply the magnetron 10 with a rectified power of a relatively low level. As a consequence, the magnetron 10 is operated at a lower output level.
- the change-over switch 8 is operated to connect the capacitor 7 in parallel with the capacitor 6 to thereby decrease the impedance of the d.c. high tension circuit.
- the change-over switch 8 is interlocked with the auxilliary switch in a suitable manner, e.g. mechanically, such that the auxilliary switch 5 is momentarily opened prior to the operation of the change-over switch 8. (Such interlocking means will be more fully described later.)
- the self-holding circuit of the contactor 3 is interrupted, and hence the contactor 3 is deenergized to open the pair of its contacts 31 and 32 connected in the primary circuit of the transformer 2.
- the change-over switch 8 is closed and the start switch 4 is depressed again, and since the auxilliary switch 5 has resumed its normal position by this time, the transformer 2 is fed with power again, with the capacitors 6 and 7 connected in parallel in its secondary circuit to reduce the resulting impedance and to operate the magnetron at its higher output level.
- the change-over switch 8 When the operation of the magnetron is to be changed from its higher output level to its lower output level, the change-over switch 8 is operated to disconnect the capacitor 7 from the parallel connection with the capacitor 6. Again, the operation of the changeover switch is preceded by the momentary opening of the auxilliary switch 5 to deenergize the contactor 3 so that the transformer 2 may be disconnected from the supply line when the change-over switch 8 is operated. Thereafter, the start switch 4 is depressed again to operate the magnetron 10 at its lower output level.
- the magnetron 10 also operates at its lower output level when the change-over switch 8 is open since at this time the capacitors 6 and 7 are connected in series to present a reduced composite capacitance as compared with the capacitance presented by the capacitor 6 alone when the change-over switch 8 is closed.
- FIG. 4 shows a specific embodiment of the capacitance change-over switch 8.
- the change-over switch shown comprises a switch casing 18, in the top wall of which are loosely fitted a pair of spaced levers 16 and 17 for vertical movement therein.
- the levers 16 and 17 are provided with push-buttons l2 and 13, respectively, at their top end and have projections, 14 and 15 on their lower portions located within the casing 18.
- a pair of return springs 19 and 20 extend between the push-buttons 12, 13 and the top wall of the casing 18.
- the casing 18 includes a pair of opposite side walls 21 in which elongate apertures are formed at the same level for slidably receiving a transverse plate 22.
- the transverse plate 22 is urged in one direction (to the left in the example shown) by a return spring 23 that extends between one of the side walls 21 and a shoulder formed on the transverse plate.
- the transverse plate 22 has a substantial width vertically and has a pair of ramp surfaces 24 and 25 formed on its top portion which cooperate with the projections 14 and 15 on the levers 16 and 17, respectively, and also has a pair of notches 26 and 27 formed therein at positions directly below the ramp surfaces 24 and 25, respectively.
- the casing 18 further includes a movable contact member 28 of an elastic or flexible material and a fixed contact 29, both suitably secured to the casing.
- An operating member 30 is connected with the transverse plate 22 and has a narrow slot in which the free end of the movable contact member 28 is fitted.
- a fulcrum member 34 On the bottom wall of the easing 18 is pivotally mounted another movable contact member 33 by a fulcrum member 34 which also provides an electrical connection with the movable contact member 33.
- the member 33 is adapted to undergo rocking motion about the fulcrum 34 by cooperation with the respective free ends of the levers 16 and 17, and at the extreme positions of such rocking motion, its opposite ends are brought into abutting relationship and electrical contact with a pair of fixed contacts 35 and 36, respectively, which are mounted on the inner surface of the bottom wall of the casing 18.
- the projection 14 on the lever 16 is locked in the notch 26 after having moved the transverse plate 22 to the right, as seen in FIG. 4, by sliding engagement with the ramp surface 24 thereon with the transverse plate 22 being moved back a distance corresponding to the depth of the notch 26 by the action of the return spring 23 after the projection 14 has moved past the ramp surface 24 downwardly.
- the operating member 30 has returned to its normal position in which it restores the movable contact 28 into electrical contact with the fixed contact 29 again.
- the lower end of the lever 16 has depressed the movable contact member 33 into contact with the fixed contact 35 on the bottom wall of the casing 18.
- the projection 15 on the lever 17 slides downwardly on the ramp surface 25, thereby moving the transverse plate 22 to the right again.
- the movable contact member 28 is yieldably flexed away from the its cooperating contact 29 by the action of the operating member 30 that is carried by the transverse plate 22, thereby interrupting the circuit between the contacts 28 and 29.
- the rightward movement of the transverse plate 22 releases the projection 14 on the lever 16 from its locked position within the notch 26, and therefore the lever 16 returns to its upper position under the action of the return spring 19.
- the contact member 34 is selectively connected with either fixed contact 35 or 36, and such switching operation is preceded by the traversing motion of the transverse plate 22 which provides a momentary interruption between the contacts 28 and 29.
- either one of the fixed contacts 35 and 36 may be used in combination with the contact 34 to serve as the capacitance change-over switch 8 described above in connection with FIGS. 1 to 3, and the pair of contacts 28 and 29 may be used as the auxilliary switch 5 that is interlocked with the changeover switch 8.
- the capacitance change-over switch 8 may comprise a switching circuit as shown in FIG. 5.
- a relay X is connected to both the binary.one and zero outputs of a flipflop FF, which receives a set input through a push-button switch B, and a reset" input through another push-button switch 8,. These inputs are also fed to a timer T, the output of which operates another flipflop FF, having its output connected with another relay X
- the relay X is of the type which instantaneously operates in response to a variation of an input thereto and returns its associated contacts to their normal position after a predetermined time delay.
- the relay X has its contacts connected in the holding circuit of the contactor 3, which the relay X has its contacts connected so as to connect the capacitor 7 in circuit with the capacitor 6.
- the switches B, and B are connected with a suitable potential source, and are selectively operated to closewhen both capacitors 6 and 7 or capacitor 6 alone is required in the dc. high tension circuit.
- the timer provides a time delay irrespective of which of the switches B, and B is closed before conveying a corresponding signal to the flipflop FF
- the relay X is immediately operated, without a time delay, and hence prior to the operation of the relay X Having described the invention, what is claimed is:
- An output switching device for a microwave heating apparatus including a magnetron, a step-up transformer having a high tension secondary winding, and a rectifier for supplying a rectified high tension to the magnetron; said device comprising a plurality of capacitors, and a capacitance change-over switch for connecting selected one or ones of the capacitors in the high tension rectifier circuit on the secondary side of said transformer.
- An output switching device in which said plurality of capacitors are connected in series relationship to each other in the high tension reflctifier circuits an further including capacitance c ange-over switch or shortcircuiting se ected one or ones of the capacitors.
- An output switching device further including an electromagnetic contactor having its contacts connected in the primary circuit of the transformer, and a normally closed auxilliary switch connected in the self-holding circuit of the contactor, said auxilliary switch being interlocked with the operation of the capacitance change-over switch in a manner such that the auxilliary switch is opened before the capacitance change-over switch operators.
- said capacitance change-over switch comprises a push-button switch having detent means which includes a transverse plate capable of transversing motion in response to the operation of the push-button, said transverse plate carrying an operating member which opens the auxilliary switch prior to the operation of the capacitance change-over switch.
- An output switching device further including a first relay responsive to an operating instruction to said capacitance change-over switch for operating the auxilliary switch, a timer energized simultaneously with the first relay for providing a time delay of a predetermined length, and a second relay responsive to the output from the timer for operating said capacitance change-over switch.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Electric Ovens (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12037669 | 1969-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3684978A true US3684978A (en) | 1972-08-15 |
Family
ID=14784663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US98735A Expired - Lifetime US3684978A (en) | 1969-12-18 | 1970-12-16 | Capacitor switching arrangement for regulating power output of heating magnetron |
Country Status (4)
Country | Link |
---|---|
US (1) | US3684978A (enrdf_load_stackoverflow) |
DE (1) | DE2062646C3 (enrdf_load_stackoverflow) |
FR (1) | FR2073658A5 (enrdf_load_stackoverflow) |
GB (1) | GB1331246A (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3792369A (en) * | 1972-09-13 | 1974-02-12 | M Levinson | Variable reactance controls for ac powered heating magnetrons |
US3924196A (en) * | 1973-03-07 | 1975-12-02 | Tokyo Shibaura Electric Co | High frequency therapeutic apparatus |
US3961152A (en) * | 1974-01-04 | 1976-06-01 | General Electric Company | Magnetron power supply and control circuit |
US4001537A (en) * | 1975-07-24 | 1977-01-04 | Litton Systems, Inc. | Power controller for microwave magnetron |
US4017702A (en) * | 1975-07-30 | 1977-04-12 | General Electric Company | Microwave oven including apparatus for varying power level |
US4028517A (en) * | 1974-03-04 | 1977-06-07 | Matsushita Electric Industrial Co., Ltd. | Microwave oven |
US4130749A (en) * | 1976-03-09 | 1978-12-19 | Matsushita Electric Industrial Co., Ltd. | Microwave oven |
US4228809A (en) * | 1977-10-06 | 1980-10-21 | Rca Corporation | Temperature controller for a microwave heating system |
JPS5755091A (en) * | 1980-09-19 | 1982-04-01 | Mitsubishi Electric Corp | Power source for microwave discharge light source |
US4356431A (en) * | 1978-02-21 | 1982-10-26 | Advance Transformer Company | Magnetron energizing circuit |
US4481447A (en) * | 1982-06-21 | 1984-11-06 | U.S. Philips Corporation | Power supply for a magnetron |
US4549257A (en) * | 1982-09-16 | 1985-10-22 | Aerovox Incorporated | Voltage doubler circuit |
US20160303769A1 (en) * | 2015-04-17 | 2016-10-20 | Krones Ag | Apparatus for heating plastic preforms by means of microwaves |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55143791A (en) * | 1979-04-24 | 1980-11-10 | Tokyo Shibaura Electric Co | High frequency heater |
DE3316674A1 (de) * | 1982-05-25 | 1983-12-01 | Tricon Industries, Inc., 60515 Downers Grove, Ill. | Schaltvorrichtung |
DE3741381A1 (de) * | 1987-12-07 | 1990-03-01 | Bosch Siemens Hausgeraete | Schaltungsanordnung zur mikrowellen-leistungssteuerung bei magnetrons |
US7405382B2 (en) * | 2002-04-08 | 2008-07-29 | Wayne Openlander | System for microwave enhanced chemistry |
-
1970
- 1970-12-11 FR FR7044804A patent/FR2073658A5/fr not_active Expired
- 1970-12-16 US US98735A patent/US3684978A/en not_active Expired - Lifetime
- 1970-12-18 DE DE2062646A patent/DE2062646C3/de not_active Expired
- 1970-12-18 GB GB6031170A patent/GB1331246A/en not_active Expired
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3792369A (en) * | 1972-09-13 | 1974-02-12 | M Levinson | Variable reactance controls for ac powered heating magnetrons |
US3924196A (en) * | 1973-03-07 | 1975-12-02 | Tokyo Shibaura Electric Co | High frequency therapeutic apparatus |
US3961152A (en) * | 1974-01-04 | 1976-06-01 | General Electric Company | Magnetron power supply and control circuit |
US4028517A (en) * | 1974-03-04 | 1977-06-07 | Matsushita Electric Industrial Co., Ltd. | Microwave oven |
US4001537A (en) * | 1975-07-24 | 1977-01-04 | Litton Systems, Inc. | Power controller for microwave magnetron |
US4017702A (en) * | 1975-07-30 | 1977-04-12 | General Electric Company | Microwave oven including apparatus for varying power level |
US4130749A (en) * | 1976-03-09 | 1978-12-19 | Matsushita Electric Industrial Co., Ltd. | Microwave oven |
US4228809A (en) * | 1977-10-06 | 1980-10-21 | Rca Corporation | Temperature controller for a microwave heating system |
US4356431A (en) * | 1978-02-21 | 1982-10-26 | Advance Transformer Company | Magnetron energizing circuit |
JPS5755091A (en) * | 1980-09-19 | 1982-04-01 | Mitsubishi Electric Corp | Power source for microwave discharge light source |
US4481447A (en) * | 1982-06-21 | 1984-11-06 | U.S. Philips Corporation | Power supply for a magnetron |
US4549257A (en) * | 1982-09-16 | 1985-10-22 | Aerovox Incorporated | Voltage doubler circuit |
US20160303769A1 (en) * | 2015-04-17 | 2016-10-20 | Krones Ag | Apparatus for heating plastic preforms by means of microwaves |
CN106042235A (zh) * | 2015-04-17 | 2016-10-26 | 克隆尼斯股份有限公司 | 用于通过微波方式加热塑料预制件的装置 |
US10449695B2 (en) * | 2015-04-17 | 2019-10-22 | Krones Ag | Apparatus for heating plastic preforms by means of microwaves |
Also Published As
Publication number | Publication date |
---|---|
FR2073658A5 (enrdf_load_stackoverflow) | 1971-10-01 |
DE2062646C3 (de) | 1978-03-23 |
DE2062646B2 (de) | 1977-07-21 |
GB1331246A (en) | 1973-09-26 |
DE2062646A1 (de) | 1971-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3684978A (en) | Capacitor switching arrangement for regulating power output of heating magnetron | |
US4076996A (en) | Power supplier for magnetron | |
US4151387A (en) | Metal base cookware induction heating apparatus having improved power control circuit for insuring safe operation | |
US4525762A (en) | Arc suppression device and method | |
US3116441A (en) | Circuit for maintaining a load energized at decreased power following energization | |
US4652966A (en) | Solenoid-actuated mechanical interlock for a motor controller | |
USRE26119E (en) | Continuously variable dimmer switch | |
US3809965A (en) | Solid state relay and timer housing means | |
US3392309A (en) | Magnetron power supply and cathode heater circuit | |
US3678371A (en) | Lamp control circuit with high leakage reactance transformer and controlled bilateral switching means | |
US3872277A (en) | Switch in half-wave rectifier circuit | |
GB1482961A (en) | Vacuum-type circuit interrupter | |
US2846528A (en) | Selective switches | |
US4356431A (en) | Magnetron energizing circuit | |
US2322597A (en) | Electric circuit | |
US2956140A (en) | Electromagnetic relay spring assembly | |
US2930940A (en) | Interlocking mechanism for enclosed circuit control | |
US3549942A (en) | Circuit arrangement for delayed connection of a magnetron to the high voltage,and including an rc network in its input circuit | |
US2334538A (en) | Operating mechanism for discharge lamps | |
US1985069A (en) | Electric timing circuit | |
US3723901A (en) | Electronic control device with condition responsive oscillator | |
US2719192A (en) | Amplifier control, including an electrostatic valve | |
US2228119A (en) | Key click elimination circuit | |
US2965815A (en) | Adjustable electronic timing device | |
US3252014A (en) | Switching device with arc suppressor |