US3648113A - Electronic assembly having cooling means for stacked modules - Google Patents
Electronic assembly having cooling means for stacked modules Download PDFInfo
- Publication number
- US3648113A US3648113A US3648113DA US3648113A US 3648113 A US3648113 A US 3648113A US 3648113D A US3648113D A US 3648113DA US 3648113 A US3648113 A US 3648113A
- Authority
- US
- United States
- Prior art keywords
- units
- cavity
- mounting plate
- stacked
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims description 10
- 239000004020 conductor Substances 0.000 claims description 13
- 230000013011 mating Effects 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 6
- 238000009429 electrical wiring Methods 0.000 claims description 3
- 239000012809 cooling fluid Substances 0.000 abstract description 11
- 239000004593 Epoxy Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000035508 accumulation Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 244000186140 Asperula odorata Species 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 235000008526 Galium odoratum Nutrition 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20536—Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
- H05K7/20554—Forced ventilation of a gaseous coolant
- H05K7/20563—Forced ventilation of a gaseous coolant within sub-racks for removing heat from electronic boards
Definitions
- a modular electronic system includes a plurality of stacked electronic units.
- the stacked units have a first cavity therethrough along one edge thereof, and a second cavity therethrough along an opposite edge thereof. Each of the units has a spacing joining the two cavities.
- a first mounting plate has an orifice therethrough for communicating with the first cavity, and a second mounting plate has an orifice "therethrough for communicating with the second cavity.
- Means are provided for clamping the fist mounting plate, the stacked units, and the second mounting plate together, so that cooling fluid can be passed from an exterior source through the first mounting plate orifice, through the first cavity, through in parallel all of the spacings, through the second cavity, and exiting through the second mounting plate orifice.
- This invention relates to modular electronic systems and, in particular, relates to a high-density electronic packaging arrangement which provides for efficient heat dissipation and can withstand high vibration and shock. Accordingly, the general objects of the invention are to provide new and improved apparatus of such character.
- circuit board card arrangement for the interconnection of electronic components is described.
- the aforesaid patent relates to a circuit board for the interconnection of electronic components such as flat packs and discrete components, and includes a flat rectangular plate with an insulating coating having a plurality of apertures wherever necessary for passing leads.
- a metal frame Around the plate is a metal frame and an extension which may be coupled to a heat exchanger.
- an epoxy resin Over one or both faces of each flat side of the plate is an epoxy resin and an XY circuit board with X-lines on one side and Y-lines on the other. Electrostatic shielding is provided by applying a ground termination to the plate.
- Apparatus constructed and operated in accordance with the teachings of the aforementioned patent, utilized a plurality of card units in which each card unit contained a central aluminum core and two epoxy circuit boards laminated to each side of the core.
- the aluminum body of each card unit was connected by contacts to the outside surface of a frame.
- the outside surface of the frame was formed in a corrugated manner to act as a heat exchanger so that, when air was blown past the outside surface of the frame, the large corrugated surface area would give up heat to effectively cool the entire electrical package. Air would be passed from one card, to the next card, and to the succeeding cards in a manner which could be referred to as a series type heat exchanger.
- an integral, interconnect board otherwise termed a motherboard, contained all the interconnect connections in one solid block for all the modular circuit board units.
- the motherboard was fixed dimensionally, was not easily changeable, and would necessitate a redesign if it was desired that additional circuit boards be added to the overall system.
- Another object of this invention is to provide new and improved modular electronic systems.
- Another object of this invention is to provide new and improved modular electronic systems which can withstand high shock and vibration.
- Still another object of this invention is to provide new and improved modular electronic systems in which the systems can be made expandable by adding additional components thereto or by deleting several components therefrom, without necessitating a complete redesign of such a structure.
- a modular electronic system including a plurality of stacked electronic circuit units having a first cavity through the stack along one edge thereof and a second cavity through the stack along an opposite edge thereof. Each of the units has a spacing joining the two cavities.
- a first mounting plate is provided having an orifice therethrough for communicating with the first cavity.
- a second mounting plate has an orifice therethrough for communicating with the second cavity. Means are provided for clamping the first mounting plate, the stacked units, and the second mounting plate together so that cooling fluid can be passed from an exterior source through the first mounting plate orifice, through the first cavity, through in parallel all of the spacings, through the second cavity, and exiting through the second mounting plate orifice.
- the invention contemplates a modular electronic system including a first plurality of stacked electronic circuit units wherein each of the units includes a first laminate formed by a first substantially rectangular printed circuit board having components thereon, a first substantially rectangular thin sheet of heat conductive material, and insulating means for laminating the printed circuit board to the printed sheet.
- the unit further includes a second laminate similarly formed.
- a hollow heat conductive frame holds the two laminates, one on each side thereof, wherein the sheets of both laminates are oriented inwardly with respect to the frame and separated from each other to form a spacing between them, the frame being formed in a generally rectangular configuration having four border members.
- a first elongated aperture is formed through and along one of said border members from one side of the frame to the opposite side thereof.
- a slot is provided joining the first elongated aperture to the spacing.
- a second of the border members nonadjacent to the first member has an elongated aperture formed therethrough and therealong from one side of the frame to the opposite side thereof, and further having a slot joining the second elongated aperture to the spacing.
- the laminates are fixed to both sides of the frame.
- the modular electronic system further includes a front mounting plate in contact with one end of the stacked electronic units having an orifice therethrough for communicating with the first elongated apertures of the frames, and a back mounting plate in contact with the opposite end of the stacked electronic units having an orifice therethrough for communicating with the second elongated apertures of the frames.
- the front and back mounting plates the the intermediately oriented stacked electronic units are clamped so that cooling fluid can be passed from an outside source, serially through the front mounting plate orifice, through a plenum formed by the stacked first elongated apertures of the circuit units, through in parallel the first slots of all the frames, then the spacing of all the frames, thereby directly cooling the sheets and indirectly cooling the boards and the components on the boards, and then the second slots of all the frames, serially through a cavity formed by the stacked elongated apertures of the circuit units, and exiting through the back mounting plate orifice.
- the printed circuit boards have male electrical contacts disposed along a third of the border members and further include electrical interconnecting means including female electrical contacts for mating with the male contacts.
- Each male electrical contact has a width substantially greater than its thickness and is so oriented with its width perpendicular to the surface of the printed circuit boards.
- the corresponding mating female electrical contacts are tight fitting with respect to thickness and loose fitting with respect to width.
- Additional features of the invention include electrical interconnecting means having a first electrical interconnect board containing female electrical contacts for communicating with the corresponding male contacts of the first plurality of the adjacent stacked electronic circuit units, a second electrical interconnect board containing female electrical contacts for communicating with corresponding male contacts of a second plurality of adjacent stacked electronic units and flexible electrical wiring tape for joining the first interconnect board to the second interconnect board.
- the modular system would further include a dummy electronic circuit unit having a plate having an elongated aperture along two opposite borders thereof so as to align, plenum and cavity, with the first and second pluralities of stacked units, said plate having a concavity within the third border thereof, so as to receive a loop ofthe tape therewithin.
- the wiring tape would have a length exceeding a value L +T wherein L is a value representing the width of the dummy plate and wherein T is a value representing the maximum dimensional tolerance error in width that could occur by stacking a first plurality of adjacent stacked circuit units together.
- each of the stacked electronic circuit units contains a heat conductive structural member joining one of the border members intermediate the first elongated aperture to the second of the border members intermediate the second elongated aperture.
- the width of the various structural members are optimized so as to vary the cross-sectional area of the spacings of each unit and to control the corresponding coolant fluid flow rate therebetween so as to optimize the degree of cooling ofeach circuit unit.
- FIG. 1 is a perspective view of one embodiment of the invention
- FIG. 2 is a sectional view taken along the lines 2-2 of FIG.
- FIG. 3 is a sectional view taken along the lines 3-3 of FIG.
- FIG. 4 is a sectional view taken along the lines 4-4 of FIG.
- FIG. 5 is a schematic plan view showing the flow of cooling fluid through the system illustrated in FIG. 1;
- FIG. 6 is an exploded view of an electronic circuit unit for use in the embodiment of FIG. 1;
- FIG. 7 is a partial cross-sectional view of an electronic circuit unit including a discrete component, such as a resistor, affixed to one side of the unit in which the leads of the components are coupled to the opposite side of the unit.
- a discrete component such as a resistor
- FIG. 1 illustrates, in perspective, a modular electronic system 10 constructed in accordance with the teachings of this invention.
- the system 10 includes a plurality of stacked electronic units 11-11, one of the units 11 being shown partially removed from the stack to provide for a better understanding of the invention.
- An optional, enclosing cover 12 is shown partly broken away and exploded away from the unit 10 to provide for a better pictorial representation of the view.
- a front mounting plate 13 has an orifice 14 for an air inlet therethrough for providing a coolant fluid through to the system 10.
- the coolant fluid may be air or other suitable medium.
- the front mounting plate 13 includes various electrical connectors 16-16 for mating with electrical cables (not shown) for connection to other electrical apparatus (not shown).
- a rear mounting plate 18 is provided at the opposite end of the system 10. Clamping arms 19-19, at both the upper left and upper right of the system 10, are pivotally connected to the rear mounting plate 18, and are adapted to engage with the front mounting plate 13 so as to clamp the rear mounting plate 18, all of the electronic units 11-11, and the front mounting plate 13 together in a stacked arrangement. The clamping arms hold the units 11-11 together from front to back. They do not press the units ll-ll down as such.
- the clamping arms hold the units 11-11 together from front to back. They do not press the units ll-ll down as such.
- FIG. 2 shows a sectional view of an electronic unit 11 taken along the lines 2-2 of FIG. 1.
- FIG. 6 illustrates an exploded view thereof.
- the electronic unit 11 includes a hollow, heat conductive frame 20 constructed of suitable heat conductive material, such as aluminum.
- the hollow frame 20 is generally rectangular in shape and is provided with cutaway notches clamping arms 19-19 and lower guide rods (not shown).
- the hollow frame 20 is formed with a left border member 22, a top border member 23, a right border member 24, and a lower border member 25.
- the left border member 22 has an elongated aperture 27 formed therein and therealong from one side of the frame 20 to the opposite side thereof.
- the right border member 24 contains an elongated aperture 28 therethrough and therealong from one side of the frame 20 to the opposite side thereof.
- a slot 29 joins the aperture 27 to the interior or hollow portion of the frame 20.
- the slot 29 may be constructed of two distinct slot portions 29a, 29b between the aperture 27 and the hollow portion of the frame 20.
- the slot portions 29a, 2912 can be separated by a structural member 31 which joins the left border member 22 to the right border member 24.
- slot portions 32a, 32b join the hollow portion of the frame 20 to the aperture 28 of the right border member 24.
- Most of the units 11-11 include the structural member 31, or central spacer from one side to the other to provide support.
- the width of the member 31 can vary, depending upon the amount of air in which is desired to flow through the unit 11 to provide for optimum heat dissipation therethrough.
- the electronic unit 11 includes the hollow heat conductive frame 20 as its basic structural member.
- the unit 11 includes a pair of laminates 36, 43 (FIG. 6), one affixed to each side of the frame 20.
- the laminate 36 includes a first, substantially rectangular printed circuit board 33, having components 34-34 disposed thereon, and a first, similarly shaped rectangular thin sheet 35 of heat conductive metal, such as copper.
- Electrical insulating means 37 are provided for laminating the printed circuit board 33 to the metal sheet 35.
- a second printer circuit board 39, a metal sheet 41, and electrical insulating means 42 are laminated together to form the laminate 43.
- the laminates 36 and 43 are affixed to each side of the heat conductive frame 20 by means of adhesive 44.
- FIG. 2 further illustrates the electronic unit 11 inserted into an electrical connection medium, such as a motherboard 50, through the use of male electrical contacts 51-51.
- the male electrical contacts 51-51 of the printed circuit boards 33, 39 fit within corresponding female electrical contacts of the motherboard 50.
- Each male electrical contact 51 has a width substantially greater than its thickness.
- the contacts 51-51 are so oriented with their widths perpendicular to the surface of the printed circuit boards 33, 39.
- the mating female electrical contacts of the motherboard 50 are tight fitting with respect to thickness and loose fitting with respect to width, so that the electronic units 11-11 can be slightly moved in a directing towards or away from the front of the system as shown inFlG. 1.
- the contacts 51-51 of the printed circuit boards 33, 39 are oriented perpendicular to the surfaces thereof so that when they are fed into the motherboard 50, they may move longitudinally to permit for some movement with respect to the motherboard due to tolerance accumulations.
- the boards 33, 39 may still properly mate within the motherboard 50 due to the extra width of the female contacts of the motherboard with respect to the individual contacts 51-51 of the printed circuit boards.
- FIG. 3 illustrates a sectional view taken along the lines 3-3 of FIG. 2, wherein the motherboard 50 is coupled to a second motherboard 52 by means of flexible wiring tape 53.
- the flexible wiring tape 53 fits within a concavity of a dummy electronic unit 54.
- a dummy unit 54 is inserted between each functional set of units 11. This dummy unit 54 would reside between two adjacent motherboards 50, 52 which are connected to each other by the flexible printed wiring tape 53, the length of the flexible printed wiring tape being somewhat in excess of the width of the dummy unit 54.
- the flexible tape 53 is of sufficient length to form a loop within the concavity, so that, due to tolerance limitations and errors that may occur, close compacting of the electronic units 11-11 can occur without physically damaging the contacts 51-51 or the motherboards 50, 52.
- the motherboard 50 (and, similarly, the motherboard 52) is constructed physically of two portions: an epoxy circuit board portion 50a and a rigid female connector plate 50b.
- an epoxy circuit board portion 50a and a rigid female connector plate 50b.
- the male contacts 51-51 from the electronic units 11-11 fit within the female connector plate 5011, the connector plate 50b providing contacts then directly to the epoxy circuit board 50a.
- the epoxy circuit board 50a and the connector plate 50b act as a motherboard 50 and, by the nature of its construction, combines the versatility of printed circuitry, via the epoxy circuit board 500, together with the structural advantages that a rigid connector plate 50b offers.
- flexible wiring tape 53 such as polyethylene terephthalate tape (such tape being available under the trademark name Mylar) is to take care ofa situation wherein each of the units 11 is not precisely to size.
- the units 11 may vary in tolerance so that if the units ll-ll are slightly oversized or slightly undersized, improper fitting might occur.
- the motherboards 50, 52 permitted to float, all the units 11-11 can fit without jamming, and the units 1l-11 properly mate with the motherboards 50, 52.
- the electronic unit 11 may house components 34-34, which components 34, typically, may be flat packs and other miniaturized circuits including beam lead integrated circuits and the like, which can be affixed directly to the printed circuitry of the printed circuit board 33.
- components 34 typically, may be flat packs and other miniaturized circuits including beam lead integrated circuits and the like, which can be affixed directly to the printed circuitry of the printed circuit board 33.
- discrete larger components such as a resistor 61, as shown in FIG. 7, can be held against the surface of the printed circuit board 39, with its leads 62 going through the laminate 43, the hollow spacing or chamber within the unit 11, through the laminate 36, and affixed to the circuitry of the printed circuit board 33.
- the leads 62 of the resistor 61 be enclosed within the spacing between the two laminates 43, 36 by an insulating epoxy button 63.
- the electronic unit 11, when holding discrete components, such as resistors 61 may have the epoxy button 63 placed within the air spacing between the two opposed laminates 36, 43 which is cemented in place with epoxy. Then, a hole is drilled through the two laminates 36, 43 through the epoxy button 63 so that the resistor 61 wire lead can be fed through the epoxy button 63.
- the button 63 isolates the resistor 61 from the coolant fluid that is to be passed between the spacings of the electronic units 11-11.
- the button 63, or equivalent is necessary for certain government requirements and is highly desired from a safety viewpoint in that, one, a fire hazard is eliminated and, two, air leakage through the resistor hole is inhibited.
- FIG. 5 is a schematic plan view showing the flow of cooling fluid through the system 10, wherein cooling fluid can be passed through the intake orifice 14 of the front mounting plate 13, and passed through a plenum 66 formed by the elongated apertures 28 of each of the electronic units 11-11.
- the cooling fluid then passes from the plenum 66, in parallel, through all the slot portions 32a, 32b of the. electronic units 11-11, through the hollow spacings 67-67 within the units 11-11, and out through all the slot portions 29a 29b thereof to the cavity 68 formed by all of the elongated apertures 27 of the electronic units 11-11.
- Cooling fluid passes therefrom through an exiting orifice 69 in the rear mounting plate 18.
- the modular electronic system 10 is able to withstand high vibrations, high shock, and high g accellerations making it highly suitable for use in aircraft and spacecraft. Due to its construction, it is inherently a rigid low vibration transmissibility structure.
- the overall modular system 10 can be made expandable because of the independent front mounting plate 13 and the independent rear mounting plate 18, so that if it is desired to add additional electronic units 11-11, the rear plate 18 can be extended so that additional units 11-11 can be inserted therein.
- the two clamping arms 19-19 can be replaced by larger or longer arms.
- This invention is applicable to almost any kind of electronic system, such as television, radar, computers, and the like, with especial emphasis on large industrial or government systems.
- a plurality of cards can form an input-output unit, a processing unit, a memory, a power supply, and a voltage regulator. It is desirable that these blocks" be modular and removable and functionally independent of each other. It is desired that an interconnection system be associated with each of the blocks.”
- the metal sheets 35, 41 are copper, although aluminum or another suitable conductive metal may be used. Copper is preferred because it is easy to manufacture. A copper interface between the components and the air acts as a thermal diffuser to spread heat concentrations. It decreases the heat density over a large surface of the copper sheet.
- the frames 20, are, preferably, hard anodized aluminum. There is some, but very little, heat dissipation through the frame 20. This ,is advantageous because if an air supply is temporarily terminated. then there is some heat dissipated through the frame 20 of the individual units 11-11,
- each individual frame 20 can be provided with gaskets about the large apertures 27, 28 to prevent leakage of air.
- this design is adaptable for continuous heat dissipation by thermal conduction by including an additional plate through which a cooling fluid passes. Sandwiched between this plate and the irregular surface formed by the plurality of frames 20 would be a thin flexible sheet, made from a good thermally conductive material, which would permit sufficient thermal conduction between the irregular surface and the additional plate. Therefore heat is removed from the system by thermal conduction from the copper sheets, e.g., 35 and 41, through the frame 20, through the sheet of conductive material to the external cold plate the temperature of which is maintained at some approximately low level by the cooling fluid.
- a modular electronic system comprising A. a plurality of stacked electronic circuit units having a first cavity through the stack along one edge thereof, and a second cavity through the stack along an opposite edge thereof, each of said units having a chamber joining said first cavity to said second cavity, each of said units including, a first insulated printed circuit board having components thereon and a first sheet of heat conductive material forming together a first laminate, a second insulated printed circuit board having components thereon and a second sheet of heat conductive material forming together a second laminate, and a frame holding said first laminate on one side thereof and holding said second laminate on the opposite side thereof forming said chamber therebetween, said frame having a pair of slots connecting said chamber to said first cavity and to said second cavity,
- D. means clamping said first mounting plate, said stacked units, and said second mounting plate together forming a continuous passageway through 1. said first mounting plate orifice, through 2. said first cavity, through, in parallel,
- a modular electronic system comprising: A. a plurality of stacked electronic circuit units, each ofsaid units including 1. a first, substantially rectangular, printed circuit board having components thereon, 2. a first, substantially rectangular, thin sheet of heat conductive material,
- a hollow, heat conductive frame holding said first laminate on one side thereof, and holding said second laminate on the opposite side thereof, the sheets of both of said laminates being oriented inwardly with respect to said frame and separated from each other to form a chamber between them, said frame being formed in a generally rectangular configuration having four border members,
- one of said border members having a first elongated aperture formed therethrough and therealong from one side of said frame to the opposite side of said frame, and further having a first slot joining said first elongated aperture to said chamber, and
- a second of said border members nonadjacent to said one member, having an elongated aperture hereinafter termed second elongated aperture formed therethrough and therealong from one side of said frame to the opposite side of said frame, and further having a slot-hereinafter termed second slot-joining said second elongated aperture to said chamber, and
- D. means clamping the front and back mounting plates and the intermediately oriented stacked electronic units forming a continuous passageway through 1. said front mounting plate orifice, through 2. a plenum formed by the stacked first elongated apertures ofsaid circuit units, through, in parallel,
- each male electrical contact has a width substantially greater than its thickness, said male contacts being so oriented with their widths perpendicular to the surface of the printed circuit boards, and wherein the mating female electrical contacts are tight fitting with respect to thickness and loose fitting with respect to width.
- said electrical interconnecting means comprises A. a first electrical interconnect board containing female electrical contacts communicating with corresponding male contacts of a first plurality of adjacent stacked electronic circuit units;
- said system further comprising a dummy electroniccircuit unit including a plate having a width L having elongated apertures along two opposite borders thereof so as to align, plenum and cavity, with the first and second pluralities of stacked units, said plate having a concavity within a third border thereof so as to receive a loop of said tape therewithin, and wherein the value T represents the maximum dimensional tolerance error in width that can occur by stacking a first plurality of adjacent stacked circuit units together.
- each of said stacked electronic circuit units contains a heat conductive structural member joining one of
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8287370A | 1970-10-22 | 1970-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3648113A true US3648113A (en) | 1972-03-07 |
Family
ID=22173994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3648113D Expired - Lifetime US3648113A (en) | 1970-10-22 | 1970-10-22 | Electronic assembly having cooling means for stacked modules |
Country Status (9)
Country | Link |
---|---|
US (1) | US3648113A (ja) |
JP (1) | JPS526462B1 (ja) |
CA (1) | CA923213A (ja) |
DE (1) | DE2152541C3 (ja) |
FR (1) | FR2109696A5 (ja) |
GB (1) | GB1312404A (ja) |
IL (1) | IL37186A (ja) |
IT (1) | IT938913B (ja) |
SE (1) | SE369573B (ja) |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3843910A (en) * | 1971-10-18 | 1974-10-22 | Thomson Csf | Cooling system for components generating large amounts of heat |
US3846678A (en) * | 1970-12-19 | 1974-11-05 | Bbc Brown Boveri & Cie | Multi-celled mounting frame for static converter modules |
US3904933A (en) * | 1974-10-23 | 1975-09-09 | Control Data Corp | Cooling apparatus for electronic modules |
US3956673A (en) * | 1974-02-14 | 1976-05-11 | Lockheed Aircraft Corporation | Printed circuit modules cooled by rack with forced air |
US3962608A (en) * | 1973-07-13 | 1976-06-08 | Forster Electronic Gmbh | Apparatus for holding and cooling electronic circuit boards in remote-controlled typewriters |
US4006388A (en) * | 1975-03-03 | 1977-02-01 | Hughes Aircraft Company | Thermally controlled electronic system package |
US4120021A (en) * | 1964-07-08 | 1978-10-10 | Cray Research, Inc. | Cooling system for electronic assembly |
US4120020A (en) * | 1975-08-20 | 1978-10-10 | U.S. Philips Corporation | Electronic component with heat cooled substrates |
US4122508A (en) * | 1977-09-06 | 1978-10-24 | Altec Corporation | Modular printed circuit board assembly having cooling means incorporated therein |
US4135225A (en) * | 1977-09-19 | 1979-01-16 | Welsh James W | Pivotal structural enclosure |
US4186422A (en) * | 1978-08-01 | 1980-01-29 | The Singer Company | Modular electronic system with cooling means and stackable electronic circuit unit therefor |
US4283754A (en) * | 1979-03-26 | 1981-08-11 | Bunker Ramo Corporation | Cooling system for multiwafer high density circuit |
US4393437A (en) * | 1978-11-11 | 1983-07-12 | Ferranti Limited | Cooling means for circuit assemblies each including hollow structures spaced apart in a container |
US4503483A (en) * | 1982-05-03 | 1985-03-05 | Hughes Aircraft Company | Heat pipe cooling module for high power circuit boards |
FR2651636A1 (fr) * | 1989-09-06 | 1991-03-08 | Segem | Bac electronique modulaire a ventilation incorporee. |
US5014904A (en) * | 1990-01-16 | 1991-05-14 | Cray Research, Inc. | Board-mounted thermal path connector and cold plate |
US5099254A (en) * | 1990-03-22 | 1992-03-24 | Raytheon Company | Modular transmitter and antenna array system |
US5159529A (en) * | 1991-05-15 | 1992-10-27 | International Business Machines Corporation | Composite liquid cooled plate for electronic equipment |
US5274530A (en) * | 1992-05-29 | 1993-12-28 | Anderson William B | Module for protecting and cooling computer chip die mounted on a thin film substrate and a chassis for conduction cooling of such modules |
US5343359A (en) * | 1992-11-19 | 1994-08-30 | Cray Research, Inc. | Apparatus for cooling daughter boards |
US5473508A (en) * | 1994-05-31 | 1995-12-05 | At&T Global Information Solutions Company | Focused CPU air cooling system including high efficiency heat exchanger |
US5482109A (en) * | 1994-03-15 | 1996-01-09 | E-Systems, Inc. | Modular heat exchanger |
US5493473A (en) * | 1993-06-30 | 1996-02-20 | Nec Corporation | Case for shielding electronic circuit members from electromagnetic waves |
WO1998001015A1 (en) * | 1996-06-28 | 1998-01-08 | Motorola Inc. | Spray-cooling circuit board apparatus |
US5726857A (en) * | 1996-02-22 | 1998-03-10 | Cray Research, Inc. | Apparatus and method for mounting edge connectors within a circuit module |
US5737186A (en) * | 1995-04-20 | 1998-04-07 | Daimler-Benz Ag | Arrangement of plural micro-cooling devices with electronic components |
US5740018A (en) * | 1996-02-29 | 1998-04-14 | The United States Of America As Represented By The Secretary Of The Navy | Environmentally controlled circuit pack and cabinet |
US5767443A (en) * | 1993-07-10 | 1998-06-16 | Micron Technology, Inc. | Multi-die encapsulation device |
US5946189A (en) * | 1997-04-23 | 1999-08-31 | Compaq Computer Corporation | Pivotable support and heat sink apparatus removably connectable without tools to a computer processor |
US5947188A (en) * | 1995-07-07 | 1999-09-07 | Ab Volvo Penta | Method and a device for permitting cooling of heat-sensitive components |
EP0992430A3 (en) * | 1998-10-07 | 2000-09-13 | Negesat Di Boer Fabrizio & C. SNC | Housing providing cooling for equipment aboard aircraft or spacecraft |
US6169247B1 (en) * | 1998-06-11 | 2001-01-02 | Lucent Technologies Inc. | Enclosure for electronic components |
US6252302B1 (en) | 1996-09-19 | 2001-06-26 | Warren M. Farnworth | Heat transfer material for an improved die edge contacting socket |
US6297960B1 (en) * | 1998-06-30 | 2001-10-02 | Micron Technology, Inc. | Heat sink with alignment and retaining features |
US20030221999A1 (en) * | 2002-04-20 | 2003-12-04 | Weaver Jeffrey S. | Electrostatic precipitator for removing zinc whiskers from cooling air for electronics systems |
FR2845821A1 (fr) * | 2002-10-11 | 2004-04-16 | Thales Sa | Substrat electronique d'un module electronique a trois dimensions a fort pouvoir de dissipation thermique et module electronique |
US20050237714A1 (en) * | 2004-04-26 | 2005-10-27 | Heiko Ebermann | Cooling system for equipment and network cabinets and method for cooling equipment and network cabinets |
US20070070601A1 (en) * | 2005-09-27 | 2007-03-29 | Lockheed Martin Corporation | Flow through cooling assemblies for conduction-cooled circuit modules |
US20070086158A1 (en) * | 2005-10-14 | 2007-04-19 | Smiths Aerospace Llc | Method for electronics equipment cooling having improved EMI control and reduced weight |
US20080029480A1 (en) * | 2005-09-19 | 2008-02-07 | Raytheon Company | Armor for an electronically scanned array |
EP1934668A2 (en) * | 2005-09-06 | 2008-06-25 | Beyond Blades Ltd. | 3-dimensional multi-layered modular computer architecture |
US20080225496A1 (en) * | 2006-03-24 | 2008-09-18 | Fujitsu Limited | Electronic apparatus |
US20090146293A1 (en) * | 2004-11-24 | 2009-06-11 | Danfoss Silicon Power Gmbh | Flow distribution module and a stack of flow distribution modules |
US20090225510A1 (en) * | 2008-03-06 | 2009-09-10 | Northrop Grumman Systems Corporation | Ruggedized, self aligning, sliding air seal for removable electronic units |
US20100008025A1 (en) * | 2006-08-30 | 2010-01-14 | Thales | Electronic rack combining natural convection and forced air circulation for its cooling |
US20100302727A1 (en) * | 2008-08-05 | 2010-12-02 | Thales | Onboard Computer Equipped with a Stand-Alone Aeraulic Cooling Device |
US20120020017A1 (en) * | 2010-07-20 | 2012-01-26 | Kehret William E | Printed circuit board module enclosure and apparatus using same |
US8174826B2 (en) * | 2010-05-27 | 2012-05-08 | International Business Machines Corporation | Liquid cooling system for stackable modules in energy-efficient computing systems |
US8179674B2 (en) | 2010-05-28 | 2012-05-15 | International Business Machines Corporation | Scalable space-optimized and energy-efficient computing system |
US20120170224A1 (en) * | 2010-12-29 | 2012-07-05 | Src, Inc. | Circuit board frame with integral heat sink for enhanced thermal transfer |
US8279597B2 (en) | 2010-05-27 | 2012-10-02 | International Business Machines Corporation | Heatsink allowing in-situ maintenance in a stackable module |
US8358503B2 (en) | 2010-05-28 | 2013-01-22 | International Business Machines Corporation | Stackable module for energy-efficient computing systems |
US9258926B2 (en) | 2014-06-24 | 2016-02-09 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US9357670B2 (en) | 2014-02-18 | 2016-05-31 | Lockheed Martin Corporation | Efficient heat transfer from conduction-cooled circuit cards |
US9392086B2 (en) | 2013-06-26 | 2016-07-12 | E Ink Holdings Inc. | Electronic apparatus |
US9408332B2 (en) | 2014-06-24 | 2016-08-02 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US9426931B2 (en) | 2014-02-07 | 2016-08-23 | Lockheed Martin Corporation | Fluid-flow-through cooling of circuit boards |
US9560789B2 (en) | 2014-06-24 | 2017-01-31 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US9593876B2 (en) | 2012-09-07 | 2017-03-14 | David Smith | Cooling electronic devices installed in a subsurface environment |
US9699939B2 (en) | 2014-06-24 | 2017-07-04 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US20170259672A1 (en) * | 2016-03-09 | 2017-09-14 | Ford Global Technologies, Llc | Power-Module Assembly with Dummy Module |
US9826640B2 (en) | 2013-06-26 | 2017-11-21 | E Ink Holdings Inc. | Electronic apparatus |
US9961808B2 (en) | 2016-03-09 | 2018-05-01 | Ford Global Technologies, Llc | Power electronics system |
US10017073B2 (en) | 2016-03-09 | 2018-07-10 | Ford Global Technologies, Llc | Coolant channels for power module assemblies |
US11191186B2 (en) | 2014-06-24 | 2021-11-30 | David Lane Smith | System and method for fluid cooling of electronic devices installed in an enclosure |
US11421921B2 (en) | 2012-09-07 | 2022-08-23 | David Lane Smith | Cooling electronic devices installed in a subsurface environment |
US11502349B2 (en) | 2020-08-31 | 2022-11-15 | Borgwarner, Inc. | Cooling manifold assembly |
US11744041B2 (en) | 2014-06-24 | 2023-08-29 | David Lane Smith | System and method for fluid cooling of electronic devices installed in an enclosure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4994507A (ja) * | 1973-01-17 | 1974-09-07 | ||
DE3536963A1 (de) * | 1985-10-17 | 1987-04-23 | Diehl Gmbh & Co | Baugruppenanordnung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2942856A (en) * | 1959-01-13 | 1960-06-28 | Kenneth E Woodward | Fluid-cooled electrical module assembly |
US3124720A (en) * | 1964-03-10 | Modular electronic assemblies with cooling means | ||
US3395318A (en) * | 1967-02-13 | 1968-07-30 | Gen Precision Inc | Circuit board card arrangement for the interconnection of electronic components |
-
1970
- 1970-10-22 US US3648113D patent/US3648113A/en not_active Expired - Lifetime
-
1971
- 1971-06-29 IL IL3718671A patent/IL37186A/xx unknown
- 1971-07-02 CA CA117273A patent/CA923213A/en not_active Expired
- 1971-07-20 GB GB3392471A patent/GB1312404A/en not_active Expired
- 1971-08-16 FR FR7129820A patent/FR2109696A5/fr not_active Expired
- 1971-08-19 JP JP6265171A patent/JPS526462B1/ja active Pending
- 1971-10-01 IT IT2939471A patent/IT938913B/it active
- 1971-10-21 DE DE2152541A patent/DE2152541C3/de not_active Expired
- 1971-10-21 SE SE1338071A patent/SE369573B/xx unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124720A (en) * | 1964-03-10 | Modular electronic assemblies with cooling means | ||
US2942856A (en) * | 1959-01-13 | 1960-06-28 | Kenneth E Woodward | Fluid-cooled electrical module assembly |
US3395318A (en) * | 1967-02-13 | 1968-07-30 | Gen Precision Inc | Circuit board card arrangement for the interconnection of electronic components |
Cited By (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4120021A (en) * | 1964-07-08 | 1978-10-10 | Cray Research, Inc. | Cooling system for electronic assembly |
US3846678A (en) * | 1970-12-19 | 1974-11-05 | Bbc Brown Boveri & Cie | Multi-celled mounting frame for static converter modules |
US3843910A (en) * | 1971-10-18 | 1974-10-22 | Thomson Csf | Cooling system for components generating large amounts of heat |
US3962608A (en) * | 1973-07-13 | 1976-06-08 | Forster Electronic Gmbh | Apparatus for holding and cooling electronic circuit boards in remote-controlled typewriters |
US3956673A (en) * | 1974-02-14 | 1976-05-11 | Lockheed Aircraft Corporation | Printed circuit modules cooled by rack with forced air |
US3904933A (en) * | 1974-10-23 | 1975-09-09 | Control Data Corp | Cooling apparatus for electronic modules |
US4006388A (en) * | 1975-03-03 | 1977-02-01 | Hughes Aircraft Company | Thermally controlled electronic system package |
US4120020A (en) * | 1975-08-20 | 1978-10-10 | U.S. Philips Corporation | Electronic component with heat cooled substrates |
US4122508A (en) * | 1977-09-06 | 1978-10-24 | Altec Corporation | Modular printed circuit board assembly having cooling means incorporated therein |
US4135225A (en) * | 1977-09-19 | 1979-01-16 | Welsh James W | Pivotal structural enclosure |
US4186422A (en) * | 1978-08-01 | 1980-01-29 | The Singer Company | Modular electronic system with cooling means and stackable electronic circuit unit therefor |
US4393437A (en) * | 1978-11-11 | 1983-07-12 | Ferranti Limited | Cooling means for circuit assemblies each including hollow structures spaced apart in a container |
US4283754A (en) * | 1979-03-26 | 1981-08-11 | Bunker Ramo Corporation | Cooling system for multiwafer high density circuit |
US4503483A (en) * | 1982-05-03 | 1985-03-05 | Hughes Aircraft Company | Heat pipe cooling module for high power circuit boards |
FR2651636A1 (fr) * | 1989-09-06 | 1991-03-08 | Segem | Bac electronique modulaire a ventilation incorporee. |
US5014904A (en) * | 1990-01-16 | 1991-05-14 | Cray Research, Inc. | Board-mounted thermal path connector and cold plate |
US5099254A (en) * | 1990-03-22 | 1992-03-24 | Raytheon Company | Modular transmitter and antenna array system |
US5159529A (en) * | 1991-05-15 | 1992-10-27 | International Business Machines Corporation | Composite liquid cooled plate for electronic equipment |
US5274530A (en) * | 1992-05-29 | 1993-12-28 | Anderson William B | Module for protecting and cooling computer chip die mounted on a thin film substrate and a chassis for conduction cooling of such modules |
US5343359A (en) * | 1992-11-19 | 1994-08-30 | Cray Research, Inc. | Apparatus for cooling daughter boards |
US5493473A (en) * | 1993-06-30 | 1996-02-20 | Nec Corporation | Case for shielding electronic circuit members from electromagnetic waves |
US5767443A (en) * | 1993-07-10 | 1998-06-16 | Micron Technology, Inc. | Multi-die encapsulation device |
US5910640A (en) * | 1993-07-10 | 1999-06-08 | Micron Technology, Inc. | Electrical contact assembly for use in a multi-die encapsulation device |
US5482109A (en) * | 1994-03-15 | 1996-01-09 | E-Systems, Inc. | Modular heat exchanger |
US5473508A (en) * | 1994-05-31 | 1995-12-05 | At&T Global Information Solutions Company | Focused CPU air cooling system including high efficiency heat exchanger |
US5737186A (en) * | 1995-04-20 | 1998-04-07 | Daimler-Benz Ag | Arrangement of plural micro-cooling devices with electronic components |
US5947188A (en) * | 1995-07-07 | 1999-09-07 | Ab Volvo Penta | Method and a device for permitting cooling of heat-sensitive components |
US5726857A (en) * | 1996-02-22 | 1998-03-10 | Cray Research, Inc. | Apparatus and method for mounting edge connectors within a circuit module |
US5740018A (en) * | 1996-02-29 | 1998-04-14 | The United States Of America As Represented By The Secretary Of The Navy | Environmentally controlled circuit pack and cabinet |
WO1998001015A1 (en) * | 1996-06-28 | 1998-01-08 | Motorola Inc. | Spray-cooling circuit board apparatus |
US5761035A (en) * | 1996-06-28 | 1998-06-02 | Motorola, Inc. | Circuit board apparatus and method for spray-cooling a circuit board |
US6446334B2 (en) | 1996-09-19 | 2002-09-10 | Micron Technology, Inc. | Heat transfer material for an improved die edge contacting socket |
US6892453B2 (en) | 1996-09-19 | 2005-05-17 | Micron Technology, Inc. | Method for forming an encapsulation device |
US6735860B2 (en) | 1996-09-19 | 2004-05-18 | Micron Technology, Inc. | Heat transfer material for an improved die edge contacting socket |
US6252302B1 (en) | 1996-09-19 | 2001-06-26 | Warren M. Farnworth | Heat transfer material for an improved die edge contacting socket |
US6578262B2 (en) | 1996-09-19 | 2003-06-17 | Micron Technology, Inc. | Heat transfer material for an improved die edge contacting socket |
US5946189A (en) * | 1997-04-23 | 1999-08-31 | Compaq Computer Corporation | Pivotable support and heat sink apparatus removably connectable without tools to a computer processor |
US6169247B1 (en) * | 1998-06-11 | 2001-01-02 | Lucent Technologies Inc. | Enclosure for electronic components |
US6525943B2 (en) | 1998-06-30 | 2003-02-25 | Micron Technology, Inc. | Heat sink with alignment and retaining features |
US6297960B1 (en) * | 1998-06-30 | 2001-10-02 | Micron Technology, Inc. | Heat sink with alignment and retaining features |
US6760224B2 (en) | 1998-06-30 | 2004-07-06 | Micron Technology, Inc. | Heat sink with alignment and retaining features |
US6215658B1 (en) | 1998-07-10 | 2001-04-10 | Negesat Di Boer Fabrizio & C.S.N.C. | Structure for housing and heat sinking equipment pieces in an aeronautic or space vehicle |
EP0992430A3 (en) * | 1998-10-07 | 2000-09-13 | Negesat Di Boer Fabrizio & C. SNC | Housing providing cooling for equipment aboard aircraft or spacecraft |
US20030221999A1 (en) * | 2002-04-20 | 2003-12-04 | Weaver Jeffrey S. | Electrostatic precipitator for removing zinc whiskers from cooling air for electronics systems |
US7019244B2 (en) * | 2002-04-20 | 2006-03-28 | Hewlett-Packard Development Company, L.P. | Electrostatic precipitator |
FR2845821A1 (fr) * | 2002-10-11 | 2004-04-16 | Thales Sa | Substrat electronique d'un module electronique a trois dimensions a fort pouvoir de dissipation thermique et module electronique |
WO2004034761A1 (fr) * | 2002-10-11 | 2004-04-22 | Thales | Substrat electronique d'un module electronique a trois dimensions |
US7286365B2 (en) | 2002-10-11 | 2007-10-23 | Thales | Electronic substrate for a three-dimensional electronic module |
US7254022B2 (en) | 2004-04-26 | 2007-08-07 | Knuerr Ag | Cooling system for equipment and network cabinets and method for cooling equipment and network cabinets |
US20050237714A1 (en) * | 2004-04-26 | 2005-10-27 | Heiko Ebermann | Cooling system for equipment and network cabinets and method for cooling equipment and network cabinets |
US20090146293A1 (en) * | 2004-11-24 | 2009-06-11 | Danfoss Silicon Power Gmbh | Flow distribution module and a stack of flow distribution modules |
US7835151B2 (en) * | 2004-11-24 | 2010-11-16 | Danfoss Silicon Power Gmbh | Flow distribution module and a stack of flow distribution modules |
US10067539B2 (en) | 2005-09-06 | 2018-09-04 | Beyond Blades Ltd. | 3-dimensional multi-layered modular computer architecture |
EP1934668A2 (en) * | 2005-09-06 | 2008-06-25 | Beyond Blades Ltd. | 3-dimensional multi-layered modular computer architecture |
US9164555B2 (en) | 2005-09-06 | 2015-10-20 | Beyond Blades Ltd. | 3-dimensional multi-layered modular computer architecture |
EP1934668A4 (en) * | 2005-09-06 | 2013-01-16 | Beyond Blades Ltd | THREE-DIMENSIONAL MODULAR COMPUTER ARCHITECTURE WITH MULTIPLE LAYERS |
US7671801B2 (en) * | 2005-09-19 | 2010-03-02 | Raytheon Company | Armor for an electronically scanned array |
US20080029480A1 (en) * | 2005-09-19 | 2008-02-07 | Raytheon Company | Armor for an electronically scanned array |
US20070070601A1 (en) * | 2005-09-27 | 2007-03-29 | Lockheed Martin Corporation | Flow through cooling assemblies for conduction-cooled circuit modules |
US7324336B2 (en) * | 2005-09-27 | 2008-01-29 | Lockheed Martin Corporation | Flow through cooling assemblies for conduction-cooled circuit modules |
US7365974B2 (en) * | 2005-10-14 | 2008-04-29 | Smiths Aerospace Llc | Method for electronics equipment cooling having improved EMI control and reduced weight |
US20070086158A1 (en) * | 2005-10-14 | 2007-04-19 | Smiths Aerospace Llc | Method for electronics equipment cooling having improved EMI control and reduced weight |
US20080225496A1 (en) * | 2006-03-24 | 2008-09-18 | Fujitsu Limited | Electronic apparatus |
US7733648B2 (en) * | 2006-03-24 | 2010-06-08 | Fujitsu Limited | Electronic apparatus |
US7869209B2 (en) * | 2006-08-30 | 2011-01-11 | Thales | Electronic rack combining natural convection and forced air circulation for its cooling |
US20100008025A1 (en) * | 2006-08-30 | 2010-01-14 | Thales | Electronic rack combining natural convection and forced air circulation for its cooling |
US7995346B2 (en) * | 2008-03-06 | 2011-08-09 | Northrop Grumman Systems Corporation | Ruggedized, self aligning, sliding air seal for removable electronic units |
US20090225510A1 (en) * | 2008-03-06 | 2009-09-10 | Northrop Grumman Systems Corporation | Ruggedized, self aligning, sliding air seal for removable electronic units |
US20100302727A1 (en) * | 2008-08-05 | 2010-12-02 | Thales | Onboard Computer Equipped with a Stand-Alone Aeraulic Cooling Device |
US8094451B2 (en) * | 2008-08-05 | 2012-01-10 | Thales | Onboard computer equipped with a stand-alone aeraulic cooling device |
US8174826B2 (en) * | 2010-05-27 | 2012-05-08 | International Business Machines Corporation | Liquid cooling system for stackable modules in energy-efficient computing systems |
US8787015B2 (en) | 2010-05-27 | 2014-07-22 | International Business Machines Corporation | Liquid cooling system for stackable modules in energy-efficient computing systems |
US20120194996A1 (en) * | 2010-05-27 | 2012-08-02 | International Business Machines Corporation | Liquid Cooling System for Stackable Modules in Energy-Efficient Computing Systems |
US8279597B2 (en) | 2010-05-27 | 2012-10-02 | International Business Machines Corporation | Heatsink allowing in-situ maintenance in a stackable module |
US8547692B2 (en) | 2010-05-27 | 2013-10-01 | International Business Machines Corporation | Heatsink allowing in-situ maintenance in a stackable module |
US8780552B2 (en) * | 2010-05-27 | 2014-07-15 | International Business Machines Corporation | Liquid cooling system for stackable modules in energy-efficient computing systems |
US8358503B2 (en) | 2010-05-28 | 2013-01-22 | International Business Machines Corporation | Stackable module for energy-efficient computing systems |
US8179674B2 (en) | 2010-05-28 | 2012-05-15 | International Business Machines Corporation | Scalable space-optimized and energy-efficient computing system |
US8427828B2 (en) * | 2010-07-20 | 2013-04-23 | Themis Computer | Printed circuit board module enclosure and apparatus using same |
US20120020017A1 (en) * | 2010-07-20 | 2012-01-26 | Kehret William E | Printed circuit board module enclosure and apparatus using same |
US20120170224A1 (en) * | 2010-12-29 | 2012-07-05 | Src, Inc. | Circuit board frame with integral heat sink for enhanced thermal transfer |
US9593876B2 (en) | 2012-09-07 | 2017-03-14 | David Smith | Cooling electronic devices installed in a subsurface environment |
US11421921B2 (en) | 2012-09-07 | 2022-08-23 | David Lane Smith | Cooling electronic devices installed in a subsurface environment |
US10240845B2 (en) | 2012-09-07 | 2019-03-26 | David Lane Smith | Cooling electronic devices installed in a subsurface environment |
US9392086B2 (en) | 2013-06-26 | 2016-07-12 | E Ink Holdings Inc. | Electronic apparatus |
US9826640B2 (en) | 2013-06-26 | 2017-11-21 | E Ink Holdings Inc. | Electronic apparatus |
US10362713B2 (en) | 2014-02-07 | 2019-07-23 | Lockheed Martin Corporation | Process for making an apparatus with fluid-flow-through cooling of circuit boards |
US10548243B2 (en) | 2014-02-07 | 2020-01-28 | Lockheed Martin Corporation | Process for installing an insert for fluid-flow-through cooling of circuit boards |
US9426931B2 (en) | 2014-02-07 | 2016-08-23 | Lockheed Martin Corporation | Fluid-flow-through cooling of circuit boards |
US9357670B2 (en) | 2014-02-18 | 2016-05-31 | Lockheed Martin Corporation | Efficient heat transfer from conduction-cooled circuit cards |
US9560789B2 (en) | 2014-06-24 | 2017-01-31 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US9408332B2 (en) | 2014-06-24 | 2016-08-02 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US9699939B2 (en) | 2014-06-24 | 2017-07-04 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US11191186B2 (en) | 2014-06-24 | 2021-11-30 | David Lane Smith | System and method for fluid cooling of electronic devices installed in an enclosure |
US9258926B2 (en) | 2014-06-24 | 2016-02-09 | David Lane Smith | System and method for fluid cooling of electronic devices installed in a sealed enclosure |
US11744041B2 (en) | 2014-06-24 | 2023-08-29 | David Lane Smith | System and method for fluid cooling of electronic devices installed in an enclosure |
US9950628B2 (en) * | 2016-03-09 | 2018-04-24 | Ford Global Technologies, Llc | Power-module assembly with dummy module |
US9961808B2 (en) | 2016-03-09 | 2018-05-01 | Ford Global Technologies, Llc | Power electronics system |
US10017073B2 (en) | 2016-03-09 | 2018-07-10 | Ford Global Technologies, Llc | Coolant channels for power module assemblies |
US20170259672A1 (en) * | 2016-03-09 | 2017-09-14 | Ford Global Technologies, Llc | Power-Module Assembly with Dummy Module |
US11502349B2 (en) | 2020-08-31 | 2022-11-15 | Borgwarner, Inc. | Cooling manifold assembly |
Also Published As
Publication number | Publication date |
---|---|
IL37186A0 (en) | 1971-08-25 |
DE2152541A1 (de) | 1972-08-31 |
JPS477969A (ja) | 1972-04-27 |
CA923213A (en) | 1973-03-20 |
DE2152541C3 (de) | 1974-09-26 |
DE2152541B2 (de) | 1974-03-07 |
GB1312404A (en) | 1973-04-04 |
IT938913B (it) | 1973-02-10 |
JPS526462B1 (ja) | 1977-02-22 |
IL37186A (en) | 1974-01-14 |
SE369573B (ja) | 1974-09-02 |
FR2109696A5 (ja) | 1972-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3648113A (en) | Electronic assembly having cooling means for stacked modules | |
US3904933A (en) | Cooling apparatus for electronic modules | |
US4186422A (en) | Modular electronic system with cooling means and stackable electronic circuit unit therefor | |
EP0555659B1 (en) | Multi-chip Module | |
US4581679A (en) | Multi-element circuit construction | |
US4884168A (en) | Cooling plate with interboard connector apertures for circuit board assemblies | |
US4574331A (en) | Multi-element circuit construction | |
US5224023A (en) | Foldable electronic assembly module | |
US3865183A (en) | Cooling systems for electronic modules | |
US8427828B2 (en) | Printed circuit board module enclosure and apparatus using same | |
US5933343A (en) | Multi-deck power converter module | |
US3364395A (en) | Modular data processing apparatus including heat dissipating means | |
US3139559A (en) | Housing for packaging miniaturized modular electrical network assemblies | |
JPH0513661A (ja) | 三次元回路モジユールとその構造 | |
EP0031419B1 (en) | Air-cooled hybrid electronic package | |
US4587594A (en) | Electrical circuit assemblies | |
US3467892A (en) | Electrical module and system | |
US3671812A (en) | High density packaging of electronic components in three-dimensional modules | |
US3774078A (en) | Thermally integrated electronic assembly with tapered heat conductor | |
US5153814A (en) | Mounting system for electrical function units, particularly for data technology | |
US3065384A (en) | Modularized electrical network assembly | |
US3070729A (en) | Modularized electrical network assembly | |
EP0558855A2 (en) | Circuit board stack with novel cross-over cells | |
US3411041A (en) | Heat exchanger package for high-density, high-powered electronic modules | |
US3124720A (en) | Modular electronic assemblies with cooling means |