US3672948A - Method for diffusion limited mass transport - Google Patents

Method for diffusion limited mass transport Download PDF

Info

Publication number
US3672948A
US3672948A US345A US3672948DA US3672948A US 3672948 A US3672948 A US 3672948A US 345 A US345 A US 345A US 3672948D A US3672948D A US 3672948DA US 3672948 A US3672948 A US 3672948A
Authority
US
United States
Prior art keywords
deposition
zone
tube
laminar flow
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US345A
Other languages
English (en)
Inventor
Robert A Foehring
Richard R Garnache
Donald M Kenney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Application granted granted Critical
Publication of US3672948A publication Critical patent/US3672948A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/006Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/907Continuous processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/935Gas flow control

Definitions

  • FIG. 5 it --PREBAKE+DEPOSITION+ cooL
  • This invention relates to mass transport processes, such as vapor deposition and etching, and in particular relates to a method and apparatus for providing and maintaining constant diifusion limited mass transport in a continuous system.
  • substrates and the desired reactant materials are first sealed in a quartz tube.
  • the tube is then heated in one or more different areas in order to produce the desired temperature and mass transport drive conditions for evaporation and subsequent deposition by the vaporized reactants.
  • the method is slow and cumbersome and gradually has given way to the more commonly used open tube diffusion method.
  • the advantage of the open tube is that reactant gases can be constantly fed into the tube in order to maintain a sufiiciently high concentration gradient to produce desired deposition rates. Since the reactant gases in the open tube method travel longitudinally down the tube, the concentration gradient of the reactant steadily decreases throughout the length of the tube thus producing a variety of deposition rates on substrates depending upon their location in the tube.
  • the invention provides substantially steady state diffusion limited mass transport through the use of laminar flow of gaseous phase reactants through reaction zones.
  • the laminar flow is provided by a number of T-shaped fritted quartz, or sintered stainless steel, filter tubes located at one side of a process tube.
  • Movably mounted substrate carriers are passed perpendicular and parallel to the direction of gas flow. That is, the gas flows parallel to the surface of the substrates. Additionally, be-
  • FIG. 1 is an overall isometric view of a preferred embodiment of the instant invention.
  • FIG. 2 is a schematic plan view of a portion of the deposition zone of the apparatus of FIG. 1.
  • FIG. 3 is a vertical schematic section of the deposition zone of FIG. 2 showing the velocity profile of reactant gases under ideal conditions.
  • FIG. 4 is a plot of deposition growth rateversus distance for diffusion limited mass transport.
  • FIG. 5 is a schematic overall view of the process tube of FIG. 1.
  • FIG. '6 is a detailed elevation of the left end, or entrancegate, of the process tube of FIG. 1.
  • FIG. 7 is a detailed section of the process tube, of
  • FIG. 1 taken at 7-7.
  • FIG. 8 is a partial isometric sectional view showing the inside of the pre-bake and part of the deposition zone taken at 8--8 of FIG. 7, as seen from the rear of the process tube of FIG. 1.
  • FIG. 1 there is shown an isometric view of a preferred embodiment of the present invention, generally designated 10.
  • the process tube 10 is generally rectangular in cross section and has provided at one end an entrance gate 12 and at the other end an exit gate 14, both to be'described more fully later.
  • the central portion of the process tube 10 between the entrance. and exit gates comprises a continuously open chamber divided into three portions or process zones, i.e., prebake, deposition, and cooling.
  • a number of gas inlet tubes 16-24 are provided to supply gases to the various zones. Exhaust gases leave the process tube through exhaust tubes 26 after passing directly across process tube 10. Cooling water is circulated through a water jacket fed by water inlet tubes 28 and water exit tubes 30 mounted on the top and bottom of process tube 10.
  • Substrates are mounted on carriers 32 which may be continuously passed through process tube 10 in a direction perpendicular and parallel to the gas flow.
  • FIG. 2 schematically shows a plan view of an ideal deposition, or vapor transport, zone.
  • a fritted quartz, or sintered stainless steel, filter tube 38 preferably having a pore size of about 10 microns.
  • Thefilter tube behaves exactly as the classical porous plug and similarly there is no enthalpychang'e as the reactant gases pass through the walls of the filter tube.
  • the reactant gases are uniformly passed into-the deposition zone along the entire length of filter tube '38. Since the filter tube 38 substantially fills the'enti're end'of the deposition zone, as will be more clearly shown'in reference to FIG.
  • exhaust baffle 40 allows for the uniform removal of gaseous reactant materials and deposition process byproducts.
  • the exhaust bafiie 40 may be, for example, a perforated steel plate or a sintered stainless steel filter plate having a porosity sufficient to provide a back pre'ssure a number of orders of magnitude greater than-the longitudinal pressure drop in the exhaust plenum 42. "Preferably exhaust bafiie 40 is a perforated steel plate having 1 mil holes at l000/in.
  • the filter tube 38 and the exhaust baffle 40 act together to provide laminar flow across the surface of substrate 36, as shown by the parallel lines in FIG. 2..
  • FIG. 3 shows the ideal condition of laminar flow, in a vertical plane.
  • the velocity profile 44 is shown to illustrate how the diffusion limited transport takes place.
  • the velocity of reactant gases parallel to substrate surfaces is zero at the substrate surfaces and progressively greater, up to a maximum velocity, through the deposition zone.
  • Reactant material concentration is depleted from the gaseous material in close proximity to the substrate surface. This causes a net concentration unbalance and results in diffusion in the direction of the depleted area-i.e., toward the substrate surface.
  • the substrates are heated, by means not shown, to the desired reactiontemperature and as reactants diffuse toward this hotsurface they pass through a temperature gradient which, at the substrate surface, is sufficient to cause the desired reaction to occur.
  • the reactant gases are passed parallel to the substrate surfaces in laminar flow itis possible to maintain a substantially uniform, and controllable, deposition rate.
  • the deposition, or other vapor phase reaction is limited by the diffusion rate into the depleted boundary zone. Because turbulent flow is not used, no unpredictable irregularities in the flow pattern can cause irregular deposition rates at different parts of a substrate surface.
  • FIG. 4 is a plot of the deposition growth rate versus the distance from the initiation of deposition across the flat surface of the substrate and substrate carrier.
  • the deposition growth rate is diffusion limited and dependent upon the velocity of the parallel flowing reactant gases moving over the substrate surface. At a selected velocity, for example cm./sec., the deposition rate will be almost fiat a short distance away from the beginning of deposition as indicated at 41. If substrates are not mounted at the edge of the substrate carrier, but are set back as shown in FIGS. 2 and 3, the entire substrate will fall into the fiat portion of the diffusion limited transport rate curve, 41.
  • the laminar flow system is more closely controllable and thereby more easily reproducible. Since the' deposition rate'curve still, decreases slightly with distance it is preferable to pass reactant materials over only a single substrate in order to minimize the effects of thedecreased rate.
  • FIG. 5 there is shown a schematic diagram of a preferred form of the invention.
  • the drawing shows a deposition zone located generally in the center of the process tube. This zone operates exactly as described above in reference to FIGS. 2 and 3.
  • the deposition zone may include one or more separate mass transport process steps.
  • a pre-bake zone in order to provide a controlled environment for substrate surfaces entering the deposition zone there is provided a pre-bake zone.
  • the purpose of the pre-bake zone is to raise the temperature of the substrate carried on substrate carrier '32 to the proper reaction temperature before they enter the deposition zonegThis is achieved by a resistance heating element, not shown, located under the substrate carriers 32 and extending for substantially the entire length of the pre-bake and deposition zones.
  • pre-bake filter tube 52 While the substrates are being heated, high purity hydrogen gas is admitted to the pre-bake zone through a pre-bake filter tube 52 in order to ensure that no impurities enter the deposition zone and to avoid side reactions.
  • the structure of the prev-bake zone is the same as that of the previously described deposition zone. That is, the hydrogen travels parallel to and across the wafer surfaces in laminar flow.
  • cooling zone Located downstream from the deposition zone is a cooling zone.
  • the zone like the pro-bake and deposition zones also contains gas in laminar flow as delivered by cooling filter tube 53.
  • the purpose of the cooling zone is to re move any traces of SiCl carried over from the deposition zone and to cool substrates prior to removal from the process tube 10.
  • process tube 10 One of the criteria for successful operation of process tube 10 is that longitudinal flow of gaseous material cannot be permitted, as this would create mixing between the separate gases in each zone.
  • the pressure drop across each end of the process tube 10 must be the same. Since the pressure drop through the walls of the filter tubes is significantly greater than the axial pressure drop inside the tubes, the mass flow rate per unit length of filter tube is constant. And since the mass flow rate through the filter tubes is only a function of pressure, the temperature being constant, the mass flow rate from the tubes will be constant for a constant inlet pressure.
  • pressure equalization may be accomplished as shown in FIG. 5. Hydrogen gas, a carrier, suppliedto both the pre-bake and cooling zones, is fed into the system through a single inlet manifold 53. Reactant gases H and SiCl are added in a separate line leading to the deposition zone.
  • laminar flow is maintained in each of the three zones, there is virtually no intermixing between zones, except for a slight amount of diffusion caused by the presence of a concentration gradient between adjoining zones.
  • laminar llow allows a multiple step deposition process to be carried out in a single chamber without need for barriers or other inter-process isolation devices.
  • othermass transport process steps may be carried out in adjacent zones without the need for physical inter-process isolation devices.
  • the heat shields may, for example, be sheets of perforated 0.060 inch thick molybdenum with approximately 10 percent open area. An economic evaluation should be made to determine to what extent laminar flow may be sacrificed in order to provide the benefit of reducing radiant heat lost by the wafers.
  • process tube 10 consists of a long rectangular tube having an entrance gate 12 and an exit gate 14.
  • the process tube may, for example, be about 10 feet long.
  • the entrance and exit gates are similar in construction and provide means for passing substrates into and away from the process zones.
  • FIG. 6 shows an elevation view of entrance gate 12.
  • the gate may be constructed of a top and bottom slotted plate, 58 and 60, which are machined such that a substrate carrier 32 will pass through the slot with a minimum clearance.
  • An inert gas for example, argon, is continuously fed into the gate through tube 62 which communicates with the slot in plates 58 and 60.
  • the longitudinal location of tube 62 on top plate 58 is determined depending upon the size of the opening between the slot and the substrate carrier, the difference 1n pressure between the atmosphere and the inside of the process tube and the extent to which argon leakage into the process tube can be tolerated.
  • a net flow rate of argon into the process tube be about 1 liter per minute and about 2 liters per minute into the atmosphere.
  • suflicient positive pressure should be maintained to prevent any leakage from the system.
  • Substrate carriers 32 may be constructed of high purity commercially available graphite and have a longitudinal guide made of pyrolytic graphite or molybdenum which runs along the entire edge of the carrier.
  • the carrier 32 is generally rectangular, preferably square, and must have relatively fiat leading and trailing edges in order to prov1de a seal between carriers as they pass continuously through the process tube.
  • Substrates are mounted on carriers 32 with their fiat deposit receiving surfaces flush with the top of the carrier, in order to prevent turbulence inside the process tube.
  • the carrier must be sutficiently larger than substrates in order to get the flat portion of the growth curve to fall on the substrate.
  • Carriers may be fed into the process tube by any of the available feeding mechanisms of the prior art capable of presenting a continuous string of carriers to the process tube.
  • FIGS. 7 and 8 show the elements inside process tube 10, it will be seen that the process tube is divided into three separate levels.
  • the transport zone is defined by the following elements.
  • the substrate carrier 32 and guide tracks 64 form the bottom, perforated heat shields 54 and 56 the sides, and top .heat shield 66 the top.
  • the transport zone is defined longitudinally by the length of filter tube 38.
  • Heater strip 68 Mounted directly below the pre-bake zone, and running the length of the pre-bake and deposition zones, is a resistance heater strip 68 which is supported at a number of points along its length by refractory rods 70.
  • Heater strip 68 may be made of graphite and is mounted at both ends on a terminal block 72. Because the heater strip 68 expands when heated there is also provided at the entrance end (not shown) of process tube a slide block containing compression springs to maintain the heater strip in an extended state.
  • an electrical terminal 74 Connected to heater strip 68 at both ends is an electrical terminal 74 which extends through the bottom plate of the process tube and is best illustrated in FIG. 7. Heater strip 68 is also utilized to maintain substrate surfaces at the'desired transport process temperature in the transport zone.
  • the deposition filter tube 38 which is connected to the middle gas manifold 17 through the right side plate 76. Additionally, there is provided a top and bottom gas chamber partition 78 and 80 to confine the gaseous material to the proper zone.
  • top heat shield 66 To prevent deposition on top heat shield 66 a continuous flow of gas is maintained in contact with the heat shield to maintain the temperature of heat shield 66 below the .reaction temperature.
  • the gas is provided by a top filter tube 82 mounted in side plate 76 and connected to top gas manifold 21.
  • the gas may be hydrogen and it may be delivered from the same source as was discussed above in reference to F IG. 5.
  • a bottom filter tube 84 is provided.
  • Filter tube 84 is mounted directly beneath deposition filter tube 38 on right side plate 76 and connected to bottom gas manifold 19.
  • desired gas for example argon
  • the gas applied to the bottom gas manifolds 16, 19, 22 may be delivered from a single supply.
  • the top and bottom of the process tube is provided with water jackets 88.
  • FIG. 7 also shows the detail of the viewing port 34 which is optional and may be constructed with materials well known in the art.
  • FIGS. 1, 5, 6, 7, and 8 is designed to provide and maintain the proper conditions for diffusion limited mass transport as more generally described with reference to FIGS. 2,
  • the heater strip should be energized and the carrier gas, hydrogen, should be applied to all inlet manifolds to provide the proper heat exchange conditions. It is preferable that the process tube be filled with substrate carriers and scrap, or dummy, substrates in order that proper flow conditions may be obtained. Argon should be applied to both the entrance and exit gates to prevent gases inside the process tube from escaping into the atmosphere. After the process tube has stabilized the reactant material, SiCl may be added to the hydrogen flow in the deposition zone in the desired proportion to carry out the deposition process. Substrates may then be continuously passed through the process tube for extended periods. Little or no deposition will be found on the internal elements of the system due to the factthat only substrates and substrate carriers will be at the proper deposition temperature.
  • a method for continuously effecting uniform vapor transport between gaseous phase material and substantially fiat substrate surfaces in a process tube including at least one continuously open chamber having a longitudinal axis comprising the steps of:'

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
US345A 1970-01-02 1970-01-02 Method for diffusion limited mass transport Expired - Lifetime US3672948A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34570A 1970-01-02 1970-01-02

Publications (1)

Publication Number Publication Date
US3672948A true US3672948A (en) 1972-06-27

Family

ID=21691109

Family Applications (1)

Application Number Title Priority Date Filing Date
US345A Expired - Lifetime US3672948A (en) 1970-01-02 1970-01-02 Method for diffusion limited mass transport

Country Status (10)

Country Link
US (1) US3672948A (enExample)
BE (1) BE760041A (enExample)
CA (1) CA931025A (enExample)
CH (1) CH520525A (enExample)
DE (1) DE2064470C3 (enExample)
ES (1) ES386190A1 (enExample)
FR (1) FR2075030A5 (enExample)
GB (1) GB1328390A (enExample)
NL (1) NL7018090A (enExample)
SE (1) SE377430B (enExample)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790404A (en) * 1972-06-19 1974-02-05 Ibm Continuous vapor processing apparatus and method
US3841926A (en) * 1973-01-02 1974-10-15 Ibm Integrated circuit fabrication process
US3865072A (en) * 1973-10-18 1975-02-11 Hls Ind Apparatus for chemically depositing epitaxial layers on semiconductor substrates
US3893876A (en) * 1971-09-06 1975-07-08 Sumitomo Electric Industries Method and apparatus of the continuous preparation of epitaxial layers of semiconducting III-V compounds from vapor phase
US3925118A (en) * 1971-04-15 1975-12-09 Philips Corp Method of depositing layers which mutually differ in composition onto a substrate
DE2626118A1 (de) * 1975-06-11 1976-12-30 Pilkington Brothers Ltd Verfahren und vorrichtung zum ueberziehen von flachglas
US4048953A (en) * 1974-06-19 1977-09-20 Pfizer Inc. Apparatus for vapor depositing pyrolytic carbon on porous sheets of carbon material
US4048955A (en) * 1975-09-02 1977-09-20 Texas Instruments Incorporated Continuous chemical vapor deposition reactor
US4084540A (en) * 1977-05-19 1978-04-18 Discwasher, Inc. Apparatus for applying lubricating and protective film to phonograph records
US4089735A (en) * 1968-06-05 1978-05-16 Siemens Aktiengesellschaft Method for epitactic precipitation of crystalline material from a gaseous phase, particularly for semiconductors
US4116733A (en) * 1977-10-06 1978-09-26 Rca Corporation Vapor phase growth technique of III-V compounds utilizing a preheating step
US4125391A (en) * 1976-04-13 1978-11-14 Bfg Glassgroup Process of forming a metal or metal compound coating on a face of a glass substrate and apparatus suitable for use in forming such coating
US4171235A (en) * 1977-12-27 1979-10-16 Hughes Aircraft Company Process for fabricating heterojunction structures utilizing a double chamber vacuum deposition system
US4256053A (en) * 1979-08-17 1981-03-17 Dozier Alfred R Chemical vapor reaction system
US4256052A (en) * 1979-10-02 1981-03-17 Rca Corp. Temperature gradient means in reactor tube of vapor deposition apparatus
US4287851A (en) * 1980-01-16 1981-09-08 Dozier Alfred R Mounting and excitation system for reaction in the plasma state
US4430149A (en) 1981-12-30 1984-02-07 Rca Corporation Chemical vapor deposition of epitaxial silicon
US4499853A (en) * 1983-12-09 1985-02-19 Rca Corporation Distributor tube for CVD reactor
US4518455A (en) * 1982-09-02 1985-05-21 At&T Technologies, Inc. CVD Process
US4651673A (en) * 1982-09-02 1987-03-24 At&T Technologies, Inc. CVD apparatus
US4941429A (en) * 1988-12-20 1990-07-17 Texas Instruments Incorporated Semiconductor wafer carrier guide tracks
US5378501A (en) * 1993-10-05 1995-01-03 Foster; Robert F. Method for chemical vapor deposition of titanium nitride films at low temperatures
US5997588A (en) * 1995-10-13 1999-12-07 Advanced Semiconductor Materials America, Inc. Semiconductor processing system with gas curtain
US6626997B2 (en) 2001-05-17 2003-09-30 Nathan P. Shapiro Continuous processing chamber
WO2004097066A1 (de) * 2003-04-30 2004-11-11 Aixtron Ag Verfahren und vorrichtung zum abscheiden von halbleiterschichten mit zwei prozessgasen, von denen das eine vorkonditioniert ist
EP2476778A1 (en) * 2011-01-18 2012-07-18 Samsung LED Co., Ltd. Susceptor.
WO2012127305A1 (en) * 2011-03-21 2012-09-27 Centrotherm Photovoltaics Ag Gas supply for a processing furnace
CN115369387A (zh) * 2021-05-18 2022-11-22 迈络思科技有限公司 连续进给化学气相沉积系统
US20230002906A1 (en) * 2021-07-01 2023-01-05 Mellanox Technologies, Ltd. Continuous-feed chemical vapor deposition system
US11963309B2 (en) 2021-05-18 2024-04-16 Mellanox Technologies, Ltd. Process for laminating conductive-lubricant coated metals for printed circuit boards
US12004308B2 (en) 2021-05-18 2024-06-04 Mellanox Technologies, Ltd. Process for laminating graphene-coated printed circuit boards
US12163228B2 (en) 2021-05-18 2024-12-10 Mellanox Technologies, Ltd. CVD system with substrate carrier and associated mechanisms for moving substrate therethrough
US12221695B2 (en) 2021-05-18 2025-02-11 Mellanox Technologies, Ltd. CVD system with flange assembly for facilitating uniform and laminar flow
US12289839B2 (en) 2021-05-18 2025-04-29 Mellanox Technologies, Ltd. Process for localized repair of graphene-coated lamination stacks and printed circuit boards

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842794A (en) * 1973-06-29 1974-10-22 Ibm Apparatus for high temperature semiconductor processing
IN161171B (enExample) * 1982-09-16 1987-10-10 Energy Conversion Devices Inc
US4462333A (en) * 1982-10-27 1984-07-31 Energy Conversion Devices, Inc. Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus
DE19704533C2 (de) * 1997-02-06 2000-10-26 Siemens Ag Verfahren zur Schichterzeugung auf einer Oberfläche
DE102005045582B3 (de) 2005-09-23 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur kontinuierlichen Gasphasenabscheidung unter Atmosphärendruck und deren Verwendung
DE102016101003A1 (de) 2016-01-21 2017-07-27 Aixtron Se CVD-Vorrichtung mit einem als Baugruppe aus dem Reaktorgehäuse entnehmbaren Prozesskammergehäuse

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089735A (en) * 1968-06-05 1978-05-16 Siemens Aktiengesellschaft Method for epitactic precipitation of crystalline material from a gaseous phase, particularly for semiconductors
US3925118A (en) * 1971-04-15 1975-12-09 Philips Corp Method of depositing layers which mutually differ in composition onto a substrate
US3893876A (en) * 1971-09-06 1975-07-08 Sumitomo Electric Industries Method and apparatus of the continuous preparation of epitaxial layers of semiconducting III-V compounds from vapor phase
US3790404A (en) * 1972-06-19 1974-02-05 Ibm Continuous vapor processing apparatus and method
US3841926A (en) * 1973-01-02 1974-10-15 Ibm Integrated circuit fabrication process
US3865072A (en) * 1973-10-18 1975-02-11 Hls Ind Apparatus for chemically depositing epitaxial layers on semiconductor substrates
US4048953A (en) * 1974-06-19 1977-09-20 Pfizer Inc. Apparatus for vapor depositing pyrolytic carbon on porous sheets of carbon material
US4469045A (en) * 1975-06-11 1984-09-04 Pilkington Brothers P.L.C. Coating glass
DE2626118A1 (de) * 1975-06-11 1976-12-30 Pilkington Brothers Ltd Verfahren und vorrichtung zum ueberziehen von flachglas
US4048955A (en) * 1975-09-02 1977-09-20 Texas Instruments Incorporated Continuous chemical vapor deposition reactor
US4125391A (en) * 1976-04-13 1978-11-14 Bfg Glassgroup Process of forming a metal or metal compound coating on a face of a glass substrate and apparatus suitable for use in forming such coating
US4084540A (en) * 1977-05-19 1978-04-18 Discwasher, Inc. Apparatus for applying lubricating and protective film to phonograph records
US4116733A (en) * 1977-10-06 1978-09-26 Rca Corporation Vapor phase growth technique of III-V compounds utilizing a preheating step
US4171235A (en) * 1977-12-27 1979-10-16 Hughes Aircraft Company Process for fabricating heterojunction structures utilizing a double chamber vacuum deposition system
US4256053A (en) * 1979-08-17 1981-03-17 Dozier Alfred R Chemical vapor reaction system
US4256052A (en) * 1979-10-02 1981-03-17 Rca Corp. Temperature gradient means in reactor tube of vapor deposition apparatus
US4287851A (en) * 1980-01-16 1981-09-08 Dozier Alfred R Mounting and excitation system for reaction in the plasma state
US4430149A (en) 1981-12-30 1984-02-07 Rca Corporation Chemical vapor deposition of epitaxial silicon
US4651673A (en) * 1982-09-02 1987-03-24 At&T Technologies, Inc. CVD apparatus
US4518455A (en) * 1982-09-02 1985-05-21 At&T Technologies, Inc. CVD Process
US4499853A (en) * 1983-12-09 1985-02-19 Rca Corporation Distributor tube for CVD reactor
US4941429A (en) * 1988-12-20 1990-07-17 Texas Instruments Incorporated Semiconductor wafer carrier guide tracks
US5378501A (en) * 1993-10-05 1995-01-03 Foster; Robert F. Method for chemical vapor deposition of titanium nitride films at low temperatures
US5997588A (en) * 1995-10-13 1999-12-07 Advanced Semiconductor Materials America, Inc. Semiconductor processing system with gas curtain
US6626997B2 (en) 2001-05-17 2003-09-30 Nathan P. Shapiro Continuous processing chamber
WO2004097066A1 (de) * 2003-04-30 2004-11-11 Aixtron Ag Verfahren und vorrichtung zum abscheiden von halbleiterschichten mit zwei prozessgasen, von denen das eine vorkonditioniert ist
CN100582298C (zh) * 2003-04-30 2010-01-20 艾克斯特朗股份公司 利用其之一被预处理的两处理气体来沉积半导体层的方法和设备
US20100012034A1 (en) * 2003-04-30 2010-01-21 Gerhard Karl Strauch Process And Apparatus For Depositing Semiconductor Layers Using Two Process Gases, One Of Which is Preconditioned
US7709398B2 (en) 2003-04-30 2010-05-04 Aixtron Ag Process and apparatus for depositing semiconductor layers using two process gases, one of which is preconditioned
EP2476778A1 (en) * 2011-01-18 2012-07-18 Samsung LED Co., Ltd. Susceptor.
CN102605347A (zh) * 2011-01-18 2012-07-25 三星Led株式会社 基座和包括其的化学气相沉积设备
WO2012127305A1 (en) * 2011-03-21 2012-09-27 Centrotherm Photovoltaics Ag Gas supply for a processing furnace
CN115369387A (zh) * 2021-05-18 2022-11-22 迈络思科技有限公司 连续进给化学气相沉积系统
US11963309B2 (en) 2021-05-18 2024-04-16 Mellanox Technologies, Ltd. Process for laminating conductive-lubricant coated metals for printed circuit boards
US12004308B2 (en) 2021-05-18 2024-06-04 Mellanox Technologies, Ltd. Process for laminating graphene-coated printed circuit boards
US12163228B2 (en) 2021-05-18 2024-12-10 Mellanox Technologies, Ltd. CVD system with substrate carrier and associated mechanisms for moving substrate therethrough
US12221695B2 (en) 2021-05-18 2025-02-11 Mellanox Technologies, Ltd. CVD system with flange assembly for facilitating uniform and laminar flow
US12289839B2 (en) 2021-05-18 2025-04-29 Mellanox Technologies, Ltd. Process for localized repair of graphene-coated lamination stacks and printed circuit boards
US20230002906A1 (en) * 2021-07-01 2023-01-05 Mellanox Technologies, Ltd. Continuous-feed chemical vapor deposition system

Also Published As

Publication number Publication date
BE760041A (fr) 1971-05-17
FR2075030A5 (enExample) 1971-10-08
ES386190A1 (es) 1973-03-16
SE377430B (enExample) 1975-07-07
CA931025A (en) 1973-07-31
CH520525A (de) 1972-03-31
DE2064470B2 (de) 1975-01-09
GB1328390A (en) 1973-08-30
NL7018090A (enExample) 1971-07-06
DE2064470C3 (de) 1975-08-14
DE2064470A1 (de) 1971-07-08

Similar Documents

Publication Publication Date Title
US3672948A (en) Method for diffusion limited mass transport
US3805736A (en) Apparatus for diffusion limited mass transport
US4048955A (en) Continuous chemical vapor deposition reactor
US4798165A (en) Apparatus for chemical vapor deposition using an axially symmetric gas flow
US4468283A (en) Method for etching and controlled chemical vapor deposition
US3603284A (en) Vapor deposition apparatus
DE69404397T2 (de) Verbesserte Suszeptor Ausführung
US3517643A (en) Vapor deposition apparatus including diffuser means
US3922467A (en) Vapour-phase deposition method
US4694778A (en) Chemical vapor deposition wafer boat
US4800105A (en) Method of forming a thin film by chemical vapor deposition
US4430149A (en) Chemical vapor deposition of epitaxial silicon
US4949669A (en) Gas flow systems in CCVD reactors
EP0967633A1 (en) Gas inlets for wafer processing chamber
Bundle The epitaxial growth of silicon in horizontal reactors
US4696833A (en) Method for applying a uniform coating to integrated circuit wafers by means of chemical deposition
EP0164928A2 (en) Vertical hot wall CVD reactor
US3338761A (en) Method and apparatus for making compound materials
US3598082A (en) Continuous epitaxial deposition system
EP0378543B1 (en) Gas injector apparatus for chemical vapor deposition reactors
US3790404A (en) Continuous vapor processing apparatus and method
US5944904A (en) Substrate carrier having a streamlined shape and method for thin film formation
JP2004281836A (ja) 半導体製造装置
US4582020A (en) Chemical vapor deposition wafer boat
US3524776A (en) Process for coating silicon wafers