US3650313A - Method for the production of castings from alloys of metals and gases - Google Patents
Method for the production of castings from alloys of metals and gases Download PDFInfo
- Publication number
- US3650313A US3650313A US863153A US3650313DA US3650313A US 3650313 A US3650313 A US 3650313A US 863153 A US863153 A US 863153A US 3650313D A US3650313D A US 3650313DA US 3650313 A US3650313 A US 3650313A
- Authority
- US
- United States
- Prior art keywords
- gas
- melt
- reservoir
- mould
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 title claims abstract description 64
- 239000002184 metal Substances 0.000 title claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 42
- 238000005266 casting Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229910045601 alloy Inorganic materials 0.000 title claims description 12
- 239000000956 alloy Substances 0.000 title claims description 12
- 150000002739 metals Chemical class 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000005484 gravity Effects 0.000 claims description 2
- 239000000155 melt Substances 0.000 abstract description 36
- 230000004888 barrier function Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102100026450 POU domain, class 3, transcription factor 4 Human genes 0.000 description 1
- 101710133389 POU domain, class 3, transcription factor 4 Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/08—Controlling, supervising, e.g. for safety reasons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
Definitions
- the solubility of the gas which depends upon its partial pressure, may be equal in the melt, as well as in the solidifying metal; the total gas pressure in both [56] References cued chambers may be chosen in accordance with the requirement UNITED STATES PATENTS of the casting process, so that the melt may be conveyed to the mold.- 1,888,132 11/1932 Kinzel 164/66 2,069,205 2/1937 Arness ..75/59 X 4 Claims, 2 Drawing Figures Patented March 21, 1972 2 Sheets-Sheet 1 ATTORNEY INVENTORS I Patented March 21, 1972 3,650,313
- the invention relates to a method of production of shaped castings from metals and metal alloys, which contain in solid state a dissolved or chemically bound gas, in such a quantity as to exert an advantageous influence on the physical, chemical or other properties of the material obtained, as well as to an apparatus for the realization of the method. It is known, that gases when contained as a solid solution or chemically bound components in the structure of metals, have an extremely favorable effect on their properties. Nitrogen, as a typical example, induces in a number of iron-based alloys the formation of structures with improved or new properties.
- the object of the present invention is to overcome the existing difficulties in obtaining highly efficient alloys from metal and gases by using a method which eliminates all the disadvantages mentioned, i.e., a method permitting the obtaining by comparatively simple means castings from such alloys in moulds, whereby the molten metal is treated with the gas to be dissolved in a separate reservoir, which is larger compared to the weight of the casting.
- this problem is solved in such a way that during the casting process the reservoir with the melt and the mould are disposed in separate chambers, and are subjected to the pressure of an atmosphere composed by the gas to be dissolved, and some other gas which is inert to the metal, in such proportion, that the partial pressure of the gas to be dissolved in the chamber with the mold is higher than that in the chamber with the reservoir for the melt.
- solubility of the gas which depends on its partial pressure, may be equal in the melt, as well as in the solidifying metal, and the total gas pressure in both chambers may be chosen in accordance with the requirements of the casting process, i.e., to be equal in both chambers, or to be increased from the side of the chamber with the reservoir for the melt, so that the melt may be conveyed to the mould.
- FIG. 1 shows a first embodiment of apparatus, in which the melt is conveyed under the action of gas pressure
- FIG. 2 shows a second embodiment of apparatus, in which the melt is conveyed gravitationally.
- the reservoir for the melt l is placed in a hermetically closed and heat-insulated or heated chamber 2, and is connected by means of a delivery pipe 3 to the mould 4, which is closed in another hermetic chamber 5.
- a valve 6 and a barrier 7 are provided on the delivery pipe 3 along the path of the metal, which can be controlled by means of familiar devices, i.e., selectively to close and open the delivery pipe while the process takes place.
- Two reservoirs 8 and 9 contain under pressure the gas being dissolved mixed with an inert gas at different and suitably chosen concentrations, while a circulation-regenerative system 10 is provided for purification and returning to these reservoirs the gases that escape from the hermetic chambers with the reservoir for the melt and with the mould.
- the capacity and the pressure of the gas flows are controlled by the valves 12 to 17.
- the process is carried out in the apparatus of F IG. 1 in the following way.
- the chamber 2 with the reservoir for the melt l is filled by opening the valve 12 to permit a gas mixture from the reservoir 8 to flow into a tube 11 immersed in the melt for treating it. It is important that the delivery of the gas mixture should be done slowly and should take place through the melt, by means of the pipe 11 or through a porous wall at the bottom of the crucible, thus ensuring a good mixing of the gas with the melt.
- a gas mixture from reservoir 9 is let in through the valve 13 into the chamber 5 with the mould 4. The pressures in both chambers 2 and 5 are equal during this preparatory stage of the process, so that by opening the barrier 7 no moving of the melt is provoked.
- the melt is conveyed along the delivery pipe 3 to the mould 4 and fills it. If the concentration of the active gas in the reservoir 9, respectively in the chamber 5 and the mould 4, is considerably higher than that in the reservoir 8 and in the chamber 2, it is not possible, because of the short time of filling the mould, to enrich considerably the molten metal with gas; but the whole crystallization process in the mould, which begins immediately after filling of the said mould with melt, takes place at a high partial pressure of the active gas, i.e., the gas already dissolved in the melt 1 cannot be separated from the solidifying-melt and remains dissolved in the said melt.
- the superfluous melt from the delivery pipe returns in the reservoir for the melt, and the barrier 7 may be closed. It will be easy, if needed, to increase additionally the pressure of the active gas in chamber 5 during the period till the crystallization of the casting is completed.
- the casting is removed from the mould 4 after the active gas from chamber'S has been sucked through valve 17 in the circulation-regenerative system 10, in order to be returned in reservoir 9.
- the casting process may be repeated.
- valve 16 is operated for sucking the gas from chamber 2 only after the molten metal in reservoir 1 has been totally drained.
- the apparatus may operate while the melt is conveyed to the mould gravitationally.
- the apparatus has the same basic elements as the apparatus of FIG. 1, and designated by the same reference characters.
- the reservoir for the melt is disposed higher than the mould 4.
- the melt flow may be controlled by a known stopper device 18, which is operated from outside the reservoir for the melt, and opens or closes the pouring hole at the bottom of said reservoir at will.
- a method for the production of castings from alloys of I metals and gases which comprises disposing a reservoir for a melt of metal in a first hermetically closed chamber, disposing a mould in a second hermetically closed chamber, subjecting both chambers to the pressure of an atmosphere composed of the gas to be dissolved in the molten metal and some other gas which is inert to the metal, feeding molten metal from the reservoir into the mould, and controlling the proportions of said gases so that the partial pressure of the gas to be dissolved in the second chamber is higher than that in the first chamber, and maintaining such condition until the casting completely solidifies.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Polyurethanes Or Polyureas (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BG1078568 | 1968-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3650313A true US3650313A (en) | 1972-03-21 |
Family
ID=3897325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US863153A Expired - Lifetime US3650313A (en) | 1968-10-09 | 1969-10-02 | Method for the production of castings from alloys of metals and gases |
Country Status (14)
Country | Link |
---|---|
US (1) | US3650313A (ru) |
JP (1) | JPS524490B1 (ru) |
AT (1) | AT301064B (ru) |
BE (1) | BE739953A (ru) |
CH (1) | CH507756A (ru) |
DK (1) | DK123511B (ru) |
ES (1) | ES372140A1 (ru) |
FR (1) | FR2020237A1 (ru) |
GB (1) | GB1269146A (ru) |
LU (1) | LU59588A1 (ru) |
NL (1) | NL161385C (ru) |
NO (1) | NO133577C (ru) |
SE (1) | SE369048B (ru) |
SU (1) | SU427506A3 (ru) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788790A (en) * | 1971-02-20 | 1974-01-29 | Niitm Pri Ban | Machine for casting under pressure |
US3861457A (en) * | 1971-07-21 | 1975-01-21 | Renault | Regulating devices for pouring molten metal |
US3880221A (en) * | 1971-04-07 | 1975-04-29 | Inst Melalognanie I Technologi | Method for continuous casting of metals |
US3901305A (en) * | 1971-04-07 | 1975-08-26 | Inst Po Metalloznanie I Tekno | Apparatus for continuous casting of metals |
US4405295A (en) * | 1982-03-01 | 1983-09-20 | Amsted Industries Incorporated | Method of manufacturing complex metallic plate |
US4550763A (en) * | 1980-12-11 | 1985-11-05 | Institute Po Metaloznanie I Technologia Na Metalite | Method and machine for pressure diecasting |
US4573517A (en) * | 1982-02-08 | 1986-03-04 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Fiber-reinforced metals |
US6722417B2 (en) * | 2000-04-10 | 2004-04-20 | Nissin Kogyo Co., Ltd. | Deoxidation casting, aluminium casting and casting machine |
US6745816B2 (en) | 2000-05-10 | 2004-06-08 | Nissin Kogyo Kabushiki Kaisha | Method of casting and casting machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1979000436A1 (en) * | 1977-12-26 | 1979-07-12 | Nippon Telegraph & Telephone | Optical coordinate input device |
JPS58209464A (ja) * | 1982-05-28 | 1983-12-06 | Japan Steel Works Ltd:The | 層状複合金属板素材の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1888132A (en) * | 1930-10-27 | 1932-11-15 | Electro Metallurg Co | Method of casting steel ingots |
US2069205A (en) * | 1932-12-03 | 1937-02-02 | Rustless Iron & Steel Corp | Method of producing iron chromium alloys of appreciable nitrogen content |
US2426814A (en) * | 1944-02-24 | 1947-09-02 | George R Burkhardt | Method for treating metals with noble gases |
US2724160A (en) * | 1951-06-08 | 1955-11-22 | Int Alloys Ltd | Method of reducing shrinkage defects in metal castings |
US2745740A (en) * | 1954-09-02 | 1956-05-15 | Ford Motor Co | Process of preparing an iron base melt |
US3196501A (en) * | 1961-01-26 | 1965-07-27 | Balgarska Akademia Na Naukite | Apparatus and method for metal casting |
US3402756A (en) * | 1964-05-12 | 1968-09-24 | Frehser Josef | Process of producing high-nitrogen alloy steel |
-
1969
- 1969-10-02 ES ES372140A patent/ES372140A1/es not_active Expired
- 1969-10-02 US US863153A patent/US3650313A/en not_active Expired - Lifetime
- 1969-10-03 NO NO3954/69A patent/NO133577C/no unknown
- 1969-10-07 CH CH1522069A patent/CH507756A/de not_active IP Right Cessation
- 1969-10-07 AT AT944569A patent/AT301064B/de not_active IP Right Cessation
- 1969-10-07 LU LU59588D patent/LU59588A1/xx unknown
- 1969-10-08 GB GB49526/69A patent/GB1269146A/en not_active Expired
- 1969-10-08 SU SU1364852A patent/SU427506A3/ru active
- 1969-10-08 DK DK535869AA patent/DK123511B/da unknown
- 1969-10-08 NL NL6915179.A patent/NL161385C/xx active
- 1969-10-08 BE BE739953D patent/BE739953A/xx unknown
- 1969-10-08 SE SE13830/69A patent/SE369048B/xx unknown
- 1969-10-08 FR FR6934435A patent/FR2020237A1/fr not_active Withdrawn
- 1969-10-09 JP JP44081085A patent/JPS524490B1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1888132A (en) * | 1930-10-27 | 1932-11-15 | Electro Metallurg Co | Method of casting steel ingots |
US2069205A (en) * | 1932-12-03 | 1937-02-02 | Rustless Iron & Steel Corp | Method of producing iron chromium alloys of appreciable nitrogen content |
US2426814A (en) * | 1944-02-24 | 1947-09-02 | George R Burkhardt | Method for treating metals with noble gases |
US2724160A (en) * | 1951-06-08 | 1955-11-22 | Int Alloys Ltd | Method of reducing shrinkage defects in metal castings |
US2745740A (en) * | 1954-09-02 | 1956-05-15 | Ford Motor Co | Process of preparing an iron base melt |
US3196501A (en) * | 1961-01-26 | 1965-07-27 | Balgarska Akademia Na Naukite | Apparatus and method for metal casting |
US3402756A (en) * | 1964-05-12 | 1968-09-24 | Frehser Josef | Process of producing high-nitrogen alloy steel |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788790A (en) * | 1971-02-20 | 1974-01-29 | Niitm Pri Ban | Machine for casting under pressure |
US3880221A (en) * | 1971-04-07 | 1975-04-29 | Inst Melalognanie I Technologi | Method for continuous casting of metals |
US3901305A (en) * | 1971-04-07 | 1975-08-26 | Inst Po Metalloznanie I Tekno | Apparatus for continuous casting of metals |
US3861457A (en) * | 1971-07-21 | 1975-01-21 | Renault | Regulating devices for pouring molten metal |
US4550763A (en) * | 1980-12-11 | 1985-11-05 | Institute Po Metaloznanie I Technologia Na Metalite | Method and machine for pressure diecasting |
US4573517A (en) * | 1982-02-08 | 1986-03-04 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Fiber-reinforced metals |
US4405295A (en) * | 1982-03-01 | 1983-09-20 | Amsted Industries Incorporated | Method of manufacturing complex metallic plate |
US6722417B2 (en) * | 2000-04-10 | 2004-04-20 | Nissin Kogyo Co., Ltd. | Deoxidation casting, aluminium casting and casting machine |
US6745816B2 (en) | 2000-05-10 | 2004-06-08 | Nissin Kogyo Kabushiki Kaisha | Method of casting and casting machine |
US20050000672A1 (en) * | 2000-05-10 | 2005-01-06 | Keisuke Ban | Method of casting and casting machine |
US6964293B2 (en) | 2000-05-10 | 2005-11-15 | Nissin Kogyo Co., Ltd. | Method of casting and casting machine |
Also Published As
Publication number | Publication date |
---|---|
GB1269146A (en) | 1972-04-06 |
SU427506A3 (ru) | 1974-05-05 |
FR2020237A1 (ru) | 1970-07-10 |
ES372140A1 (es) | 1971-09-16 |
DE1950987B2 (de) | 1974-05-16 |
NL161385C (nl) | 1980-02-15 |
DK123511B (da) | 1972-07-03 |
SE369048B (ru) | 1974-08-05 |
JPS524490B1 (ru) | 1977-02-04 |
BE739953A (ru) | 1970-03-16 |
DE1950987A1 (de) | 1970-04-16 |
NO133577C (ru) | 1976-05-26 |
NL161385B (nl) | 1979-09-17 |
NL6915179A (ru) | 1970-04-13 |
NO133577B (ru) | 1976-02-16 |
CH507756A (de) | 1971-05-31 |
LU59588A1 (ru) | 1970-01-15 |
AT301064B (de) | 1972-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3650313A (en) | Method for the production of castings from alloys of metals and gases | |
US4004630A (en) | Process for the manufacture of cast iron | |
KR910009368B1 (ko) | 압력 주조장치 | |
CN113857461A (zh) | 一种熔体控制原位自生铝基复合材料调压铸造方法和系统 | |
US3987844A (en) | Pressure casting apparatus with hermetically sealed housing and tiltable melt-containing crucible | |
US3884291A (en) | Apparatus for production of castings from alloys of metals and gases | |
NO162847B (no) | Fremgangsmaate og anordning for behandling av smeltet metall. | |
US4977946A (en) | Differential pressure, countergravity casting of individual charges of melt from a casting basin | |
US3693698A (en) | Method of casting volatile metals | |
US4616808A (en) | Apparatus for the treatment and casting of metals and alloys in a closed space | |
US3901305A (en) | Apparatus for continuous casting of metals | |
US3519061A (en) | Apparatus for use in melting and casting metals | |
JPH06622A (ja) | 差圧反重力鋳造方法及びその装置 | |
SU1101174A3 (ru) | Способ лить черных металлов вакуумным всасыванием в газопроницаемую оболочковую форму | |
EP0473062A2 (en) | Differential pressure, countergravity casting with alloyant introduction | |
US3929185A (en) | Apparatus for treating cast materials in the molten state | |
US3880221A (en) | Method for continuous casting of metals | |
DE2651842A1 (de) | Vorrichtung zum giessen von metallkoerpern, insbesondere von dentalgusskoerpern | |
JPS62289360A (ja) | 鋳造方法およびその装置 | |
RU67901U1 (ru) | Установка плавильно-заливочная для литья художественных изделий из цветных металлов | |
RU2026147C1 (ru) | Устройство для изготовления отливок с кристаллизацией под давлением | |
KR100308917B1 (ko) | 저압주조로 내에서 연속적으로 가스를 제거하는 방법 및 장치 | |
SU1027921A1 (ru) | Способ разливки расплавов | |
US3605861A (en) | Modifying cast structure | |
SU1034835A1 (ru) | Способ разливки стали и устройство дл его осуществлени |