US3646155A - Cross-linking of a polyolefin with a silane - Google Patents
Cross-linking of a polyolefin with a silane Download PDFInfo
- Publication number
- US3646155A US3646155A US886346A US3646155DA US3646155A US 3646155 A US3646155 A US 3646155A US 886346 A US886346 A US 886346A US 3646155D A US3646155D A US 3646155DA US 3646155 A US3646155 A US 3646155A
- Authority
- US
- United States
- Prior art keywords
- polyolefin
- cross
- silane
- reaction
- linking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L43/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
- C08L43/04—Homopolymers or copolymers of monomers containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5425—Silicon-containing compounds containing oxygen containing at least one C=C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2301/00—Use of unspecified macromolecular compounds as reinforcement
- B29K2301/10—Thermosetting resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
Definitions
- This invention relates to a process for effecting the cross-linking of olefinic polymers and copolymers and to the cross-linked products obtained thereby.
- the process of the present invention enables the crosslinking of a polyolefin to be carried out under less critical processing conditions than those which normally obrain in connection with the conventional peroxide cross linking techniques. It also permits the cross-linking reaction to take place in two stages so that the polyolefin may be stored in cross-linkable form, if desired, prior to effecting subsequent cross-linking.
- the present process also enables the reaction between the polyolefin and the silane to be effected relatively quickly, if desired in the absence of a solvent, and employing only minor amounts of silane.
- the process of the invention therefore lends itself to the preparation of a cross-linked polyolefin whereby the conversion of the polyolefin to the cross-linkable form may be carried out in equipment conventional in the processing of polyolefins and under conditions and in a time comparable with those normally employed during the compounding of such materials.
- this invention procides a process for effecting the cross-linking of a polyolefin, which comprises (A) reacting a polyolefin, which is polyethylene or a copolymer of ethylene with a minor proportion of propylene and/or butylene, with a silane of the general formula RR'SiY (wherein R represents a monovalent olefinically unsaturated hydrocarbon or hydrocarbonoxy radical, each Y represents a hydrolysable organic radical and R represents an R radical or a Y radical) in the presence of a compound capable of generating free radical sites in the polyolefin, the said reaction being carried out at a temperature above 140 C. and the said free radical generating compound having a half-life at the reaction temperature of less than 6 minutes; and (B) subsequently exposing the product of (A) to moisture in the presence of a silanol condensation catalyst.
- a silane of the general formula RR'SiY wherein R represents a monovalent olefin
- the invention also includes cross-linked polyolefins and shaped articles therefrom whenever prepared by the said process.
- the process of this invention is applicable in effecting the cross-linking of polyethylene or copolymers of ethylene with minor amounts (less than 50 percent by weight) of propylene and/or butylene.
- the polyolefin employed should have a melt index, as measured according to method C of British standard specification No. 2782 (1965), before reaction with the silane of at least 2.0 g./ 10 min.
- R may be a monovalent aliphatically unsaturated hydrocarbon radical or hydrocarbonoxy radical which is reactive with the free radical sites generated in the polyolefin.
- examples of such radicals are vinyl, allyl, butenyl, cyclohexenyl, cyclopentadienyl, cyclohexadienyl,
- the vinyl radical being preferred.
- the group Y may represent any hydrolysable organic radical for example an alkoxy radical such as the methoxy, ethoxy and butoxy radicals, an acyloxy radical, for example the formyloxy, acetoxy or propionoxy radicals, oximo radicals e.g.
- the group R may represent an R group or a Y group.
- the silane will contain three hydrolysable organic radicals the most preferred silanes being vinyltriethoxysilane and vinyl trimethoxysilane.
- the proportion of silane employed will depend in part upon the reaction conditions and in part on the degree of modification desired in the polyolefin.
- the actual proportion may vary widely for example from 0.1 to 50 percent by weight based on the weight of polyolefin. In general however we prefer to emplo from 0.5 to 10 percent by weight based on the weight of polyolefin.
- the free radical generating compound there may be employed any compound which is capable of producing free radical sites in the polyolefin under the reaction conditions and which has a half life at the reaction temperature of less than 6 minutes and preferably less than 1 minute.
- the best known and preferred free radical generating compounds for use in this invention are the organic peroxides and peresters for example benzoyl peroxide, di-
- chlorobenzoyl peroxide dicumyl peroxide, (ii-tertiary butyl srox deraidirne y -2 tp y ben y e -3', 1,3-'bis(t-butyl peroxy isopropyl) benzene, lauroyl peroxide, tertiary butyl peracetate, 2,5-dimethyl-2,5 di(tbutylperoxy) hexyne-3; 2,5 dimethyl2,5-di(t-butylperoxy) hexane and ter'tiar'ybutyl perbenzoate, and azo compounds, for example azobis-isobutyronitrile and dimethylazodi isohutyrate, dicumyl peroxide being the most preferred.
- the particular free radical generating compound chosen in any instance will depend upon the temperature at which reaction of the polyolefin with the silane is to be performed. Thus, for example when the reaction is to be performed at about 190-200 C. dicumyl peroxide, which has a half life of about 15 seconds at this temperature will be suitable. If the reaction of the mixture is to be performed at say, 150 C. a peroxide, e.g. benzoyl peroxide which has an appropriate half life at this temperature should be used.
- the proportion of free radical generating compound employed will vary somewhat with the nature of the polyolefin and the degree of modification desired in the polyolefin.
- sufiicient of the free radical generator should be used to obtain the desired degree of modification the proportion should not be such as to cause conventional free-radical cross-linking of the polyolefin to become the predominant mechanism. For this reason we prefer to employ not more than about 0.75 percent by weight of the free radical generator based on the weight of the polyolefin. As little as 0.01 percent of the free radical generator may be used and will give rise to some cross-linking capability in the polyolefin but for most applications we prefer to use from 0.05 to 0.2 percent by weight based on the Weight of the polyolefin.
- reaction between the polyolefin and the silane is carried out at a temperature above 140 C.
- the reaction may be carried forward employing any suitable apparatus.
- the reaction is carried forward under conditions in which the polyolefin is subjected to mechanical working.
- the reaction is therefore preferably carried out in, for example, an extruder, an internal Banbury mixer or a roll mill provided it permits the polyolefin to reach the desired temperature.
- the most preferred form of apparatus for use in forming the cross-linkable polyolefin is of the type which comprises an extruder adapted to effect a kneading or compounding action on its contents.
- One such type of apparatus is that known as the K- Kneader which is adapted to accomplish mechanical working and compounding of polyolefins at elevated temperatures.
- Such apparatus also generally includes a vacuum port whereby any unreacted silane may be removed.
- the polyolefin and silane reactants may be brought together by any convenient means.
- the liquid silane may be introduced into the apparatus in which the reaction is to take place dispersed on the surface of the polyolefin or it may be metered directly into the apparatus.
- the free radical generating compound may be also introduced by way of the surface of the polyolefin or may be added, when possible, as a solution in the silane.
- Reaction between the silane and polyolefin may be carriedforward at any temperature between 140 C. and the degradation temperature of the polyolefin.
- the actual reaction temperature employed will normally be determined by considerations of the type of apparatus in which the reaction is performed and where appropriate on the power input for the apparatus.
- the polyolefin is polyethylene we prefer to perform the reaction at temperatures similar to those usually met with during the processing of polyethylene, that is from about 160 to 220 C. for periods up to minutes.
- Cross-1inking of the silane modified polyolefin according to step (B) of the process of this invention is effected "3,646,155 I l jf by exposing the product of step (A), nsually after.shaping by extrusion or other processes, to moisture in the pres ence of a silanol condensation catalyst.
- the moisture present in the atmosphere is usually sufiicient to permit the crosslinking to occur but the rate of cross-linking may be hastened if desired by the use of an artificially moistened atmosphere immersion in liquid water and optionally em; ploying elevated temperatures.
- cross-linking' ' is' effected at a temperature'abo've'SO C. and'mo'st preferably by exposing the product of step (A) to steam at IOOQ C,
- silane contains for example silicon-bonded acetoxy radicals or even trace quantities of silicon-bonded chlorine atoms the acetic acid or hydrochloric acid by products can cause some cross-linking to occur at normal ambient temperatures if moisture has not been excluded from the composition.
- the incorporation of a silanol condensation catalyst by mixing in prior to storage can give rise to a product of satisfactory stability.
- a storage stable product is not desired the use of a silane or other additive which generates a silanol condensation catalyst in situ during hydrolysis may be permissible, or even preferred.
- the cross-linkable polyolefin composition is provided in the form of two separate components, one component comprising the polyolefin which has been modified according to step (A) of the process of this invention, the other component comprising a composition obtained by mixing the silanol condensation catalyst with a polyolefin which has not been modified by reaction with the silane.
- the two components may then be blended in the desired proportions to provide a composition which is cross-linkable in the presence of water.
- the unmodified polyolefin preferably comprises notmore than about 10 percent by weight of the total quannent has a melt index the same as, or approximating to that of the silane-modified polyolefin with which it is to be mixed.
- materials which function as silanol condensation catalysts are known in the art and any of such materials may be employed in the process of this invention.
- Such materials include for example metal carboxylates such as dibutyltin dilaurate, stannous acetate," 1 stannous octoate, lead naphthenate, zinc octoate, iron-2- ethylhexoate and cobalt naphthenate, organic metal compounds such as the titanium esters and chelat'es, for
- tetrabutyl titanate tetranonyl titanate and bis-' (acetylacetonyl) di-isopropyl titanate
- organic bases such as ethylamine, hexylamine, dibutylamine and piperidine
- acids such as the mineral acids and fatty acids.
- preferred catalysts are the organic tin compounds for example, dibutyltin dilaurate, butyltin dioctoate. l
- the silanol condensationcatalyst may be incorporated prior to, during or following the reaction of the polyolefin and the silane.
- the catalyst may be added as such or generated in situ either by hydrolysis of the silane or for example by the thermal decomposition of a material which liberates an amine or other silanol condensation catalyst as a decomposition product.
- the polyolefin may contain, if desired, other ingredients, for example fillers and pigments.
- Cross-linked polyolefins produced according to this invention are characterised by physical properties which are comparable to those obtained by conventional methods i.e. by organic peroxide cross-linking.
- crosslinked polyethylene has been prepared having an extremely high resistance to stress cracking, resistance to organic solventsand a measurable tensile strength above its crystalline melting point.
- the process may therefore be advantageously employed on any application where a degree of cross-linking of the polyolefin is desired, for example in the preparation of electrical insulation and heat resistant moulded or extruded articles such as containers and conduits for hot liquids.
- EXAMPLE 1 1100 parts by weight of an injection moulding grade high density polyethylene granules (grade 65-045 MB) having a melt index of 3.8 g./l min. and nominal density of 0.965 g./ cc. were coated by tumbling with 3 parts weight of vinyltriethoxysilane haying dissolved in it 0.12 part of dicumyl peroxide, until all of the liquid had been taken up. The composition was then extruded using a PR 46 Buss Ko-Kneader from which the second barrel had been removed, and the following conditions, Temperature of screw-l 82 C.
- the extruded product was collected as rough lumps and then granulated. It was found to have a melt index of 0.93 g./ 10 min. Extraction of the product in refluxing dry toluene and analysis of the cold extract by vapour phase chromatography indicated that 88.5% by weight of the vinyltriethoxysilane had been reacted with the polyethylene.
- a second composition (D) was then prepared similarly employing 1100 parts of the polyethylene (grade 65-045 MB), 1 part of dibutyltin dilaurate and 0. 12 part of dicumyl peroxide. Extrusion and granulation yielded a product having a melt index of 0.83 g./ 10 minutes.
- the cross-linkable composition obtained by mixing (C) and D) in the above specified proportions was moulded into sheets of thickness 0.125 and 0.060 inch which were then cross-linked by exposure to steam at 100 C. for 48 hours. After this time the proportion of insoluble gel (measured by refluxing in xylene for hours) was 68%.
- EXAMPLE 2 100 parts by weight of high density polyethylene granules (58045 MB) having a nominal melt index of 4.5 g./ 10 min. and density of 0.958 g./cc. were coated by tumbling with 2 parts by weight of vinyltriethoxysilane and 0.10 part by Weight of dicumyl peroxide.
- the extrudate had a melt index of 1.0 g./ 10 min. and analysis showed that 91.5% by weight of the vinyltriethoxysilane had reacted.
- the processed polymer was converted to the cross linked state when mixed with 0.2% by weight of dibutyltin dilaurate, moulded into a sheet 0.07 inch thick and the sheet exposed to steam at 100 C. for 48 hours.
- EXAMPLE 3 A cross-linkable polyethylene composition was prepared employing the processing procedure of Example 2 in connection with 100 parts by weight of polyethylene (50120 MB), 3 parts of vinyltriethoxysilane and 0.17 part of dicumyl peroxide.
- the processing conditions in the Buss Ko-Kneader were:
- the extrudate was cut into pieces on emerge-nee from the Kneader and the pieces cooled by momentary (about 2 sec.) immersion in water.
- the recovered extrudate contained no gel and had a melt index of 1.3.
- a product When mixed with 0.2% by weight of dibutyltin dilaurate and exposed as A inch thick plates to steam at 100 C. for 48 hours a product was obtained having a gel content at 65.6%.
- EXAMPLE 4 A cross-linkable polyethylene composition was prepared using procedure of Example 2 with a low density polyethylene (25200 MA) 2 parts of vinyltrimethoxysilane, 0.15 part of dicumyl peroxide and the following conditions in the Ko-Kneader:
- Two catalyst master batches (A) and (B) were also prepared by mixing and extruding 100 parts of polyethylene 25200 MA, 0.15 part dicumyl peroxide and 2.5 parts 7 of dibut y' ltin ,dilalirate in I the one' caseiand 100 parts 25200YMA; 0. l 5 part "dicumyl peroxide and 2.5 di butyltin I, ate in the other.
- Two compositions were then pre- 98 parts of the 'silane' modified polymer parts of the catalyst compositions (A) in the case and composition (B) in the other. Both compositions cross-linked on xpo'surelto'steam at 100C. for 24 hours.
- a process for effecting the cross-linking of a polyolefin which comprises: (A) reacting a polyolefin which is polyethylene or a copolymer of ethylene with a minor proportion of propylene or butylene or a mixture thereof, with a silane of the general formula RRSiY wherein R represents a monovalent olefinically unsaturated hydro carbon or olefinically unsaturated nonhydrolyzable hydrocarbonoxy radical, each Y represents a hydrolysable organic radical and R represents an R radical or a Y radical, in the presence of a compound capable of generating free radical sites in the polyolefin, said reaction being carried out at a temperature above 140 C. and the free radical generating compound having a half-life at the reaction temperature of less than 6 minutes; and (B) subsequently exposing the product of (A) to moisture in the presence of a silanol condensation catalyst.
- a silane of the general formula RRSiY wherein R represents a monovalent
- step (B) is elfected by the action of steam.
- step (A) is carried out at a temperature within the range from 160 to 220 C.
- step (A) is carried out under conditions in which the polyolefin is subjected to mechanical working.
- step (A). is carried out in anextruder adapted to efiect a kneading or compounding action on its contents.
- a process for effecting therpross-linkin'g of a polyolefin which comprises: (1 reactingapolyolefin which is polyethylene or a copolymer of ethylene with a minor proportion of'propylene or butylene or anii'iture thereof with a silane of thegeneral formula RRSiY wherein'R represents a monovalent olefinically unsaturated hydrocarbon or ole'finically unsaturated nonhydr olyzable hydro carbonoxy radical, each .Yrepresentsia hydrolysableon' ganic radical and R'represents an Rradic falior a Y radical, in the presence of a compound capableof generating free radical sites in the polyole'fin, said reaction being'carried out at a temperature above 140 C.
- step (1) 9. A process as claimed in claim 7 wherein the silanol condensation catalyst is incorporated into the product of step (1) as a mixture with a polyolefin which has not been modified by reaction with the silane.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Graft Or Block Polymers (AREA)
Abstract
POLYOLEFINS ARE CROSS-LINKED BY REACTION OF THE POLYOLEFIN WITH AN UNSATUREATED HYDROLYSAB LE SILANE AT A TEMPERATURE ABOVE 140*C. AND IN TEH PRESENCE OF A COMPOUND CAPABLE OF GENERATING FREE RADICAL SITES IN THE POLYOLEFIN, AND SUBSEQUENT EXPOSURE OF THEIS PRODUCT TO MOISTURE AND A CONDENSATION CATALYST.
Description
United States Patent U.S. Cl. 260-827 9 Claims ABSTRACT OF THE DISCLOSURE Polyolefins are cross-linked by reaction of the polyolefin with an unsaturated hydrolysable silane at a temperature above 140 C. and in the presence of a compound capable of generating free radical sites in the polyolefin, and subsequent exposure of this product to moisture and a condensation catalyst.
This invention relates to a process for effecting the cross-linking of olefinic polymers and copolymers and to the cross-linked products obtained thereby.
It is known to modify the properties of polyethylene and other olefinic polymers by effecting cross-linking of the polymers under the action of a free radical generator, for example an organic peroxide. The formation of a cross-linkable material by this means is however difiicult to carry out since it requires critical control of the process. If the process is carried too far the polyolefin may cross-link and solidify in the processing apparatus, for example an extruder, with the consequent difficulties and delays involved in removing the cross-linked product. Care must also be exercised to ensure that articles prepared from the polymer retain their shape during subsequent heating to bring about the cross-linking process.
We have now discovered that an improved method for effecting the cross-linking of a polyolefin resides in a process involving the reaction of a silane with the polyolefin under specified conditions and the subsequent reaction of the modified polyolefin with a silanol condensation catalyst and water. It is known from US. Pat. No. 3,075,- 948 to prepare graft copolymers of polyolefins and silanes by reacting a polyolefin with an unsaturated silane, an addition catalyst preferably being employed in the reaction. According to the disclosure in the US. specification the presence of a solvent during the grafting reaction is greatly preferred since it produces a greater degree of reaction. As disclosed however, the grafting rocess requires the use of a high proportion of the relatively expensive silane reactant and extended reaction times, even in the presence of a solvent.
The process of the present invention enables the crosslinking of a polyolefin to be carried out under less critical processing conditions than those which normally obrain in connection with the conventional peroxide cross linking techniques. It also permits the cross-linking reaction to take place in two stages so that the polyolefin may be stored in cross-linkable form, if desired, prior to effecting subsequent cross-linking. The present process also enables the reaction between the polyolefin and the silane to be effected relatively quickly, if desired in the absence of a solvent, and employing only minor amounts of silane.
The process of the invention therefore lends itself to the preparation of a cross-linked polyolefin whereby the conversion of the polyolefin to the cross-linkable form may be carried out in equipment conventional in the processing of polyolefins and under conditions and in a time comparable with those normally employed during the compounding of such materials.
3,646,155 Patented Feb. 29, 1972 Accordingly this invention procides a process for effecting the cross-linking of a polyolefin, which comprises (A) reacting a polyolefin, which is polyethylene or a copolymer of ethylene with a minor proportion of propylene and/or butylene, with a silane of the general formula RR'SiY (wherein R represents a monovalent olefinically unsaturated hydrocarbon or hydrocarbonoxy radical, each Y represents a hydrolysable organic radical and R represents an R radical or a Y radical) in the presence of a compound capable of generating free radical sites in the polyolefin, the said reaction being carried out at a temperature above 140 C. and the said free radical generating compound having a half-life at the reaction temperature of less than 6 minutes; and (B) subsequently exposing the product of (A) to moisture in the presence of a silanol condensation catalyst.
The invention also includes cross-linked polyolefins and shaped articles therefrom whenever prepared by the said process. The process of this invention is applicable in effecting the cross-linking of polyethylene or copolymers of ethylene with minor amounts (less than 50 percent by weight) of propylene and/or butylene. Preferably the polyolefin employed should have a melt index, as measured according to method C of British standard specification No. 2782 (1965), before reaction with the silane of at least 2.0 g./ 10 min.
In the general formula RR'SiY of the silanes which are reacted with polyolefins according to this invention, R may be a monovalent aliphatically unsaturated hydrocarbon radical or hydrocarbonoxy radical which is reactive with the free radical sites generated in the polyolefin. Examples of such radicals are vinyl, allyl, butenyl, cyclohexenyl, cyclopentadienyl, cyclohexadienyl,
The vinyl radical being preferred. The group Y may represent any hydrolysable organic radical for example an alkoxy radical such as the methoxy, ethoxy and butoxy radicals, an acyloxy radical, for example the formyloxy, acetoxy or propionoxy radicals, oximo radicals e.g.
-ON=CCH C H and ON=C(C H or substituted amino radicals e.g. alkylamin-o and arylamino radicals examples of which are -NHCH NHC H and NH(C H The group R may represent an R group or a Y group. Preferably the silane will contain three hydrolysable organic radicals the most preferred silanes being vinyltriethoxysilane and vinyl trimethoxysilane.
The proportion of silane employed will depend in part upon the reaction conditions and in part on the degree of modification desired in the polyolefin. The actual proportion may vary widely for example from 0.1 to 50 percent by weight based on the weight of polyolefin. In general however we prefer to emplo from 0.5 to 10 percent by weight based on the weight of polyolefin.
As the free radical generating compound there may be employed any compound which is capable of producing free radical sites in the polyolefin under the reaction conditions and which has a half life at the reaction temperature of less than 6 minutes and preferably less than 1 minute. The best known and preferred free radical generating compounds for use in this invention are the organic peroxides and peresters for example benzoyl peroxide, di-
chlorobenzoyl peroxide, dicumyl peroxide, (ii-tertiary butyl srox deraidirne y -2 tp y ben y e -3', 1,3-'bis(t-butyl peroxy isopropyl) benzene, lauroyl peroxide, tertiary butyl peracetate, 2,5-dimethyl-2,5 di(tbutylperoxy) hexyne-3; 2,5 dimethyl2,5-di(t-butylperoxy) hexane and ter'tiar'ybutyl perbenzoate, and azo compounds, for example azobis-isobutyronitrile and dimethylazodi isohutyrate, dicumyl peroxide being the most preferred.
The particular free radical generating compound chosen in any instance will depend upon the temperature at which reaction of the polyolefin with the silane is to be performed. Thus, for example when the reaction is to be performed at about 190-200 C. dicumyl peroxide, which has a half life of about 15 seconds at this temperature will be suitable. If the reaction of the mixture is to be performed at say, 150 C. a peroxide, e.g. benzoyl peroxide which has an appropriate half life at this temperature should be used. The proportion of free radical generating compound employed will vary somewhat with the nature of the polyolefin and the degree of modification desired in the polyolefin. While sufiicient of the free radical generator should be used to obtain the desired degree of modification the proportion should not be such as to cause conventional free-radical cross-linking of the polyolefin to become the predominant mechanism. For this reason we prefer to employ not more than about 0.75 percent by weight of the free radical generator based on the weight of the polyolefin. As little as 0.01 percent of the free radical generator may be used and will give rise to some cross-linking capability in the polyolefin but for most applications we prefer to use from 0.05 to 0.2 percent by weight based on the Weight of the polyolefin.
In accordance with step (A) of the process of this invention reaction between the polyolefin and the silane is carried out at a temperature above 140 C. The reaction may be carried forward employing any suitable apparatus. Preferably however, the reaction is carried forward under conditions in which the polyolefin is subjected to mechanical working. The reaction is therefore preferably carried out in, for example, an extruder, an internal Banbury mixer or a roll mill provided it permits the polyolefin to reach the desired temperature. The most preferred form of apparatus for use in forming the cross-linkable polyolefin is of the type which comprises an extruder adapted to effect a kneading or compounding action on its contents. One such type of apparatus is that known as the K- Kneader which is adapted to accomplish mechanical working and compounding of polyolefins at elevated temperatures. Such apparatus also generally includes a vacuum port whereby any unreacted silane may be removed.
The polyolefin and silane reactants may be brought together by any convenient means. For example the liquid silane may be introduced into the apparatus in which the reaction is to take place dispersed on the surface of the polyolefin or it may be metered directly into the apparatus. The free radical generating compound may be also introduced by way of the surface of the polyolefin or may be added, when possible, as a solution in the silane.
Reaction between the silane and polyolefin may be carriedforward at any temperature between 140 C. and the degradation temperature of the polyolefin. The actual reaction temperature employed will normally be determined by considerations of the type of apparatus in which the reaction is performed and where appropriate on the power input for the apparatus. When the polyolefin is polyethylene we prefer to perform the reaction at temperatures similar to those usually met with during the processing of polyethylene, that is from about 160 to 220 C. for periods up to minutes.
'Although minor amounts of organic solvents may be employed if desired to facilitate the addition of the free radical generator or the silane the reaction is usually best carried out in bulk since this avoids subsequent tedious solvent separation procedures.
Cross-1inking of the silane modified polyolefin according to step (B) of the process of this invention is effected "3,646,155 I l jf by exposing the product of step (A), nsually after.shaping by extrusion or other processes, to moisture in the pres ence of a silanol condensation catalyst. The moisture present in the atmosphere is usually sufiicient to permit the crosslinking to occur but the rate of cross-linking may be hastened if desired by the use of an artificially moistened atmosphere immersion in liquid water and optionally em; ploying elevated temperatures. Preferably cross-linking' 'is' effected at a temperature'abo've'SO C. and'mo'st preferably by exposing the product of step (A) to steam at IOOQ C,
which give rise to non-catalytic by-products. When the.
silane contains for example silicon-bonded acetoxy radicals or even trace quantities of silicon-bonded chlorine atoms the acetic acid or hydrochloric acid by products can cause some cross-linking to occur at normal ambient temperatures if moisture has not been excluded from the composition.
Where it is possible to maintain the polyolefin composition in an anhydrous condition the incorporation of a silanol condensation catalyst by mixing in prior to storage can give rise to a product of satisfactory stability. Similarly if a storage stable product is not desired the use of a silane or other additive which generates a silanol condensation catalyst in situ during hydrolysis may be permissible, or even preferred. In general however, we prefer to incorpoate the silanol condensation catalyst into the product of step (A) only when it is desired to initiate cross-linking of the polyolefin, for example, just prior to shaping the polyolefin .into the finished article. According to a preferred method of carrying out this invention the cross-linkable polyolefin composition is provided in the form of two separate components, one component comprising the polyolefin which has been modified according to step (A) of the process of this invention, the other component comprising a composition obtained by mixing the silanol condensation catalyst with a polyolefin which has not been modified by reaction with the silane. The two components may then be blended in the desired proportions to provide a composition which is cross-linkable in the presence of water. In order to obtain a-po1yolefin having the maximum degree of cross-linking capae bility the unmodified polyolefin preferably comprises notmore than about 10 percent by weight of the total quannent has a melt index the same as, or approximating to that of the silane-modified polyolefin with which it is to be mixed.
A wide variety of materials which function as silanol condensation catalysts are known in the art and any of such materials may be employed in the process of this invention. Such materials include for example metal carboxylates such as dibutyltin dilaurate, stannous acetate," 1 stannous octoate, lead naphthenate, zinc octoate, iron-2- ethylhexoate and cobalt naphthenate, organic metal compounds such as the titanium esters and chelat'es, for
example tetrabutyl titanate, tetranonyl titanate and bis-' (acetylacetonyl) di-isopropyl titanate, organic bases such as ethylamine, hexylamine, dibutylamine and piperidine and acids such as the mineral acids and fatty acids. The
preferred catalysts are the organic tin compounds for example, dibutyltin dilaurate, butyltin dioctoate. l
' Having regard to the considerations discussed previously herein the silanol condensationcatalyst may be incorporated prior to, during or following the reaction of the polyolefin and the silane. The catalyst may be added as such or generated in situ either by hydrolysis of the silane or for example by the thermal decomposition of a material which liberates an amine or other silanol condensation catalyst as a decomposition product. In addition to the presence of the silanol condensation catalyst or precursor thereof the polyolefin may contain, if desired, other ingredients, for example fillers and pigments. Cross-linked polyolefins produced according to this invention are characterised by physical properties which are comparable to those obtained by conventional methods i.e. by organic peroxide cross-linking. For example crosslinked polyethylene has been prepared having an extremely high resistance to stress cracking, resistance to organic solventsand a measurable tensile strength above its crystalline melting point. The process may therefore be advantageously employed on any application where a degree of cross-linking of the polyolefin is desired, for example in the preparation of electrical insulation and heat resistant moulded or extruded articles such as containers and conduits for hot liquids.
The following examples illustrate the invention.
EXAMPLE 1 1100 parts by weight of an injection moulding grade high density polyethylene granules (grade 65-045 MB) having a melt index of 3.8 g./l min. and nominal density of 0.965 g./ cc. were coated by tumbling with 3 parts weight of vinyltriethoxysilane haying dissolved in it 0.12 part of dicumyl peroxide, until all of the liquid had been taken up. The composition was then extruded using a PR 46 Buss Ko-Kneader from which the second barrel had been removed, and the following conditions, Temperature of screw-l 82 C.
Temperature of barrel zone l-180 C. Temperature of barrel zone 2-184 C. Screw speed31 r.p.m.
Output-13 lbs. per hour The residence time of the polyethylene in the machine was approximately 1.5 to 2.5 minutes.
The extruded product was collected as rough lumps and then granulated. It was found to have a melt index of 0.93 g./ 10 min. Extraction of the product in refluxing dry toluene and analysis of the cold extract by vapour phase chromatography indicated that 88.5% by weight of the vinyltriethoxysilane had been reacted with the polyethylene.
A second composition (D) was then prepared similarly employing 1100 parts of the polyethylene (grade 65-045 MB), 1 part of dibutyltin dilaurate and 0. 12 part of dicumyl peroxide. Extrusion and granulation yielded a product having a melt index of 0.83 g./ 10 minutes.
95 parts by Weight of (C) and parts by weight of ('D) were mixed by dry tumbling for 20 minutes to give a cross-linkable composition. This composition was extruded using the Buss Ko-Kneader employing the conditions set out above. The product had a melt index of 0.57 g./ min. and contained no insoluble gel. In order to test the criticality of the processing conditions the extruder was stopped (full of polymer) for 30 minutes. When the extruder was restarted an extrudate was innuediately obtained having a melt index of 0.37 g./ 10 min. and containing no insoluble gel.
The cross-linkable composition obtained by mixing (C) and D) in the above specified proportions was moulded into sheets of thickness 0.125 and 0.060 inch which were then cross-linked by exposure to steam at 100 C. for 48 hours. After this time the proportion of insoluble gel (measured by refluxing in xylene for hours) was 68%.
dibutyltin diacetate, and di- Tensile stress at elongation =.440 p.s.i. Tensile stress at break point=590 p.s.i. Elongation at break point=210% The cross-linkable composition was satisfactorily blow moulded to produce 30 g. weight bottles of fl. oz. capacity.
EXAMPLE 2 100 parts by weight of high density polyethylene granules (58045 MB) having a nominal melt index of 4.5 g./ 10 min. and density of 0.958 g./cc. were coated by tumbling with 2 parts by weight of vinyltriethoxysilane and 0.10 part by Weight of dicumyl peroxide.
This composition was then extruded on a PR 46 Buss Ko-Kneader with the cross head extruder removed and using the following conditions:
Temperature of screw C. Temperature of barrel zone 1-182 C. Temperature of barrel zone 2l89 C. Output6.9 lb./hr.
The extrudate had a melt index of 1.0 g./ 10 min. and analysis showed that 91.5% by weight of the vinyltriethoxysilane had reacted. The processed polymer was converted to the cross linked state when mixed with 0.2% by weight of dibutyltin dilaurate, moulded into a sheet 0.07 inch thick and the sheet exposed to steam at 100 C. for 48 hours.
EXAMPLE 3 A cross-linkable polyethylene composition was prepared employing the processing procedure of Example 2 in connection with 100 parts by weight of polyethylene (50120 MB), 3 parts of vinyltriethoxysilane and 0.17 part of dicumyl peroxide. The processing conditions in the Buss Ko-Kneader were:
ScrewNeutral Temperature of barrel zone 1185 C. Temperature of barrel zone 2-186 C. Temperature of barrel zone die C. Output-l0.5 1b./hr.
The extrudate was cut into pieces on emerge-nee from the Kneader and the pieces cooled by momentary (about 2 sec.) immersion in water.
The recovered extrudate contained no gel and had a melt index of 1.3. When mixed with 0.2% by weight of dibutyltin dilaurate and exposed as A inch thick plates to steam at 100 C. for 48 hours a product was obtained having a gel content at 65.6%.
EXAMPLE 4 A cross-linkable polyethylene composition was prepared using procedure of Example 2 with a low density polyethylene (25200 MA) 2 parts of vinyltrimethoxysilane, 0.15 part of dicumyl peroxide and the following conditions in the Ko-Kneader:
C. Temperature of barrel zone 1 182 Temperature of barrel zone 2 184 Temperature of cross 1 head extruder 185 1 Not fitted in Example 2.
Two catalyst master batches (A) and (B) were also prepared by mixing and extruding 100 parts of polyethylene 25200 MA, 0.15 part dicumyl peroxide and 2.5 parts 7 of dibut y' ltin ,dilalirate in I the one' caseiand 100 parts 25200YMA; 0. l 5 part "dicumyl peroxide and 2.5 di butyltin I, ate in the other. Two compositions were then pre- 98 parts of the 'silane' modified polymer parts of the catalyst compositions (A) in the case and composition (B) in the other. Both compositions cross-linked on xpo'surelto'steam at 100C. for 24 hours.
1,1 I EXAMPLE 5? When the procedure of Example 4 was repeated employing vinylmethyldimethoxysilane in place of vinyltrimethoxysilane, similar results were obtained.
That which is claimed is:
1. A process for effecting the cross-linking of a polyolefin, which comprises: (A) reacting a polyolefin which is polyethylene or a copolymer of ethylene with a minor proportion of propylene or butylene or a mixture thereof, with a silane of the general formula RRSiY wherein R represents a monovalent olefinically unsaturated hydro carbon or olefinically unsaturated nonhydrolyzable hydrocarbonoxy radical, each Y represents a hydrolysable organic radical and R represents an R radical or a Y radical, in the presence of a compound capable of generating free radical sites in the polyolefin, said reaction being carried out at a temperature above 140 C. and the free radical generating compound having a half-life at the reaction temperature of less than 6 minutes; and (B) subsequently exposing the product of (A) to moisture in the presence of a silanol condensation catalyst.
2. A process as claimed in claim 1 wherein the polyolefin has a melt index of at least 2.0 as measured according to Method 105C of British standard specification No. 2782 (1965).
3. A process as claimed in claim 1 in which step (B) is elfected by the action of steam.
4. A process as claimed in claim 1 wherein step (A) is carried out at a temperature within the range from 160 to 220 C.
5. A process as claimed in claim 1 wherein step (A) is carried out under conditions in which the polyolefin is subjected to mechanical working.
' 6. A process as claimed in claim 5 whereinstep (A). is carried out in anextruder adapted to efiect a kneading or compounding action on its contents. i v
' 7. A process for effecting therpross-linkin'g of a polyolefin which comprises: (1 reactingapolyolefin which is polyethylene or a copolymer of ethylene with a minor proportion of'propylene or butylene or anii'iture thereof with a silane of thegeneral formula RRSiY wherein'R represents a monovalent olefinically unsaturated hydrocarbon or ole'finically unsaturated nonhydr olyzable hydro carbonoxy radical, each .Yrepresentsia hydrolysableon' ganic radical and R'represents an Rradic falior a Y radical, in the presence of a compound capableof generating free radical sites in the polyole'fin, said reaction being'carried out at a temperature above 140 C. and the free radical generating compound having a half-life at the reaction temperature of less than 6 minutes; (2) blendinglthe product of step (1) with a silanol condensation catalyst; (3) shaping the product of steps (2) and (4:), e' xposi'ngihe" shaped product to moisture. V i
8. A process as claimed in claim 7 wherein 't'he poly1 olefin has a melt index of at least 2.0 as masuredac cording to Method 1050 of British standard specification N0. 2782 (1965).
9. A process as claimed in claim 7 wherein the silanol condensation catalyst is incorporated into the product of step (1) as a mixture with a polyolefin which has not been modified by reaction with the silane.
References Cited UNITED STATES PATENTS 3,075,948 1/1963 Santelli 260827 3,471,440 10/1969 Ashby 260- 827 SAMUEL H. BLECH, Primary Examiner Us. (:1. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB60650/68A GB1286460A (en) | 1968-12-20 | 1968-12-20 | Improvements in or relating to polymers |
Publications (1)
Publication Number | Publication Date |
---|---|
US3646155A true US3646155A (en) | 1972-02-29 |
Family
ID=10485883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US886346A Expired - Lifetime US3646155A (en) | 1968-12-20 | 1969-12-18 | Cross-linking of a polyolefin with a silane |
Country Status (7)
Country | Link |
---|---|
US (1) | US3646155A (en) |
BE (1) | BE794718Q (en) |
BR (1) | BR6915212D0 (en) |
DE (1) | DE1963571C3 (en) |
FR (1) | FR2030899A5 (en) |
GB (1) | GB1286460A (en) |
SE (1) | SE368211B (en) |
Cited By (281)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4048129A (en) * | 1974-09-19 | 1977-09-13 | Kabel-Und Metallwerke Gutehoffnungshutte Aktiengesellschaft | Preparing thermo-plastic or elastomeric materials for cross-linking of grafted silane |
US4115612A (en) * | 1976-05-04 | 1978-09-19 | Closson Jr Addison W | Laminated thermoplastic counter stiffener |
US4117063A (en) * | 1974-12-12 | 1978-09-26 | Kabel-Und Metallwerke Gutehoffnungshutte Ag. | Processing a graft polymer or elastomer |
US4117195A (en) * | 1974-12-06 | 1978-09-26 | Bicc Limited | Manufacture of extruded products |
US4136132A (en) * | 1975-09-26 | 1979-01-23 | Bicc Limited | Manufacture of extruded products |
EP0002830A3 (en) * | 1977-12-27 | 1979-07-25 | Union Carbide Corporation | A wire or cable insulated with a dielectric composition stabilized against water treeing with organo silane compounds and its use |
US4182398A (en) * | 1977-04-04 | 1980-01-08 | The United States Of America As Represented By The United States Department Of Energy | Crosslinked crystalline polymer and methods for cooling and heating |
DE2926830A1 (en) * | 1978-07-05 | 1980-01-17 | Mitsubishi Petrochemical Co | CROSSLINKABLE POLYETHYLENE PLASTICS |
US4208319A (en) * | 1976-12-09 | 1980-06-17 | Wacker-Chemie Gmbh | Process for the preparation and use of silanes |
US4212756A (en) * | 1979-05-17 | 1980-07-15 | Union Carbide Corporation | Dielectric composition stabilized against water treeing with organo silane compounds |
US4226905A (en) * | 1978-04-18 | 1980-10-07 | Du Pont Canada Inc. | Manufacture of film from partially crosslinked polyethylene |
US4237334A (en) * | 1977-08-06 | 1980-12-02 | Showa Electric Wire & Cable Co., Ltd. | Laminated insulating paper and oil-filled cable insulated thereby |
US4247667A (en) * | 1978-03-03 | 1981-01-27 | The Furukawa Electric Co., Ltd. | Method of crosslinking poly-α-olefin series resins |
US4289860A (en) * | 1974-03-08 | 1981-09-15 | Kabel- Und Metallwerke Gutehoffnungshutte Ag | Grafting of silane on thermoplastics or elastomers for purposes of cross linking |
US4291136A (en) * | 1978-03-31 | 1981-09-22 | Union Carbide Corporation | Water-curable silane modified alkylene alkylacrylate copolymer and a process for its production |
US4292106A (en) * | 1978-07-11 | 1981-09-29 | Clark-Schwebel Fiber Glass Corp. | Process of producing reinforced laminates from crosslinkable thermoplastic olefin polymer material |
US4320214A (en) * | 1977-12-15 | 1982-03-16 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Method of making silane-modified ethylene-type resin |
DE3210192A1 (en) * | 1981-03-19 | 1982-10-14 | Nippon Oil Co., Ltd., Tokyo | METHOD FOR PRODUCING A POLYOLEFIN CROSSLINKED BY SILANE LINKS |
DE3222344A1 (en) * | 1981-06-16 | 1982-12-30 | Mitsubishi Petrochemical Co., Ltd., Tokyo | CROSSLINKABLE POLYETHYLENE COMPOSITION |
US4395459A (en) * | 1978-07-11 | 1983-07-26 | Herschdorfer C George | Reinforced laminates produced from crosslinkable thermoplastic olefin polymer material |
US4397981A (en) * | 1979-12-28 | 1983-08-09 | Mitsubishi Petrochemical Company Limited | Ethylene polymer compositions that are flame retardant |
DE3313579A1 (en) * | 1982-04-19 | 1983-10-20 | Sumitomo Bakelite Co. Ltd., Tokyo | METAL-LAMINATED LAMINATE AND METHOD FOR PRODUCING THE SAME |
US4413066A (en) * | 1978-07-05 | 1983-11-01 | Mitsubishi Petrochemical Company, Ltd. | Crosslinkable polyethylene resin compositions |
US4434272A (en) | 1980-09-30 | 1984-02-28 | Union Carbide Corporation | Water-curable, silane modified alkyl acrylate copolymers and a process for the preparation thereof |
US4452937A (en) * | 1980-12-22 | 1984-06-05 | Union Carbide Corporation | Ethylene polymer compositions stabilized against water treeing and electrical treeing by an organo titanium chelate; and the use thereof as insulation about electrical conductors |
US4489029A (en) * | 1983-06-01 | 1984-12-18 | Union Carbide Corporation | Compositions based on alkylene-alkyl acrylate copolymers and silanol condensation catalysts; and the use thereof in the production of covered wires and cables |
US4493924A (en) * | 1983-06-10 | 1985-01-15 | Union Carbide Corporation | Water-curable, silane modified chlorosulfonated olefinic polymers and a process for the preparation thereof |
US4526930A (en) * | 1983-09-23 | 1985-07-02 | Union Carbide Corporation | Production of water-curable, silane modified thermoplastic polymers |
US4551504A (en) * | 1984-01-18 | 1985-11-05 | Union Carbide Corporation | Water curable, azide sulfonyl silane modified ethylene polymers |
US4579913A (en) * | 1983-09-23 | 1986-04-01 | Union Carbide Corporation | Composition of a relatively stable polymer of an olefinic monomer and an unsaturated silane, and an organo titanate |
US4593071A (en) * | 1983-09-23 | 1986-06-03 | Union Carbide Corporation | Water-curable, silane modified ethylene polymers |
US4593072A (en) * | 1983-09-23 | 1986-06-03 | Union Carbide Corporation | Relatively water-stable compositions based on thermoplastic polymers containing pendant silane moieties |
US4595546A (en) * | 1983-11-14 | 1986-06-17 | Crompton & Knowles Corporation | Manufacture of elongated extruded cross-linked products |
US4598116A (en) * | 1984-11-09 | 1986-07-01 | Union Carbide Corporation | Scorch resistant compositions based on water-curable thermoplastic polymers having hydrolyzable, pendant silane moieties, and organo titanates |
US4614764A (en) * | 1985-03-06 | 1986-09-30 | Mobil Oil Corporation | Linear low density ethylene polymers blended with modified linear low density ethylene polymers |
US4617338A (en) * | 1983-06-01 | 1986-10-14 | Union Carbide Corporation | Compositions based on alkylene-alkyl acrylate copolymers and silanol condensation catalysts |
EP0234074A1 (en) * | 1986-02-21 | 1987-09-02 | CROMPTON & KNOWLES CORPORATION | Manufacture of elongate cross-linked products |
US4702868A (en) * | 1987-02-24 | 1987-10-27 | Valcour Incorporated | Moldable silane-crosslinked polyolefin foam beads |
US4707520A (en) * | 1985-08-21 | 1987-11-17 | Union Carbide Corporation | Composition based on water-curable thermoplastic polymers and metal carboxylate silanol condensation catalysts |
US4720533A (en) * | 1986-07-22 | 1988-01-19 | Ethyl Corporation | Polyorganophosphazene curable in atmosphere |
US4726869A (en) * | 1981-12-29 | 1988-02-23 | Dainichi-Nippon Cables, Ltd. | Adhesive and method of jointing articles of polyolefin using the same |
US4753993A (en) * | 1985-08-21 | 1988-06-28 | Union Carbide Corporation | Compositions based on thermoplastic polymers and metal carboxylate silanol condensation catalysts |
US4759992A (en) * | 1986-09-10 | 1988-07-26 | Uniroyal Chemical Company, Inc. | Process for coating moisture-curable low molecular weight polymers and composites thereof |
US4767820A (en) * | 1983-09-23 | 1988-08-30 | Union Carbide Corporation | Compositions of a relatively water-stable thermoplastic polymer and tetramethyl titanate dispersed in an alkylene-alkyl acrylate copolymer matrix |
US4812519A (en) * | 1987-10-15 | 1989-03-14 | Hercules Incorporated | Crosslinking of vinyl silane and azidosilane modified thermoplastic polymers by moisture |
US4822857A (en) * | 1987-12-22 | 1989-04-18 | Shell Oil Company | Method of grafting silane compounds to block copolymers |
US4839393A (en) * | 1988-07-08 | 1989-06-13 | Wm. T. Burnett & Co., Inc. | Polyurethane foams containing organofunctional silanes |
US4857250A (en) * | 1984-04-13 | 1989-08-15 | Union Carbide Corporation | One-extrusion method of making a shaped crosslinkable extruded polymeric product |
US4870111A (en) * | 1987-02-24 | 1989-09-26 | Astro-Valcour, Incorporated | Moldable silane-crosslinked polyolefin foam beads |
US4870136A (en) * | 1985-11-30 | 1989-09-26 | Mitsui Pertrochemical Industries, Ltd. | Molecular oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof |
US4963419A (en) * | 1987-05-13 | 1990-10-16 | Viskase Corporation | Multilayer film having improved heat sealing characteristics |
US5001008A (en) * | 1987-07-21 | 1991-03-19 | Mitsui Petrochemical Industries, Ltd. | Reinforcing fibrous material |
US5013771A (en) * | 1989-12-21 | 1991-05-07 | Union Carbide Chemicals And Plastics Technology Corporation | Process for the production of glass fiber reinforced composite material |
US5017668A (en) * | 1988-05-19 | 1991-05-21 | Shin-Etsu Chemical Co., Ltd. | Room temperature curable resin composition |
US5026736A (en) * | 1987-02-24 | 1991-06-25 | Astro-Valcour, Inc. | Moldable shrunken thermoplastic polymer foam beads |
US5209977A (en) * | 1991-11-26 | 1993-05-11 | Quantum Chemical Corporation | Crosslinkable ethylene copolymer powders and processes |
US5244976A (en) * | 1991-03-09 | 1993-09-14 | Basf Aktiengesellschaft | Partially crosslinked polymer composition |
US5266627A (en) * | 1991-02-25 | 1993-11-30 | Quantum Chemical Corporation | Hydrolyzable silane copolymer compositions resistant to premature crosslinking and process |
US5324779A (en) * | 1990-10-19 | 1994-06-28 | Institut Francais Du Petrole | Cross-linked compositions based on polyethylene and cross-linked materials derived from them |
US5371144A (en) * | 1992-03-07 | 1994-12-06 | Basf Aktiengesellschaft | Partially crosslinked plastics materials of propylene copolymers |
US5384369A (en) * | 1991-03-09 | 1995-01-24 | Basf Aktiengesellschaft | Partially crosslinked composition comprising polymers of propylene and of ethylene |
US5401787A (en) * | 1994-05-04 | 1995-03-28 | Quantum Chemical Corporation | Flame retardant insulation compositions |
EP0700962A1 (en) | 1994-09-07 | 1996-03-13 | Quantum Chemical Corporation | Flame retardant insulation compositions having enhanced curability |
US5525680A (en) * | 1990-08-03 | 1996-06-11 | Enichem Augusta Industriale S.R.L. | Cross-linkable polymeric compositions, process for their preparation and manufactured articles obtained therefrom |
US5589519A (en) * | 1994-09-30 | 1996-12-31 | Knaus; Dennis A. | Process of extruding lightly crosslinked polyolefin foam |
US5672661A (en) * | 1995-03-08 | 1997-09-30 | Nissin Chemical Industry Co., Ltd. | Acrylic rubber composition |
US5714257A (en) * | 1994-11-03 | 1998-02-03 | Kimberly Clark Co | Silane modified elastomeric compositions and articles made therefrom |
US5741858A (en) * | 1994-04-20 | 1998-04-21 | The Dow Chemical Company | Silane-crosslinkable elastomer-polyolefin polymer blends their preparation and use |
US5795941A (en) * | 1995-10-03 | 1998-08-18 | The Dow Chemical Company | Crosslinkable bimodal polyolefin compositions |
US5814693A (en) * | 1996-02-01 | 1998-09-29 | Forty Ten, L.L.C. | Coatings for concrete containment structures |
US5844009A (en) * | 1996-04-26 | 1998-12-01 | Sentinel Products Corp. | Cross-linked low-density polymer foam |
US5859076A (en) * | 1996-11-15 | 1999-01-12 | Sentinel Products Corp. | Open cell foamed articles including silane-grafted polyolefin resins |
US5880192A (en) * | 1996-11-12 | 1999-03-09 | Mcgill University | Moisture cross-linking of vinyl chloride homopolymers and copolymers |
US5883145A (en) * | 1994-09-19 | 1999-03-16 | Sentinel Products Corp. | Cross-linked foam structures of polyolefins and process for manufacturing |
US5882776A (en) * | 1996-07-09 | 1999-03-16 | Sentinel Products Corp. | Laminated foam structures with enhanced properties |
US5891553A (en) * | 1995-12-21 | 1999-04-06 | Clark-Schwebel, Inc. | Crosslinkable polymeric coatings and films and composite structures incorporating same |
US5911940A (en) * | 1995-09-29 | 1999-06-15 | The Dow Chemical Company | Dual cure process of producing crosslinked polyolefinic foams with enhanced physical properties |
US5929129A (en) * | 1994-09-19 | 1999-07-27 | Sentinel Products Corp. | Crosslinked foamable compositions of silane-grafted, essentially linear polyolefins blended with polypropylene |
US5932659A (en) * | 1994-09-19 | 1999-08-03 | Sentinel Products Corp. | Polymer blend |
US5938878A (en) * | 1996-08-16 | 1999-08-17 | Sentinel Products Corp. | Polymer structures with enhanced properties |
US5981674A (en) * | 1995-12-18 | 1999-11-09 | Witco Corporation | Silane, free radical generator, amine blends for crosslinking of olefin polymers |
US6005055A (en) * | 1993-12-20 | 1999-12-21 | Borealis Holding A/S | Polyethylene compatible sulphonic acids as silane crosslinking catalysts |
DE19831278A1 (en) * | 1998-07-13 | 2000-01-27 | Borealis Ag | Heterophase polyolefin alloys |
US6124370A (en) * | 1999-06-14 | 2000-09-26 | The Dow Chemical Company | Crosslinked polyolefinic foams with enhanced physical properties and a dual cure process of producing such foams |
US6165387A (en) * | 1997-02-04 | 2000-12-26 | Borealis A/S | Composition for electric cables |
US6167790B1 (en) | 1996-07-09 | 2001-01-02 | Sentinel Products Corp. | Laminated foam structures with enhanced properties |
AU728414B2 (en) * | 1996-04-29 | 2001-01-11 | General Electric Company | Silane, free radical generator, amine blends for crosslinking of olefin polymers |
US6177519B1 (en) | 1999-03-02 | 2001-01-23 | Exxon Chemical Patents, Inc. | Silane grafted copolymers of an isomonoolefin and a vinyl aromatic monomer |
US6180721B1 (en) | 1998-06-12 | 2001-01-30 | Borealis Polymers Oy | Insulating composition for communication cables |
US6185349B1 (en) | 1998-12-18 | 2001-02-06 | Borealis Polymers Oy | Multimodal polymer composition |
US6221928B1 (en) | 1996-11-15 | 2001-04-24 | Sentinel Products Corp. | Polymer articles including maleic anhydride |
US6228900B1 (en) | 1996-07-09 | 2001-05-08 | The Orthopaedic Hospital And University Of Southern California | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
EP1103986A1 (en) * | 1999-11-24 | 2001-05-30 | ShawCor Ltd. | Tracking resistant, electrical-insulating material containing silane-modified polyolefins |
US6245276B1 (en) | 1999-06-08 | 2001-06-12 | Depuy Orthopaedics, Inc. | Method for molding a cross-linked preform |
WO2001053367A1 (en) * | 2000-01-21 | 2001-07-26 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Crosslinkable polyethylene composition |
US6268442B1 (en) | 1997-11-18 | 2001-07-31 | Borealis A/S | Process for the reduction of reactor fouling |
US6281264B1 (en) | 1995-01-20 | 2001-08-28 | The Orthopaedic Hospital | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US6329054B1 (en) | 1995-07-10 | 2001-12-11 | Borealis Polymers Oy | Cable and method for using a cable-sheathing composition including an ethylene polymer mixture |
US6350512B1 (en) | 1996-04-26 | 2002-02-26 | Sentinel Products Corp. | Cross-linked polyolefin foam |
US6380316B1 (en) | 1999-03-02 | 2002-04-30 | Dow Corning Corporation | Polyisobutylene copolymers having reactive silyl grafts |
US6416860B1 (en) | 1997-10-20 | 2002-07-09 | Borealis A/S | Electric cable and a method and composition for the production thereof |
US6420485B1 (en) | 2000-08-14 | 2002-07-16 | Dow Corning Corporation | Siloxane-grafted hydrocarbon copolymers |
US6455637B1 (en) | 1999-11-24 | 2002-09-24 | Shawcor Ltd. | Crosslinked compositions containing silane-modified polyolefins and polypropylenes |
US6465547B1 (en) | 2001-04-19 | 2002-10-15 | Shawcor Ltd. | Crosslinked compositions containing silane-modified polypropylene blends |
US20020197471A1 (en) * | 2001-04-25 | 2002-12-26 | Scapa North America | Compositions and methods of making temperature resistant protective tape |
WO2003009999A1 (en) * | 2001-07-24 | 2003-02-06 | Cooper Technology Services, Llc. | Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips |
US20030024629A1 (en) * | 2000-02-15 | 2003-02-06 | Nigel Wright | Method of lining pipes |
US20030035922A1 (en) * | 2001-07-20 | 2003-02-20 | Zuoxing Yu | Manufacture of abrasion resistant composite extrusions |
US6562540B2 (en) | 1996-10-02 | 2003-05-13 | Depuy Orthopaedics, Inc. | Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance |
US6586509B1 (en) | 1998-07-03 | 2003-07-01 | Borealis Technology Oy | Composition for electric cables comprising thiodiol fatty acid diesters |
US20030132017A1 (en) * | 2001-10-23 | 2003-07-17 | Chantal Barioz | Method of manufacturing a cable sheath by extruding and cross-linking a composition based on silane-grafted polymer, and a cable including a sheath obtained by the method |
US20030144741A1 (en) * | 2002-01-28 | 2003-07-31 | Richard King | Composite prosthetic bearing having a crosslinked articulating surface and method for making the same |
US6627141B2 (en) | 1999-06-08 | 2003-09-30 | Depuy Orthopaedics, Inc. | Method for molding a cross-linked preform |
EP1354912A1 (en) * | 2002-04-18 | 2003-10-22 | Tosoh Corporation | Silane-crosslinking expandable polyolefin resin composition and crosslinked foam |
US20030212226A1 (en) * | 2001-11-16 | 2003-11-13 | Ittel Steven Dale | Copolymers of olefins and vinyl- and allylsilanes |
US6667098B1 (en) | 1999-05-05 | 2003-12-23 | Borealis Technology Oy | Electric cable |
US20040002770A1 (en) * | 2002-06-28 | 2004-01-01 | King Richard S. | Polymer-bioceramic composite for orthopaedic applications and method of manufacture thereof |
US6692679B1 (en) | 1998-06-10 | 2004-02-17 | Depuy Orthopaedics, Inc. | Cross-linked molded plastic bearings |
US20040127641A1 (en) * | 2001-05-02 | 2004-07-01 | Borealis Technology Oy | Stabilization of cross-linked silane group containing polymers |
US20040157053A1 (en) * | 2001-07-24 | 2004-08-12 | Cooper Technology Services Llc | Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips |
US6794453B2 (en) | 2000-11-06 | 2004-09-21 | Shawcor Ltd. | Crosslinked, predominantly polypropylene-based compositions |
US6800670B2 (en) | 1996-07-09 | 2004-10-05 | Orthopaedic Hospital | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US20040210316A1 (en) * | 2003-04-15 | 2004-10-21 | Richard King | Implantable orthopaedic device and method for making the same |
US20040219317A1 (en) * | 2003-01-22 | 2004-11-04 | Wellstream International Limited | Process for manufacturing a flexible tubular pipe having extruded layers made of crosslinked polyethylene |
US6818172B2 (en) | 2000-09-29 | 2004-11-16 | Depuy Products, Inc. | Oriented, cross-linked UHMWPE molding for orthopaedic applications |
US20040242776A1 (en) * | 2003-05-29 | 2004-12-02 | Strebel Jeffrey J. | Propylene polymer compositions having improved melt strength |
US20040262809A1 (en) * | 2003-06-30 | 2004-12-30 | Smith Todd S. | Crosslinked polymeric composite for orthopaedic implants |
US20050049335A1 (en) * | 2003-09-02 | 2005-03-03 | Lee Lester Y. | Flame retardant insulation compositions having improved abrasion resistance |
US20050049343A1 (en) * | 2003-09-02 | 2005-03-03 | Borke Jeffrey S. | Crosslinkable flame retardant wire and cable compositions having improved abrasion resistance |
US6864323B2 (en) | 2001-08-30 | 2005-03-08 | Degussa Ag | Composition for improving scorch conditions in the preparation of grafted and/or crosslinked polymers and of filled plastics |
US20050059783A1 (en) * | 2003-09-12 | 2005-03-17 | Willy Furrer | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers |
US20050095374A1 (en) * | 2001-07-24 | 2005-05-05 | Liggett Cothran | Composites containing crosslinkable thermoplastic and TPV show layer |
US20060004168A1 (en) * | 2004-06-30 | 2006-01-05 | Keith Greer | Low crystalline polymeric material for orthopaedic implants and an associated method |
US20060100382A1 (en) * | 2003-05-29 | 2006-05-11 | Strebel Jeffrey J | Filled propylene polymer compositions having improved melt strength |
US20060149388A1 (en) * | 2004-12-30 | 2006-07-06 | Smith Todd S | Orthopaedic bearing and method for making the same |
US20060149387A1 (en) * | 2004-12-30 | 2006-07-06 | Smith Todd S | Orthopaedic bearing and method for making the same |
DE102004061983A1 (en) * | 2004-12-23 | 2006-07-06 | Rehau Ag + Co. | Material composition, useful for the production of molded parts, comprises silicon containing polymer, which is formed by cross-linking silicon containing structures under UV-radiation in a continuous manufacturing method |
US20060178487A1 (en) * | 2005-02-08 | 2006-08-10 | Weller Keith J | Process for the production of crosslinked polymer employing low VOC-producing silane crosslinker and resulting crosslinked polymer |
US20060230476A1 (en) * | 2005-03-30 | 2006-10-12 | Boston Scientific Scimed, Inc. | Polymeric/ceramic composite materials for use in medical devices |
US20060255501A1 (en) * | 2005-05-11 | 2006-11-16 | Shawcor Ltd. | Crosslinked chlorinated polyolefin compositions |
US20060257671A1 (en) * | 2003-03-07 | 2006-11-16 | Yahkind Alexander L | Method and primer composition for coating a non-polar substrate |
US20070027250A1 (en) * | 2005-07-28 | 2007-02-01 | Sebastian Joseph | Flame retardant crosslinkable compositions and articles |
US7186364B2 (en) | 2002-01-28 | 2007-03-06 | Depuy Products, Inc. | Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same |
EP1760111A1 (en) | 2005-08-31 | 2007-03-07 | Borealis Technology Oy | Discolour-free silanol condensation catalyst containing polyolefin composition |
US20070066764A1 (en) * | 2005-09-16 | 2007-03-22 | Boston Scientific Scimed, Inc. | Medical device articles formed from polymer-inorganic hybrids prepared by ester-alkoxy transesterification reaction during melt processing |
US20070072978A1 (en) * | 2005-09-27 | 2007-03-29 | Boston Scientific Scimed, Inc. | Organic-inorganic hybrid particle material and polymer compositions containing same |
US20070141337A1 (en) * | 2005-12-20 | 2007-06-21 | Mehta Sameer D | Cellulosic-reinforced composites having increased resistance to water absorption |
WO2007107667A1 (en) * | 2006-03-23 | 2007-09-27 | Nexans | Photo-crosslinkable composition |
US20070264512A1 (en) * | 2006-05-11 | 2007-11-15 | Mehta Sameer D | Extrusion coating process for improved adhesion to metal(lized) substrates |
EP1862499A1 (en) * | 2006-05-30 | 2007-12-05 | Borealis Technology Oy | A silicon containing compound as corrosion inhibitor in polyolefin compositions |
US20080114134A1 (en) * | 2006-11-14 | 2008-05-15 | General Electric Company | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends, the resulting crosslinked thermoplastic polymer composition and articles made therefrom |
EP1942131A1 (en) | 2006-12-29 | 2008-07-09 | Borealis Technology Oy | Antiblocking agent using crosslinkable silicon-containing polyolefin |
EP1956609A1 (en) | 2007-02-01 | 2008-08-13 | Borealis Technology Oy | Cable with improved flame retardancy |
US20080242758A1 (en) * | 2005-02-02 | 2008-10-02 | Peter Jackson | Radiation-crosslinked polyolefin compositions |
US20080262116A1 (en) * | 2004-05-07 | 2008-10-23 | Simpson Scott S | Cross-Linked Polypropylene Resins, Method of Making Same, and Articles Formed Therefrom |
US20080269362A1 (en) * | 2007-04-24 | 2008-10-30 | Far East University | Recycled thermosetting flour composites and method for preparing the same |
US20080269424A1 (en) * | 2004-11-16 | 2008-10-30 | Borealis Technology Oy | Crosslinkable Polyethylene Composition, an Electric Cable Comprising It, and a Process for Its Preparation |
US20080281009A1 (en) * | 2006-12-04 | 2008-11-13 | Ingenia Polymers, Inc. | Cross-linked polyolefin foam |
DE102007042948A1 (en) | 2007-09-10 | 2009-03-12 | Wacker Chemie Ag | Moisture-crosslinkable polymers based on α-heteroatom-substituted silanes |
EP2072568A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology OY | UV stabilisation of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
EP2072571A1 (en) | 2007-12-21 | 2009-06-24 | Borealis Technology OY | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and pigment |
EP2072575A1 (en) | 2007-12-21 | 2009-06-24 | Borealis Technology OY | Polypropylene composition comprising a cross-linkable dispersed phase comprising silanol groups containing nanofillers |
EP2083047A1 (en) | 2008-01-24 | 2009-07-29 | Borealis Technology OY | Partially cross-linked polypropylene composition comprising an acidic silanol condensation catalyst |
US20090203821A1 (en) * | 2006-05-30 | 2009-08-13 | Roger Carlsson | Silicon containing compound as processing aid for polyolefin compositions |
US20090209688A1 (en) * | 2006-05-30 | 2009-08-20 | Roger Carlsson | Silicon containing compound as drying agent for polyolefin compositions |
EP2138538A1 (en) | 2008-06-27 | 2009-12-30 | Borealis AG | Polyolefin composition reinforced with a filler and pipe comprising the polyolefin composition |
WO2010000478A1 (en) * | 2008-07-03 | 2010-01-07 | Dow Corning Corporation | Modified polyolefins |
WO2010000477A1 (en) * | 2008-07-03 | 2010-01-07 | Dow Corning Corporation | Grafted polyethylene |
US20100022703A1 (en) * | 2006-04-26 | 2010-01-28 | Borealis Technology Oy | Crosslinkable polyolefin composition comprising high molecular weight silanol condensation catalyst |
DE102008041919A1 (en) | 2008-09-09 | 2010-03-11 | Evonik Degussa Gmbh | Use of silicon-containing precursor compounds of an organic acid as a catalyst for crosslinking filled and unfilled polymer compounds |
DE102008041918A1 (en) | 2008-09-09 | 2010-03-11 | Evonik Degussa Gmbh | Silanol condensation catalysts for the crosslinking of filled and unfilled polymer compounds |
US20100087579A1 (en) * | 2006-10-30 | 2010-04-08 | Cogen Jeffrey M | Magnesium Hydroxide-Based Flame Retardant Compositions Made Via In-Situ Hydration of Polymer Compounds Comprising Magnesium Oxide |
EP2196482A1 (en) | 2008-12-05 | 2010-06-16 | Lanxess Deutschland GmbH | Silane-grafted alpha-olefin-vinyl acetate copolymer containing crosslinkable silyl groups, process for the preparation thereof and use for the preparation of insulation or sheath materials for cables or lines |
US20100160471A1 (en) * | 2008-12-23 | 2010-06-24 | Sengupta Saurav S | Catalyst System for Moisture Cure of Ethylene-Vinylsilane Copolymers |
US20100160571A1 (en) * | 2008-12-22 | 2010-06-24 | Alric Jerome | Curable composition comprising a silane-grafted polymer and a latent compound |
US20100181092A1 (en) * | 2007-06-27 | 2010-07-22 | Cree Stephen H | Crosslinkable Blends of Polyolefin Elastomers and Silane Copolymers for Increased Flexibility Cable Insulation |
US20100197828A1 (en) * | 2007-09-28 | 2010-08-05 | Whaley Paul D | Bimodal Filler Systems for Enhanced Flame Retardancy |
US20100203276A1 (en) * | 2007-09-28 | 2010-08-12 | Wasserman Eric P | In-Situ Methods of Generating Water Through the Dehydration of Metal Salt Hydrates for Moisture Crosslinking of Polyolefins |
US20100209705A1 (en) * | 2007-09-24 | 2010-08-19 | Lin Thomas S | Moisture-Curable Compositions, and a Process for Making the Compositions |
US20100222535A1 (en) * | 2007-07-13 | 2010-09-02 | Eaton Robert F | Hypercompressor Lubricants for High Pressure Polyolefin Production |
EP2226355A2 (en) | 2009-03-06 | 2010-09-08 | ShawCor Ltd. | Moisture-crosslinked polyolefin compositions |
EP2251365A1 (en) | 2009-05-14 | 2010-11-17 | Borealis AG | Crosslinkable polyolefin composition comprising silane groups forming an acid or a base upon hydrolysation |
US20100311911A1 (en) * | 2007-12-03 | 2010-12-09 | Roger Carlsson | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and silicon containing compound |
US20110015335A1 (en) * | 2007-07-13 | 2011-01-20 | Wasserman Eric P | In-Situ Method of Generating Through Ring-Closing Dehydration Reactions of Organic Compounds Water for Moisture Crosslinking of Polyolefins |
US20110021710A1 (en) * | 2009-07-23 | 2011-01-27 | Sunny Jacob | Crosslinkable Propylene-Based Copolymers, Methods for Preparing the Same, and Articles Made Therefrom |
US7883653B2 (en) | 2004-12-30 | 2011-02-08 | Depuy Products, Inc. | Method of making an implantable orthopaedic bearing |
WO2011034838A1 (en) | 2009-09-16 | 2011-03-24 | Union Carbide Chemilcals & Plastics Technology Llc | Crosslinked, melt-shaped articles and compositions for producing same |
WO2011034833A2 (en) | 2009-09-18 | 2011-03-24 | Union Carbide Chemicals & Plastics Technology Llc | Process for making crosslinked injection molded articles |
US20110147639A1 (en) * | 2008-06-06 | 2011-06-23 | Ronald Wevers | Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer |
WO2011083044A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Organopolysiloxanes containing an unsaturated group |
WO2011083045A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Modified polyolefins |
WO2011083047A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Modified polyolefins |
WO2011083043A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Polyolefins modified by silicones |
US20110178198A1 (en) * | 2008-07-03 | 2011-07-21 | Michael Backer | Polymers modified by silanes |
DE102010002358A1 (en) | 2010-02-25 | 2011-08-25 | Evonik Degussa GmbH, 45128 | Carboxy-functionalized silicon-containing precursor compound of various organic carboxylic acids |
EP2363267A1 (en) | 2010-03-03 | 2011-09-07 | Borealis AG | Cross-linkable polyolefin composition comprising two types of silane groups |
DE102010027956A1 (en) | 2010-04-20 | 2011-10-20 | Robert Bosch Gmbh | Process for crosslinking polymeric moldings with reactive gases |
WO2011149528A1 (en) * | 2010-05-25 | 2011-12-01 | Viega Llc | Crosslinkable polyethylene composition |
WO2011156077A1 (en) | 2010-06-08 | 2011-12-15 | Union Carbide Chemicals & Plastics Technology Llc | Halogenated flame retardant systems for use in presence of silane grafting process |
WO2012010640A1 (en) | 2010-07-22 | 2012-01-26 | Borealis Ag | Modified polymer compositions, modification process and free radical generating agents for i.a. wire and cable applications |
WO2012069794A1 (en) | 2010-11-25 | 2012-05-31 | Smith & Nephew Plc | Composition i-ii and products and uses thereof |
WO2012069793A1 (en) | 2010-11-25 | 2012-05-31 | Smith & Nephew Plc | Compositions i-i and products and uses thereof |
CN102504256A (en) * | 2011-11-07 | 2012-06-20 | 华东理工大学 | Organic silicon grafted and modified polyphenylene sulphide material and preparation method thereof |
WO2012057586A3 (en) * | 2010-10-29 | 2012-07-05 | 주식회사 엘지화학 | Olefin composition |
WO2012106401A1 (en) | 2011-02-04 | 2012-08-09 | Dow Global Technologies Llc | Cross-linkable polyolefin composition for formed textured skin applications |
WO2012120204A1 (en) | 2011-03-04 | 2012-09-13 | Setup Performance | Modified polyolefins crosslinkable after transformation, and process for producing said polyolefins |
US20130001823A1 (en) * | 2010-03-08 | 2013-01-03 | Sumitomo Chemical Company Limitedf | Ethylene polymer pellet and extrusion process using the same |
EP2594296A2 (en) | 2011-11-18 | 2013-05-22 | Cook Medical Technologies LLC | Silane bonded medical devices and method of making same |
WO2013076450A1 (en) | 2011-11-25 | 2013-05-30 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
WO2013116196A1 (en) | 2012-01-31 | 2013-08-08 | Dow Global Technologies Llc | Thermoplastic, semiconductive compositions |
US20130273367A1 (en) * | 2011-01-31 | 2013-10-17 | Autonetworks Technologies, Ltd. | Composition for wire coating material, insulated wire, and wiring harness |
DE102012007728A1 (en) | 2012-04-18 | 2013-10-24 | Technische Universität München | Process for the preparation of crosslinkable polyolefin copolymers |
EP2657276A1 (en) | 2012-04-27 | 2013-10-30 | Borealis AG | Catalyst masterbatch |
EP2657283A1 (en) | 2012-04-27 | 2013-10-30 | Borealis AG | Catalyst masterbatch |
EP2657284A1 (en) | 2012-04-27 | 2013-10-30 | Borealis AG | Additive masterbatch with a C3-C5 alpha-olefin homo- or copolymer comprised in the carrier |
EP2690115A1 (en) | 2012-07-24 | 2014-01-29 | Borealis AG | Slow partial cross-linking polyolefin composition for improving disinfectant resistance of an article |
EP2746296A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Process for making a cross-linked polyethylene article |
WO2014099360A1 (en) | 2012-12-21 | 2014-06-26 | Dow Global Technologies Llc | Polyolefin-based compound for cable jacket with reduced shrinkage and enhanced processability |
WO2014099335A2 (en) | 2012-12-21 | 2014-06-26 | Dow Global Technologies Llc | Polyolefin-based cable compound formulation for improved foamability and enhanced processability |
WO2014099256A2 (en) | 2012-12-19 | 2014-06-26 | Dow Global Technologies Llc | Silicon-containing polyolefins in personal care applications |
CN103897323A (en) * | 2012-12-27 | 2014-07-02 | 日立金属株式会社 | Crosslinked resin compound and wire and cable using the same |
US8846844B2 (en) | 2009-05-14 | 2014-09-30 | Borealis Ag | Crosslinkable polyolefin composition comprising silane groups forming an acid or a base upon hydrolysation |
DE102013216502A1 (en) | 2013-08-21 | 2015-02-26 | Evonik Industries Ag | Tin-free composition for the crosslinking of thermoplastic polyolefins |
DE102013216504A1 (en) | 2013-08-21 | 2015-02-26 | Evonik Industries Ag | Tin-free catalyst-containing composition for a Monosil process with optimized process characteristics |
US8998866B2 (en) | 2010-07-02 | 2015-04-07 | Smith & Nephew Plc | Provision of wound filler |
EP2876132A1 (en) | 2013-11-21 | 2015-05-27 | Borealis AG | Crosslinkable polyethylene composition comprising a silanol condensation catalyst |
US9045578B2 (en) | 2010-01-06 | 2015-06-02 | Dow Corning Corporation | Process for forming crosslinked and branched polymers |
WO2015091707A1 (en) | 2013-12-18 | 2015-06-25 | Borealis Ag | A polymer composition comprising a polyolefin composition and a at least one silanol condensation catalyst |
US9200136B2 (en) | 2009-06-22 | 2015-12-01 | Borealis Ag | Chlorine dioxide resistant polyethylene pipes, their preparation and use |
US20160046770A1 (en) * | 2013-03-29 | 2016-02-18 | Furukawa Electric Co., Ltd. | Silane-crosslinkable ethylene- propylene copolymer and crosslinked body of the same |
WO2016069089A1 (en) | 2014-10-29 | 2016-05-06 | Exxonmobil Chemical Patents Inc. | Polyolefin adhesive compositions for elastic applications |
CN105576172A (en) * | 2014-10-31 | 2016-05-11 | Lg化学株式会社 | Crosslinked polyolefin separator and method of preparing the same |
US9387126B2 (en) | 2002-10-28 | 2016-07-12 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
DE202016004056U1 (en) | 2016-06-30 | 2016-11-08 | Borealis Ag | Solar cell encapsulant foil roll |
US9587084B2 (en) | 2010-06-08 | 2017-03-07 | Union Carbide Chemicals & Plastics Technology Llc | Halogenated flame retardant systems for use in presence of silane grafting process |
EP3182418A1 (en) | 2015-12-18 | 2017-06-21 | Borealis AG | A cable jacket composition, cable jacket and a cable, e.g. a power cable or a communication cable |
EP3182422A1 (en) | 2015-12-18 | 2017-06-21 | Borealis AG | A process for manufacturing a power cable and power cable obtainable thereof |
WO2017112644A1 (en) | 2015-12-21 | 2017-06-29 | Braskem America, Inc. | One-pot process for preparing long-chain branched polyolefins |
WO2017218280A1 (en) | 2016-06-14 | 2017-12-21 | Dow Global Technologies Llc | Moisture-curable compositions comprising silane-grafted polyolefin elastomer and halogen-free flame retardant |
RU2639865C2 (en) * | 2016-04-19 | 2017-12-25 | Нина Александровна Попова | Method of producing thermoplastic polymers modified by silicon |
WO2018044414A1 (en) | 2016-08-30 | 2018-03-08 | Dow Global Technologies Llc | Method for thermally insulating subsea structures |
WO2018097982A1 (en) | 2016-11-23 | 2018-05-31 | Union Carbide Chemicals & Plastics Technology Llc | Multiphase conductive polymer composite compositions |
EP3339366A1 (en) | 2016-12-22 | 2018-06-27 | Borealis AG | A crosslinkable polyolefin composition |
US10040888B1 (en) * | 2013-06-14 | 2018-08-07 | Cooper-Standard Automotive Inc. | Composition including silane-grafted polyolefin |
US10100139B2 (en) | 2013-08-01 | 2018-10-16 | Cooper-Standard Automotive Inc. | Hose, composition including silane-grafted polyolefin, and process of making a hose |
EP2551294B1 (en) | 2011-07-25 | 2018-11-07 | Borealis AG | Use of a polyolefin composition for pipes and fittings with increased resistance to chlorine dioxide |
EP3409701A1 (en) | 2017-05-31 | 2018-12-05 | Borealis AG | A crosslinkable propylene polymer composition |
WO2018229191A1 (en) | 2017-06-16 | 2018-12-20 | Borealis Ag | A polymer composition for photovoltaic applications |
WO2018229182A1 (en) | 2017-06-16 | 2018-12-20 | Borealis Ag | A polymer composition for photovoltaic applications |
US10233310B2 (en) | 2013-12-18 | 2019-03-19 | Borealis Ag | Polymer composition comprising a crosslinkable polyolefin with hydrolysable silane groups, catalyst and a surfactant interacting additive |
WO2019067440A1 (en) | 2017-09-26 | 2019-04-04 | Dow Global Technologies Llc | Compositions comprising a tin-based catalyst and titanium dioxide for moisture cure of silane-functionalized ethylenic polymers |
US10308829B2 (en) | 2013-11-25 | 2019-06-04 | Dow Global Technologies Llc | Moisture-and peroxide-crosslinkable polymeric compositions |
US10371292B2 (en) | 2014-07-02 | 2019-08-06 | Cooper-Standard Automotive Inc. | Hose, abrasion resistant composition, and process of making a hose |
WO2019209547A1 (en) | 2018-04-27 | 2019-10-31 | Dow Global Technologies Llc | Foamed polyolefin compositions for wire and cable coating |
WO2019209546A1 (en) | 2018-04-27 | 2019-10-31 | Dow Global Technologies Llc | Non-foam polyolefin compositions for wire and cable coating |
US10570236B2 (en) | 2016-12-10 | 2020-02-25 | Cooper-Standard Automotive Inc. | Combined seals, compositions, and methods of making the same |
EP3670588A1 (en) | 2018-12-21 | 2020-06-24 | Borealis AG | Crosslinking acceleratores for silane-group containing polymer compositions |
WO2020139537A1 (en) | 2018-12-27 | 2020-07-02 | Dow Global Technologies Llc | Solid crosslinked polyolefin compositions for wire and cable coating |
WO2020180495A1 (en) | 2019-03-07 | 2020-09-10 | Dow Global Technologies Llc | Catalyst system |
US10779608B2 (en) | 2016-12-10 | 2020-09-22 | Cooper-Standard Automotive, Inc. | Polyolefin elastomer compositions and methods of making the same |
WO2020197654A1 (en) | 2019-03-26 | 2020-10-01 | Dow Global Technologies Llc | Rapidly moisture-curable polyethylene formulation |
EP3733763A1 (en) | 2019-04-30 | 2020-11-04 | Borealis AG | Polyethylene composition for improving adhesion to polyurethane resins |
EP3734617A1 (en) | 2019-04-30 | 2020-11-04 | Borealis AG | Moisture cureable polymer for flexible cables |
EP3778746A1 (en) | 2019-08-14 | 2021-02-17 | Borealis AG | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
EP3778747A1 (en) | 2019-08-14 | 2021-02-17 | Borealis AG | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
EP3828207A1 (en) | 2019-11-29 | 2021-06-02 | Borealis AG | Process for producing a polyethylene composition using molecular weight enlargement |
WO2021252312A1 (en) | 2020-06-08 | 2021-12-16 | Dow Global Technologies Llc | Flame-retardant polymeric compositions |
WO2021262776A1 (en) | 2020-06-24 | 2021-12-30 | Dow Global Technologies Llc | Cure and functionalization of olefin/silane interpolymers |
US20220204742A1 (en) * | 2019-06-27 | 2022-06-30 | Carmel Olefins Ltd. | Polyolefin based compositions modified by silanes |
EP4023712A1 (en) | 2020-12-29 | 2022-07-06 | Borealis AG | Highly track resistant polyethylene compositions for wire and cable applications |
EP4023711A1 (en) | 2020-12-29 | 2022-07-06 | Borealis AG | Highly track resistant polyethylene compounds for wire and cable applications |
EP4095195A1 (en) | 2021-05-25 | 2022-11-30 | Borealis AG | Crosslinkable polyolefin compositions for wire and cable applications |
EP4169976A1 (en) | 2021-10-19 | 2023-04-26 | Borealis AG | Polyethylene composition for cable insulations with improved uv stability |
EP4190858A1 (en) | 2021-12-03 | 2023-06-07 | Borealis AG | High frequency weldable polyolefin composition |
EP4201985A1 (en) | 2021-12-21 | 2023-06-28 | Borealis AG | Polymer composition suitable for cable insulation |
EP4253437A1 (en) | 2022-03-28 | 2023-10-04 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Silane-based crosslinking mixture and method for crosslinking thermoplastic polymers |
US11840587B2 (en) | 2019-02-13 | 2023-12-12 | Dow Global Technologies Llc | Moisture-curable polyolefin formulation |
US11931226B2 (en) | 2013-03-15 | 2024-03-19 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
WO2024110589A1 (en) | 2022-11-23 | 2024-05-30 | Borealis Ag | Cable comprising layer of crosslinkable polyethylene composition with improved crosslinking speed |
EP4393989A1 (en) | 2022-12-27 | 2024-07-03 | Borealis AG | Use of a magnesium hydroxide filler in highly track resistant polyethylene compositions |
US12037469B2 (en) | 2019-08-29 | 2024-07-16 | Dow Global Technologies Llc | Method of making a homogeneous mixture of polyolefin solids and solid additive |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1408154A (en) * | 1972-02-29 | 1975-10-01 | Dow Corning Ltd | Foamable ethylene polymer compositions |
GB1396120A (en) * | 1972-10-28 | 1975-06-04 | Dow Corning Ltd | Crosslinking process |
DE2458776A1 (en) * | 1974-12-12 | 1976-06-16 | Kabel Metallwerke Ghh | Silane crosslinked thermoplastic or elastomeric compsn. - for cable jackets, by mixing, degassing and immediately shaping |
DE2529260A1 (en) * | 1975-07-01 | 1977-01-27 | Kabel Metallwerke Ghh | METHOD AND DEVICE FOR THE PRODUCTION OF THERMOPLASTICS OR ELASTOMERS THERMOPLASTICS THAT CAN BE CROSSED BY PLUGGING A SILANE COMPOUND IN THE PRESENCE OF MOISTURE |
US4160072A (en) * | 1975-03-20 | 1979-07-03 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Foamable and crosslinkable polyethylene composition, process for its production, and process for producing crosslinked polyethylene foams using said composition |
AR218611A1 (en) * | 1975-06-23 | 1980-06-30 | Kabel Metallwerke Ghh | PROCEDURE FOR THE ELABORATION OF THERMOPLASTICS OR ELASTOMERS RETICULABLE BY GRAFTING OF A SILANO COMPOUND IN THE PRESENCE OF MOISTURE |
BR7708269A (en) * | 1976-12-14 | 1978-09-05 | Fujikura Ltd | PROCESS FOR THE PRODUCTION OF A cross-linked polyolefin |
DE2713181A1 (en) * | 1977-03-25 | 1978-10-05 | Kabel Metallwerke Ghh | PROCESS FOR MANUFACTURING FOAMED MATERIALS |
GB1575961A (en) * | 1977-09-07 | 1980-10-01 | Sekisui Chemical Co Ltd | Foamable compositions and their use in preparing foams |
AU4199378A (en) * | 1977-12-20 | 1979-06-28 | British Steel Corp | Production of cross-linked polyolefine articles |
JPS5566809A (en) * | 1978-11-13 | 1980-05-20 | Mitsubishi Petrochemical Co | Method of manufacturing crosslinked polyethylene resinncoated wire |
DE3003156A1 (en) * | 1980-01-30 | 1981-08-06 | Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover | Crosslinking moisture-crosslinkable coiled material - in sealed chamber, by sucking out air mixing with satd. steam and reintroducing steam-air mixt. |
ATE22250T1 (en) | 1980-07-28 | 1986-10-15 | Raychem Ltd | ARRANGEMENT OF MARKING TUBE AND METHOD FOR THEIR MANUFACTURE. |
US4488642A (en) * | 1980-07-28 | 1984-12-18 | Raychem Limited | Polymeric articles |
US4496616A (en) * | 1981-03-23 | 1985-01-29 | Raychem Limited | Strip of heat-recoverable articles |
US4496410A (en) * | 1981-04-02 | 1985-01-29 | Raychem Limited | Production of dimensionally recoverable articles |
EP0077679A3 (en) * | 1981-10-19 | 1984-07-18 | Raychem Limited | Fire protection system |
JPS59115351A (en) * | 1982-12-22 | 1984-07-03 | Mitsubishi Petrochem Co Ltd | Production of crosslinked propylene resin |
DE3306909A1 (en) * | 1983-02-26 | 1985-01-10 | Dynamit Nobel Ag, 5210 Troisdorf | Process for the production of crosslinked mouldings based on polyethylene |
FR2546172B1 (en) * | 1983-05-17 | 1987-03-20 | Sogecan | THERMOPLASTIC COMPOSITIONS CONTAINING A SILAN-GRAFT POLYMER |
IT1209510B (en) * | 1984-03-09 | 1989-08-30 | Franco Gimpel | RETICULABLE POLYOLEFINIC COMPOSITIONS, CONTAINING CRYSTALLINE ZEOLITES. |
GB8418592D0 (en) * | 1984-07-20 | 1984-08-22 | Bp Chem Int Ltd | Polymer composition |
JPS6183035A (en) * | 1984-09-06 | 1986-04-26 | 株式会社クラレ | Pipe |
EP0179755A3 (en) * | 1984-10-22 | 1987-08-19 | Rosendahl Maschinen Gesellschaft m.b.H. | Method and apparatus for the manufacture of a cross-linked extruded or injection-moulded article |
FR2573662B1 (en) * | 1984-11-26 | 1987-01-16 | Rossignol Sa | PROCESS FOR THE MANUFACTURE OF IMPROVED SLIP SKI SOLE AND SKIS EQUIPPED WITH SUCH SOLE. |
US4734440A (en) * | 1984-12-21 | 1988-03-29 | Union Carbide Corporation | Foamable compositions |
GB8502928D0 (en) * | 1985-02-05 | 1985-03-06 | Bicc Plc | Cross-linkable compositions |
DE3511299A1 (en) * | 1985-03-28 | 1986-10-09 | kabelmetal electro GmbH, 3000 Hannover | CREECH-RESISTANT SHRINK TUBE FOR END TERMINALS |
DE3530364C1 (en) * | 1985-08-24 | 1987-01-02 | Dynamit Nobel Ag | Moulding composition based on polyolefins |
GB8617005D0 (en) * | 1986-07-11 | 1986-08-20 | Bp Chem Int Ltd | Polymer compositions & extrusion process |
DK89087A (en) * | 1987-02-20 | 1988-08-21 | Nordiske Kabel Traad | METHOD FOR MANUFACTURING AN ELECTRIC SEMI-CONDUCTIVE, STRIPABLE PLASTIC BLENDER |
DE3717971A1 (en) * | 1987-05-27 | 1988-12-08 | Hoogovens Aluminium Kabelwerk | ELECTRIC INSULATING MATERIAL WITH HIGH ELECTRICAL DURABILITY |
GB8713867D0 (en) * | 1987-06-13 | 1987-07-15 | Bp Chem Int Ltd | Crosslinkable polymers |
EP0365289A3 (en) * | 1988-10-21 | 1991-10-09 | Neste Oy | Method for producing a filled water-crosslinkable silane copolymer composition |
FR2649495B1 (en) * | 1989-07-05 | 1992-10-02 | Cables De Lyon Geoffroy Delore | OPTICAL FIBER CABLES RESISTANT TO A TEMPERATURE JUMP AT 350 OC DURING A SHORT DURATION |
GB8927173D0 (en) * | 1989-12-01 | 1990-01-31 | Exxon Chemical Patents Inc | Thermoplastic resin composition |
JP3137701B2 (en) * | 1990-12-19 | 2001-02-26 | 三井化学株式会社 | Method for producing crosslinked polyolefin molded article |
DE19629429C2 (en) * | 1996-07-22 | 2001-03-01 | Borealis Gmbh Schwechat Mannsw | Process for the preparation of crosslinkable olefinic polymers |
CN1137915C (en) | 1999-03-02 | 2004-02-11 | 埃克森化学专利公司 | Silane grafted copolymers of alpha-olefin and vinyl aromatic monomer |
JP4215356B2 (en) | 1999-10-14 | 2009-01-28 | 日本ユニカー株式会社 | Water-crosslinked polyolefin resin composition, method for producing the same, silane blend used therein, and molded product of the resin composition |
DE10159952A1 (en) | 2001-12-06 | 2003-06-18 | Degussa | Use of liquid or unsaturated organosilane / mixtures applied on carrier material for the production of moisture-crosslinked and filled cable compounds |
DE102008041277A1 (en) | 2008-08-15 | 2010-02-18 | Evonik Degussa Gmbh | Modified polyolefin comprising 1-butene, and an isotactic poly(1-butene)-triad useful e.g. as or in molding composition and adhesive, in protective composition, sealants, marking composition, coating composition and sealing strips |
DE102008041279A1 (en) | 2008-08-15 | 2010-02-18 | Evonik Degussa Gmbh | Silane-modified polyolefins with a high degree of functionalization |
DE102008041281A1 (en) | 2008-08-15 | 2010-02-18 | Evonik Degussa Gmbh | Modified polyolefin based on a base polyolefin, which has specific content of propylene and isotactic poly(propylene)-triad and is grafted with silane e.g. vinyltrimethoxy silane, useful as or in molding composition and adhesives |
FR2943836B1 (en) | 2009-03-30 | 2011-03-25 | Nexans | CATALYST FOR CROSSLINKING FOR RETICULATED POLYMERIC LAYER OF ENERGY CABLE AND / OR TELECOMMUNICATION. |
DE102009027445A1 (en) | 2009-07-03 | 2011-01-05 | Evonik Degussa Gmbh | Modified polyolefins with a particular property profile, process for their preparation and their use |
DE102009027446A1 (en) | 2009-07-03 | 2011-01-05 | Evonik Degussa Gmbh | Modified polyolefins with a particular property profile, process for their preparation and their use |
DE102009027447A1 (en) | 2009-07-03 | 2011-01-05 | Evonik Degussa Gmbh | Modified polyolefins with a particular property profile, process for their preparation and their use |
CN102858821B (en) | 2010-04-26 | 2015-04-22 | 莫门蒂夫性能材料股份有限公司 | Chlorine-resistant crosslinkable polyolefin compositions and articles made therefrom |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3079370A (en) * | 1955-05-18 | 1963-02-26 | Gen Electric | Peroxide cured polyethylene |
DE1120690B (en) * | 1959-02-20 | 1961-12-28 | Wacker Chemie Gmbh | Compounds based on organopolysiloxanes that harden at room temperature when exposed to atmospheric moisture |
US3077465A (en) * | 1959-09-28 | 1963-02-12 | Dow Corning | One component room temperature vulcanizable organopolysiloxane elastomers |
US3075948A (en) * | 1959-10-23 | 1963-01-29 | Owens Illinois Glass Co | Method for preparing graft copolymers of polyolefin and silanes and a graft copolymer thereof |
AT221808B (en) * | 1960-06-11 | 1962-06-25 | Hoechst Ag | Process for stabilizing polyolefins |
NL274546A (en) * | 1961-02-09 | |||
DE1163540B (en) * | 1961-10-16 | 1964-02-20 | Dow Corning | Organopolysiloxane molding compounds that can be stored in the absence of moisture |
NL290449A (en) * | 1962-03-21 | |||
FR1465498A (en) * | 1964-11-05 | 1967-01-13 | Exxon Research Engineering Co | Copolymers that can be vulcanized in a humid atmosphere |
GB1138732A (en) * | 1965-04-19 | 1969-01-01 | Gen Electric | Crosslinked cable insulation having epr base |
US3366612A (en) * | 1965-07-13 | 1968-01-30 | Exxon Research Engineering Co | Moisture curable one component mastic or castable rubber formed by the reaction between a halogenated butyl rubber and a silane containing a functional group and hydrolyzable substituents |
US3471440A (en) * | 1965-08-26 | 1969-10-07 | Gen Electric | Curable compositions of diolefin polymers |
GB1154853A (en) * | 1965-08-26 | 1969-06-11 | Gen Electric | Improvements in Curable Compositions |
US3503943A (en) * | 1965-10-21 | 1970-03-31 | Exxon Research Engineering Co | Silane modified ethylene-propylene terpolymer |
US3553348A (en) * | 1966-11-02 | 1971-01-05 | Gen Electric | Polymeric blends for insulation composition |
GB1234034A (en) * | 1967-08-31 | 1971-06-03 |
-
0
- BE BE794718D patent/BE794718Q/en not_active IP Right Cessation
-
1968
- 1968-12-20 GB GB60650/68A patent/GB1286460A/en not_active Expired
-
1969
- 1969-12-16 BR BR215212/69A patent/BR6915212D0/en unknown
- 1969-12-18 FR FR6943985A patent/FR2030899A5/fr not_active Expired
- 1969-12-18 US US886346A patent/US3646155A/en not_active Expired - Lifetime
- 1969-12-18 DE DE1963571A patent/DE1963571C3/en not_active Expired
- 1969-12-19 SE SE17629/69A patent/SE368211B/xx unknown
Cited By (453)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4289860A (en) * | 1974-03-08 | 1981-09-15 | Kabel- Und Metallwerke Gutehoffnungshutte Ag | Grafting of silane on thermoplastics or elastomers for purposes of cross linking |
US4048129A (en) * | 1974-09-19 | 1977-09-13 | Kabel-Und Metallwerke Gutehoffnungshutte Aktiengesellschaft | Preparing thermo-plastic or elastomeric materials for cross-linking of grafted silane |
US4117195A (en) * | 1974-12-06 | 1978-09-26 | Bicc Limited | Manufacture of extruded products |
US4117063A (en) * | 1974-12-12 | 1978-09-26 | Kabel-Und Metallwerke Gutehoffnungshutte Ag. | Processing a graft polymer or elastomer |
US4136132A (en) * | 1975-09-26 | 1979-01-23 | Bicc Limited | Manufacture of extruded products |
US4115612A (en) * | 1976-05-04 | 1978-09-19 | Closson Jr Addison W | Laminated thermoplastic counter stiffener |
US4208319A (en) * | 1976-12-09 | 1980-06-17 | Wacker-Chemie Gmbh | Process for the preparation and use of silanes |
US4182398A (en) * | 1977-04-04 | 1980-01-08 | The United States Of America As Represented By The United States Department Of Energy | Crosslinked crystalline polymer and methods for cooling and heating |
US4237334A (en) * | 1977-08-06 | 1980-12-02 | Showa Electric Wire & Cable Co., Ltd. | Laminated insulating paper and oil-filled cable insulated thereby |
US4320214A (en) * | 1977-12-15 | 1982-03-16 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Method of making silane-modified ethylene-type resin |
EP0002830A3 (en) * | 1977-12-27 | 1979-07-25 | Union Carbide Corporation | A wire or cable insulated with a dielectric composition stabilized against water treeing with organo silane compounds and its use |
US4247667A (en) * | 1978-03-03 | 1981-01-27 | The Furukawa Electric Co., Ltd. | Method of crosslinking poly-α-olefin series resins |
US4291136A (en) * | 1978-03-31 | 1981-09-22 | Union Carbide Corporation | Water-curable silane modified alkylene alkylacrylate copolymer and a process for its production |
US4226905A (en) * | 1978-04-18 | 1980-10-07 | Du Pont Canada Inc. | Manufacture of film from partially crosslinked polyethylene |
US4413066A (en) * | 1978-07-05 | 1983-11-01 | Mitsubishi Petrochemical Company, Ltd. | Crosslinkable polyethylene resin compositions |
DE2926830A1 (en) * | 1978-07-05 | 1980-01-17 | Mitsubishi Petrochemical Co | CROSSLINKABLE POLYETHYLENE PLASTICS |
US4292106A (en) * | 1978-07-11 | 1981-09-29 | Clark-Schwebel Fiber Glass Corp. | Process of producing reinforced laminates from crosslinkable thermoplastic olefin polymer material |
US4395459A (en) * | 1978-07-11 | 1983-07-26 | Herschdorfer C George | Reinforced laminates produced from crosslinkable thermoplastic olefin polymer material |
US4212756A (en) * | 1979-05-17 | 1980-07-15 | Union Carbide Corporation | Dielectric composition stabilized against water treeing with organo silane compounds |
US4397981A (en) * | 1979-12-28 | 1983-08-09 | Mitsubishi Petrochemical Company Limited | Ethylene polymer compositions that are flame retardant |
US4434272A (en) | 1980-09-30 | 1984-02-28 | Union Carbide Corporation | Water-curable, silane modified alkyl acrylate copolymers and a process for the preparation thereof |
US4452937A (en) * | 1980-12-22 | 1984-06-05 | Union Carbide Corporation | Ethylene polymer compositions stabilized against water treeing and electrical treeing by an organo titanium chelate; and the use thereof as insulation about electrical conductors |
US4412042A (en) * | 1981-03-19 | 1983-10-25 | Nippon Oil Company, Limited | Process for preparing polyolefins cross-linked by silane linkage |
DE3210192A1 (en) * | 1981-03-19 | 1982-10-14 | Nippon Oil Co., Ltd., Tokyo | METHOD FOR PRODUCING A POLYOLEFIN CROSSLINKED BY SILANE LINKS |
DE3222344A1 (en) * | 1981-06-16 | 1982-12-30 | Mitsubishi Petrochemical Co., Ltd., Tokyo | CROSSLINKABLE POLYETHYLENE COMPOSITION |
US4726869A (en) * | 1981-12-29 | 1988-02-23 | Dainichi-Nippon Cables, Ltd. | Adhesive and method of jointing articles of polyolefin using the same |
DE3313579A1 (en) * | 1982-04-19 | 1983-10-20 | Sumitomo Bakelite Co. Ltd., Tokyo | METAL-LAMINATED LAMINATE AND METHOD FOR PRODUCING THE SAME |
US4617338A (en) * | 1983-06-01 | 1986-10-14 | Union Carbide Corporation | Compositions based on alkylene-alkyl acrylate copolymers and silanol condensation catalysts |
US4489029A (en) * | 1983-06-01 | 1984-12-18 | Union Carbide Corporation | Compositions based on alkylene-alkyl acrylate copolymers and silanol condensation catalysts; and the use thereof in the production of covered wires and cables |
US4493924A (en) * | 1983-06-10 | 1985-01-15 | Union Carbide Corporation | Water-curable, silane modified chlorosulfonated olefinic polymers and a process for the preparation thereof |
US4526930A (en) * | 1983-09-23 | 1985-07-02 | Union Carbide Corporation | Production of water-curable, silane modified thermoplastic polymers |
US4593072A (en) * | 1983-09-23 | 1986-06-03 | Union Carbide Corporation | Relatively water-stable compositions based on thermoplastic polymers containing pendant silane moieties |
US4767820A (en) * | 1983-09-23 | 1988-08-30 | Union Carbide Corporation | Compositions of a relatively water-stable thermoplastic polymer and tetramethyl titanate dispersed in an alkylene-alkyl acrylate copolymer matrix |
US4579913A (en) * | 1983-09-23 | 1986-04-01 | Union Carbide Corporation | Composition of a relatively stable polymer of an olefinic monomer and an unsaturated silane, and an organo titanate |
US4593071A (en) * | 1983-09-23 | 1986-06-03 | Union Carbide Corporation | Water-curable, silane modified ethylene polymers |
US4595546A (en) * | 1983-11-14 | 1986-06-17 | Crompton & Knowles Corporation | Manufacture of elongated extruded cross-linked products |
US4551504A (en) * | 1984-01-18 | 1985-11-05 | Union Carbide Corporation | Water curable, azide sulfonyl silane modified ethylene polymers |
US4857250A (en) * | 1984-04-13 | 1989-08-15 | Union Carbide Corporation | One-extrusion method of making a shaped crosslinkable extruded polymeric product |
US4598116A (en) * | 1984-11-09 | 1986-07-01 | Union Carbide Corporation | Scorch resistant compositions based on water-curable thermoplastic polymers having hydrolyzable, pendant silane moieties, and organo titanates |
US4614764A (en) * | 1985-03-06 | 1986-09-30 | Mobil Oil Corporation | Linear low density ethylene polymers blended with modified linear low density ethylene polymers |
US4707520A (en) * | 1985-08-21 | 1987-11-17 | Union Carbide Corporation | Composition based on water-curable thermoplastic polymers and metal carboxylate silanol condensation catalysts |
US4753993A (en) * | 1985-08-21 | 1988-06-28 | Union Carbide Corporation | Compositions based on thermoplastic polymers and metal carboxylate silanol condensation catalysts |
US4870136A (en) * | 1985-11-30 | 1989-09-26 | Mitsui Pertrochemical Industries, Ltd. | Molecular oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof |
US4902460A (en) * | 1985-11-30 | 1990-02-20 | Mitsui Petrochemical Industries, Ltd. | Process for preparation of molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article |
EP0234074A1 (en) * | 1986-02-21 | 1987-09-02 | CROMPTON & KNOWLES CORPORATION | Manufacture of elongate cross-linked products |
US4720533A (en) * | 1986-07-22 | 1988-01-19 | Ethyl Corporation | Polyorganophosphazene curable in atmosphere |
US4759992A (en) * | 1986-09-10 | 1988-07-26 | Uniroyal Chemical Company, Inc. | Process for coating moisture-curable low molecular weight polymers and composites thereof |
US4818789A (en) * | 1986-09-10 | 1989-04-04 | Uniroyal Chemical Company, Inc. | Moisture-curable low molecular weight polymers and compositions and composites thereof |
US4702868A (en) * | 1987-02-24 | 1987-10-27 | Valcour Incorporated | Moldable silane-crosslinked polyolefin foam beads |
US4870111A (en) * | 1987-02-24 | 1989-09-26 | Astro-Valcour, Incorporated | Moldable silane-crosslinked polyolefin foam beads |
US5026736A (en) * | 1987-02-24 | 1991-06-25 | Astro-Valcour, Inc. | Moldable shrunken thermoplastic polymer foam beads |
US4963419A (en) * | 1987-05-13 | 1990-10-16 | Viskase Corporation | Multilayer film having improved heat sealing characteristics |
US5001008A (en) * | 1987-07-21 | 1991-03-19 | Mitsui Petrochemical Industries, Ltd. | Reinforcing fibrous material |
US4812519A (en) * | 1987-10-15 | 1989-03-14 | Hercules Incorporated | Crosslinking of vinyl silane and azidosilane modified thermoplastic polymers by moisture |
US4822857A (en) * | 1987-12-22 | 1989-04-18 | Shell Oil Company | Method of grafting silane compounds to block copolymers |
US5017668A (en) * | 1988-05-19 | 1991-05-21 | Shin-Etsu Chemical Co., Ltd. | Room temperature curable resin composition |
US4839393A (en) * | 1988-07-08 | 1989-06-13 | Wm. T. Burnett & Co., Inc. | Polyurethane foams containing organofunctional silanes |
US5013771A (en) * | 1989-12-21 | 1991-05-07 | Union Carbide Chemicals And Plastics Technology Corporation | Process for the production of glass fiber reinforced composite material |
US5525680A (en) * | 1990-08-03 | 1996-06-11 | Enichem Augusta Industriale S.R.L. | Cross-linkable polymeric compositions, process for their preparation and manufactured articles obtained therefrom |
US5324779A (en) * | 1990-10-19 | 1994-06-28 | Institut Francais Du Petrole | Cross-linked compositions based on polyethylene and cross-linked materials derived from them |
US5266627A (en) * | 1991-02-25 | 1993-11-30 | Quantum Chemical Corporation | Hydrolyzable silane copolymer compositions resistant to premature crosslinking and process |
US5384369A (en) * | 1991-03-09 | 1995-01-24 | Basf Aktiengesellschaft | Partially crosslinked composition comprising polymers of propylene and of ethylene |
US5244976A (en) * | 1991-03-09 | 1993-09-14 | Basf Aktiengesellschaft | Partially crosslinked polymer composition |
US5209977A (en) * | 1991-11-26 | 1993-05-11 | Quantum Chemical Corporation | Crosslinkable ethylene copolymer powders and processes |
US5371144A (en) * | 1992-03-07 | 1994-12-06 | Basf Aktiengesellschaft | Partially crosslinked plastics materials of propylene copolymers |
US6005055A (en) * | 1993-12-20 | 1999-12-21 | Borealis Holding A/S | Polyethylene compatible sulphonic acids as silane crosslinking catalysts |
US5741858A (en) * | 1994-04-20 | 1998-04-21 | The Dow Chemical Company | Silane-crosslinkable elastomer-polyolefin polymer blends their preparation and use |
US5401787A (en) * | 1994-05-04 | 1995-03-28 | Quantum Chemical Corporation | Flame retardant insulation compositions |
EP0700962A1 (en) | 1994-09-07 | 1996-03-13 | Quantum Chemical Corporation | Flame retardant insulation compositions having enhanced curability |
US6197864B1 (en) | 1994-09-07 | 2001-03-06 | Equistar Chemicals, Lp | Flame retardant insulation compositions having enhanced curability |
US6103775A (en) * | 1994-09-19 | 2000-08-15 | Sentinel Products Corp. | Silane-grafted materials for solid and foam applications |
US6316512B1 (en) | 1994-09-19 | 2001-11-13 | Sentinel Products Corp. | Silane-grafted materials for solid and foam applications |
US5932659A (en) * | 1994-09-19 | 1999-08-03 | Sentinel Products Corp. | Polymer blend |
US5929129A (en) * | 1994-09-19 | 1999-07-27 | Sentinel Products Corp. | Crosslinked foamable compositions of silane-grafted, essentially linear polyolefins blended with polypropylene |
US5883145A (en) * | 1994-09-19 | 1999-03-16 | Sentinel Products Corp. | Cross-linked foam structures of polyolefins and process for manufacturing |
US5589519A (en) * | 1994-09-30 | 1996-12-31 | Knaus; Dennis A. | Process of extruding lightly crosslinked polyolefin foam |
US5786412A (en) * | 1994-11-03 | 1998-07-28 | Kimberly-Clark Worldwide, Inc. | Process for producing a film using silane modified elastomeric compositions |
US5714257A (en) * | 1994-11-03 | 1998-02-03 | Kimberly Clark Co | Silane modified elastomeric compositions and articles made therefrom |
US5719219A (en) * | 1994-11-03 | 1998-02-17 | Kimberly-Clark Worldwide, Inc. | Process for producing a nonwoven web using silane modified elastomeric compositions |
US20040208841A1 (en) * | 1995-01-20 | 2004-10-21 | Ronald Salovey | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US20010049401A1 (en) * | 1995-01-20 | 2001-12-06 | The Orthopaedic Hospital And University Of Southern California | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US20030045603A1 (en) * | 1995-01-20 | 2003-03-06 | The Orthopaedic Hospital And University Of Southern California | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US6281264B1 (en) | 1995-01-20 | 2001-08-28 | The Orthopaedic Hospital | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US20030158287A1 (en) * | 1995-01-20 | 2003-08-21 | Ronald Salovey | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US5672661A (en) * | 1995-03-08 | 1997-09-30 | Nissin Chemical Industry Co., Ltd. | Acrylic rubber composition |
US6329054B1 (en) | 1995-07-10 | 2001-12-11 | Borealis Polymers Oy | Cable and method for using a cable-sheathing composition including an ethylene polymer mixture |
US5911940A (en) * | 1995-09-29 | 1999-06-15 | The Dow Chemical Company | Dual cure process of producing crosslinked polyolefinic foams with enhanced physical properties |
US5795941A (en) * | 1995-10-03 | 1998-08-18 | The Dow Chemical Company | Crosslinkable bimodal polyolefin compositions |
US5852116A (en) * | 1995-10-03 | 1998-12-22 | The Dow Chemical Company | Crosslinkable bimodal polyolefin compositions |
US5981674A (en) * | 1995-12-18 | 1999-11-09 | Witco Corporation | Silane, free radical generator, amine blends for crosslinking of olefin polymers |
US5891553A (en) * | 1995-12-21 | 1999-04-06 | Clark-Schwebel, Inc. | Crosslinkable polymeric coatings and films and composite structures incorporating same |
US5814693A (en) * | 1996-02-01 | 1998-09-29 | Forty Ten, L.L.C. | Coatings for concrete containment structures |
US5844009A (en) * | 1996-04-26 | 1998-12-01 | Sentinel Products Corp. | Cross-linked low-density polymer foam |
US6472015B1 (en) | 1996-04-26 | 2002-10-29 | Sentinal Products Corp. | Cross-linked polyolefin tape |
US6350512B1 (en) | 1996-04-26 | 2002-02-26 | Sentinel Products Corp. | Cross-linked polyolefin foam |
AU728414B2 (en) * | 1996-04-29 | 2001-01-11 | General Electric Company | Silane, free radical generator, amine blends for crosslinking of olefin polymers |
US6214894B1 (en) | 1996-06-21 | 2001-04-10 | Sentinel Products Corp. | Ethylene-styrene single-site polymer blend |
US6359021B2 (en) | 1996-06-21 | 2002-03-19 | Sentinel Products Corp. | Polymer blend |
US6004647A (en) * | 1996-06-21 | 1999-12-21 | Sentinel Products Corp. | Polymer blend |
US6531520B1 (en) | 1996-06-21 | 2003-03-11 | Sentinel Products Corporation | Polymer blend |
US20040266902A1 (en) * | 1996-07-09 | 2004-12-30 | Fu-Wen Shen | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US20050048096A1 (en) * | 1996-07-09 | 2005-03-03 | Fu-Wen Shen | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US6228900B1 (en) | 1996-07-09 | 2001-05-08 | The Orthopaedic Hospital And University Of Southern California | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US5882776A (en) * | 1996-07-09 | 1999-03-16 | Sentinel Products Corp. | Laminated foam structures with enhanced properties |
US8008365B2 (en) | 1996-07-09 | 2011-08-30 | Orthopaedic Hospital | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US6800670B2 (en) | 1996-07-09 | 2004-10-05 | Orthopaedic Hospital | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US20070100017A1 (en) * | 1996-07-09 | 2007-05-03 | Fu-Wen Shen | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US20070100016A1 (en) * | 1996-07-09 | 2007-05-03 | Fu-Wen Shen | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US6167790B1 (en) | 1996-07-09 | 2001-01-02 | Sentinel Products Corp. | Laminated foam structures with enhanced properties |
US8003709B2 (en) | 1996-07-09 | 2011-08-23 | Orthopaedic Hospital | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US6054005A (en) * | 1996-08-16 | 2000-04-25 | Sentinel Products Corp. | Polymer structures with enhanced properties |
US5938878A (en) * | 1996-08-16 | 1999-08-17 | Sentinel Products Corp. | Polymer structures with enhanced properties |
US6562540B2 (en) | 1996-10-02 | 2003-05-13 | Depuy Orthopaedics, Inc. | Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance |
US5880192A (en) * | 1996-11-12 | 1999-03-09 | Mcgill University | Moisture cross-linking of vinyl chloride homopolymers and copolymers |
US6262137B1 (en) | 1996-11-15 | 2001-07-17 | Sentinel Products Corp. | Polymer articles including maleic anhydride and ethylene-vinyl acetate copolymers |
US6242503B1 (en) | 1996-11-15 | 2001-06-05 | Sentinel Products Corp. | Polymer articles including maleic anhydride and ethylene-vinyl acetate copolymers |
US6221928B1 (en) | 1996-11-15 | 2001-04-24 | Sentinel Products Corp. | Polymer articles including maleic anhydride |
US5859076A (en) * | 1996-11-15 | 1999-01-12 | Sentinel Products Corp. | Open cell foamed articles including silane-grafted polyolefin resins |
US6165387A (en) * | 1997-02-04 | 2000-12-26 | Borealis A/S | Composition for electric cables |
US6416860B1 (en) | 1997-10-20 | 2002-07-09 | Borealis A/S | Electric cable and a method and composition for the production thereof |
US6268442B1 (en) | 1997-11-18 | 2001-07-31 | Borealis A/S | Process for the reduction of reactor fouling |
US6692679B1 (en) | 1998-06-10 | 2004-02-17 | Depuy Orthopaedics, Inc. | Cross-linked molded plastic bearings |
US6180721B1 (en) | 1998-06-12 | 2001-01-30 | Borealis Polymers Oy | Insulating composition for communication cables |
US6586509B1 (en) | 1998-07-03 | 2003-07-01 | Borealis Technology Oy | Composition for electric cables comprising thiodiol fatty acid diesters |
US6339123B1 (en) | 1998-07-13 | 2002-01-15 | Borealis Gmbh | Heterophasic polyolefin alloy |
DE19831278A1 (en) * | 1998-07-13 | 2000-01-27 | Borealis Ag | Heterophase polyolefin alloys |
US6185349B1 (en) | 1998-12-18 | 2001-02-06 | Borealis Polymers Oy | Multimodal polymer composition |
US6177519B1 (en) | 1999-03-02 | 2001-01-23 | Exxon Chemical Patents, Inc. | Silane grafted copolymers of an isomonoolefin and a vinyl aromatic monomer |
US6380316B1 (en) | 1999-03-02 | 2002-04-30 | Dow Corning Corporation | Polyisobutylene copolymers having reactive silyl grafts |
US6667098B1 (en) | 1999-05-05 | 2003-12-23 | Borealis Technology Oy | Electric cable |
US6245276B1 (en) | 1999-06-08 | 2001-06-12 | Depuy Orthopaedics, Inc. | Method for molding a cross-linked preform |
US6627141B2 (en) | 1999-06-08 | 2003-09-30 | Depuy Orthopaedics, Inc. | Method for molding a cross-linked preform |
US6124370A (en) * | 1999-06-14 | 2000-09-26 | The Dow Chemical Company | Crosslinked polyolefinic foams with enhanced physical properties and a dual cure process of producing such foams |
US6468583B1 (en) | 1999-11-24 | 2002-10-22 | Shawcor Ltd. | Tracking-resistant, electrical-insulating material containing silane-modified polyolefins |
US6455637B1 (en) | 1999-11-24 | 2002-09-24 | Shawcor Ltd. | Crosslinked compositions containing silane-modified polyolefins and polypropylenes |
EP1103986A1 (en) * | 1999-11-24 | 2001-05-30 | ShawCor Ltd. | Tracking resistant, electrical-insulating material containing silane-modified polyolefins |
US7087697B2 (en) | 2000-01-21 | 2006-08-08 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Crosslinkable polyethylene composition |
BE1013243A3 (en) * | 2000-01-21 | 2001-11-06 | Solvay | Composition containing polyethylene crosslinkable. |
KR100831607B1 (en) | 2000-01-21 | 2008-05-23 | 이네오스 매뉴팩처링 벨기에 엔브이 | Crosslinkable polyethylene composition |
AU2001250296B2 (en) * | 2000-01-21 | 2005-07-14 | Ineos Manufacturing Belgium Nv. | Crosslinkable polyethylene composition |
WO2001053367A1 (en) * | 2000-01-21 | 2001-07-26 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Crosslinkable polyethylene composition |
US20030024629A1 (en) * | 2000-02-15 | 2003-02-06 | Nigel Wright | Method of lining pipes |
US6420485B1 (en) | 2000-08-14 | 2002-07-16 | Dow Corning Corporation | Siloxane-grafted hydrocarbon copolymers |
US20050043815A1 (en) * | 2000-09-29 | 2005-02-24 | Richard King | Oriented, cross-linked UHMWPE molding for orthopaedic applications |
US6818172B2 (en) | 2000-09-29 | 2004-11-16 | Depuy Products, Inc. | Oriented, cross-linked UHMWPE molding for orthopaedic applications |
US6794453B2 (en) | 2000-11-06 | 2004-09-21 | Shawcor Ltd. | Crosslinked, predominantly polypropylene-based compositions |
US6465547B1 (en) | 2001-04-19 | 2002-10-15 | Shawcor Ltd. | Crosslinked compositions containing silane-modified polypropylene blends |
US20020197471A1 (en) * | 2001-04-25 | 2002-12-26 | Scapa North America | Compositions and methods of making temperature resistant protective tape |
US7781557B2 (en) | 2001-05-02 | 2010-08-24 | Borealis Technology Oy | Stabilization of cross-linked silane group containing polymers |
US20040127641A1 (en) * | 2001-05-02 | 2004-07-01 | Borealis Technology Oy | Stabilization of cross-linked silane group containing polymers |
US20080015327A1 (en) * | 2001-05-02 | 2008-01-17 | Ola Fagrell | Stabilization of cross-linked silane group containing polymers |
US7842772B2 (en) | 2001-05-02 | 2010-11-30 | Borealis Technology Oy | Stabilization of cross-linked silane group containing polymers with phenomic stabilizers |
US20030035922A1 (en) * | 2001-07-20 | 2003-02-20 | Zuoxing Yu | Manufacture of abrasion resistant composite extrusions |
US20080102288A1 (en) * | 2001-07-24 | 2008-05-01 | Cooper-Standard Automotive Inc. | Composites containing crosslinkable thermoplastic and tpv show layer |
US6828011B2 (en) | 2001-07-24 | 2004-12-07 | Cooper Technology Services, Llc | Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips |
US7744988B2 (en) | 2001-07-24 | 2010-06-29 | Cooper-Standard Automotive Inc. | Composites containing crosslinkable thermoplastic and TPV show layer |
US20040157053A1 (en) * | 2001-07-24 | 2004-08-12 | Cooper Technology Services Llc | Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips |
WO2003009999A1 (en) * | 2001-07-24 | 2003-02-06 | Cooper Technology Services, Llc. | Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips |
US20050095374A1 (en) * | 2001-07-24 | 2005-05-05 | Liggett Cothran | Composites containing crosslinkable thermoplastic and TPV show layer |
US6864323B2 (en) | 2001-08-30 | 2005-03-08 | Degussa Ag | Composition for improving scorch conditions in the preparation of grafted and/or crosslinked polymers and of filled plastics |
US20030132017A1 (en) * | 2001-10-23 | 2003-07-17 | Chantal Barioz | Method of manufacturing a cable sheath by extruding and cross-linking a composition based on silane-grafted polymer, and a cable including a sheath obtained by the method |
US20030212226A1 (en) * | 2001-11-16 | 2003-11-13 | Ittel Steven Dale | Copolymers of olefins and vinyl- and allylsilanes |
US8022152B2 (en) | 2001-11-16 | 2011-09-20 | E.I. Du Pont De Nemours And Company | Copolymers of vinyl- and allylsilanes |
US7348388B2 (en) | 2001-11-16 | 2008-03-25 | E.I. Du Pont De Nemours And Company | Copolymers of olefins and vinyl- and allylsilanes |
US20110039014A1 (en) * | 2002-01-28 | 2011-02-17 | Richard King | Composite prosthetic bearing having a crosslinked articulating surface and method for making the same |
US7186364B2 (en) | 2002-01-28 | 2007-03-06 | Depuy Products, Inc. | Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same |
US20030144741A1 (en) * | 2002-01-28 | 2003-07-31 | Richard King | Composite prosthetic bearing having a crosslinked articulating surface and method for making the same |
US7819925B2 (en) | 2002-01-28 | 2010-10-26 | Depuy Products, Inc. | Composite prosthetic bearing having a crosslinked articulating surface and method for making the same |
EP1354912A1 (en) * | 2002-04-18 | 2003-10-22 | Tosoh Corporation | Silane-crosslinking expandable polyolefin resin composition and crosslinked foam |
US6812262B2 (en) | 2002-04-18 | 2004-11-02 | Tosoh Corporation | Silane-crosslinking expandable polyolefin resin composition and crosslinked foam |
US20030199597A1 (en) * | 2002-04-18 | 2003-10-23 | Tosoh Corporation | Silane-crosslinking expandable polyolefin resin composition and crosslinked foam |
US20040002770A1 (en) * | 2002-06-28 | 2004-01-01 | King Richard S. | Polymer-bioceramic composite for orthopaedic applications and method of manufacture thereof |
US10278869B2 (en) | 2002-10-28 | 2019-05-07 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9387126B2 (en) | 2002-10-28 | 2016-07-12 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10842678B2 (en) | 2002-10-28 | 2020-11-24 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US20040219317A1 (en) * | 2003-01-22 | 2004-11-04 | Wellstream International Limited | Process for manufacturing a flexible tubular pipe having extruded layers made of crosslinked polyethylene |
US20060257671A1 (en) * | 2003-03-07 | 2006-11-16 | Yahkind Alexander L | Method and primer composition for coating a non-polar substrate |
US7938861B2 (en) | 2003-04-15 | 2011-05-10 | Depuy Products, Inc. | Implantable orthopaedic device and method for making the same |
US20040210316A1 (en) * | 2003-04-15 | 2004-10-21 | Richard King | Implantable orthopaedic device and method for making the same |
US20060100382A1 (en) * | 2003-05-29 | 2006-05-11 | Strebel Jeffrey J | Filled propylene polymer compositions having improved melt strength |
US20040242776A1 (en) * | 2003-05-29 | 2004-12-02 | Strebel Jeffrey J. | Propylene polymer compositions having improved melt strength |
US7375162B2 (en) | 2003-05-29 | 2008-05-20 | Equistar Chemicals, Lp | Filled propylene polymer compositions having improved melt strength |
US20040262809A1 (en) * | 2003-06-30 | 2004-12-30 | Smith Todd S. | Crosslinked polymeric composite for orthopaedic implants |
US20080178998A1 (en) * | 2003-06-30 | 2008-07-31 | Smith Todd S | Crosslinked polymeric composite for orthopaedic implants |
US20050049335A1 (en) * | 2003-09-02 | 2005-03-03 | Lee Lester Y. | Flame retardant insulation compositions having improved abrasion resistance |
US6936655B2 (en) * | 2003-09-02 | 2005-08-30 | Equistar Chemicals, Lp | Crosslinkable flame retardant wire and cable compositions having improved abrasion resistance |
US6998443B2 (en) * | 2003-09-02 | 2006-02-14 | Equistar Chemicals, Lp | Flame retardant insulation compositions having improved abrasion resistance |
US20050049343A1 (en) * | 2003-09-02 | 2005-03-03 | Borke Jeffrey S. | Crosslinkable flame retardant wire and cable compositions having improved abrasion resistance |
US20050059783A1 (en) * | 2003-09-12 | 2005-03-17 | Willy Furrer | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers |
US7241840B2 (en) | 2003-09-12 | 2007-07-10 | Momentive Performance Materials Inc. | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers |
US20060223951A1 (en) * | 2003-09-12 | 2006-10-05 | Willy Furrer | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers |
US20060223952A1 (en) * | 2003-09-12 | 2006-10-05 | Willy Furrer | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers |
US7202309B2 (en) * | 2003-09-12 | 2007-04-10 | Momentive Performance Materials Inc. | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers |
US20080262116A1 (en) * | 2004-05-07 | 2008-10-23 | Simpson Scott S | Cross-Linked Polypropylene Resins, Method of Making Same, and Articles Formed Therefrom |
US7384430B2 (en) | 2004-06-30 | 2008-06-10 | Depuy Products, Inc. | Low crystalline polymeric material for orthopaedic implants and an associated method |
US20060004168A1 (en) * | 2004-06-30 | 2006-01-05 | Keith Greer | Low crystalline polymeric material for orthopaedic implants and an associated method |
EP1799451A2 (en) * | 2004-09-27 | 2007-06-27 | Cooper-Standard Automotive Inc. | Composites containing crosslinkable thermoplastic and tpv show layer |
EP1799451A4 (en) * | 2004-09-27 | 2011-03-09 | Cooper Standard Automotive Inc | Composites containing crosslinkable thermoplastic and tpv show layer |
US20080269424A1 (en) * | 2004-11-16 | 2008-10-30 | Borealis Technology Oy | Crosslinkable Polyethylene Composition, an Electric Cable Comprising It, and a Process for Its Preparation |
DE102004061983A1 (en) * | 2004-12-23 | 2006-07-06 | Rehau Ag + Co. | Material composition, useful for the production of molded parts, comprises silicon containing polymer, which is formed by cross-linking silicon containing structures under UV-radiation in a continuous manufacturing method |
US20060149387A1 (en) * | 2004-12-30 | 2006-07-06 | Smith Todd S | Orthopaedic bearing and method for making the same |
US7883653B2 (en) | 2004-12-30 | 2011-02-08 | Depuy Products, Inc. | Method of making an implantable orthopaedic bearing |
US7896921B2 (en) | 2004-12-30 | 2011-03-01 | Depuy Products, Inc. | Orthopaedic bearing and method for making the same |
US20060149388A1 (en) * | 2004-12-30 | 2006-07-06 | Smith Todd S | Orthopaedic bearing and method for making the same |
US7879275B2 (en) | 2004-12-30 | 2011-02-01 | Depuy Products, Inc. | Orthopaedic bearing and method for making the same |
US20110077743A1 (en) * | 2004-12-30 | 2011-03-31 | Smith Todd S | Orthopaedic Bearing And Method For Making The Same |
US20080242758A1 (en) * | 2005-02-02 | 2008-10-02 | Peter Jackson | Radiation-crosslinked polyolefin compositions |
US7579387B2 (en) | 2005-02-02 | 2009-08-25 | Shawcor Ltd. | Radiation-crosslinked polyolefin compositions |
US7511100B2 (en) | 2005-02-08 | 2009-03-31 | Momentive Performance Materials Inc. | Process for the production of crosslinked polymer employing low VOC-producing silane crosslinker and resulting crosslinked polymer |
US20060178487A1 (en) * | 2005-02-08 | 2006-08-10 | Weller Keith J | Process for the production of crosslinked polymer employing low VOC-producing silane crosslinker and resulting crosslinked polymer |
US8299181B2 (en) | 2005-02-08 | 2012-10-30 | Momentive Performance Materials, Inc. | Process for the production of crosslinked polymer employing low VOC-producing silane crosslinker and resulting crosslinked polymer |
US7326753B2 (en) | 2005-02-08 | 2008-02-05 | Momentive Performance Materials Inc. | Process for the production of crosslinked polymer employing low VOC-producing silane crosslinker and resulting crosslinked polymer |
US20080090971A1 (en) * | 2005-02-08 | 2008-04-17 | Weller Keith J | Process for the production of crosslinked polymer employing low VOC-producing silane crosslinker and resulting crosslinked polymer |
EP2272908A2 (en) | 2005-02-08 | 2011-01-12 | Momentive Performance Materials Inc. | Silane, its crosslinked polymer, process for producing said crosslinked polymer and related article |
US20090182094A1 (en) * | 2005-02-08 | 2009-07-16 | Weller Keith J | Process for the production of crosslinked polymer employing low voc-producing silane crosslinker and resulting crosslinked polymer |
US20060230476A1 (en) * | 2005-03-30 | 2006-10-12 | Boston Scientific Scimed, Inc. | Polymeric/ceramic composite materials for use in medical devices |
US9125968B2 (en) | 2005-03-30 | 2015-09-08 | Boston Scientific Scimed, Inc. | Polymeric/ceramic composite materials for use in medical devices |
US20060255501A1 (en) * | 2005-05-11 | 2006-11-16 | Shawcor Ltd. | Crosslinked chlorinated polyolefin compositions |
US7232604B2 (en) | 2005-07-28 | 2007-06-19 | Equistar Chemicals, Lp | Flame retardant crosslinkable compositions and articles |
US20070027250A1 (en) * | 2005-07-28 | 2007-02-01 | Sebastian Joseph | Flame retardant crosslinkable compositions and articles |
US8969449B2 (en) | 2005-08-31 | 2015-03-03 | Borealis Technology Oy | Discolour-free silanol condensation catalyst containing polyolefin composition |
EP1760111A1 (en) | 2005-08-31 | 2007-03-07 | Borealis Technology Oy | Discolour-free silanol condensation catalyst containing polyolefin composition |
US20080227898A1 (en) * | 2005-08-31 | 2008-09-18 | Per-Ola Hagstrand | Discolour-Free Silanol Condensation Catalyst Containing Polyolefin Composition |
US20070066764A1 (en) * | 2005-09-16 | 2007-03-22 | Boston Scientific Scimed, Inc. | Medical device articles formed from polymer-inorganic hybrids prepared by ester-alkoxy transesterification reaction during melt processing |
US7365126B2 (en) | 2005-09-16 | 2008-04-29 | Boston Scientific Scimed, Inc. | Medical device articles formed from polymer-inorganic hybrids prepared by ester-alkoxy transesterification reaction during melt processing |
US8008395B2 (en) | 2005-09-27 | 2011-08-30 | Boston Scientific Scimed, Inc. | Organic-inorganic hybrid particle material and polymer compositions containing same |
US20070072978A1 (en) * | 2005-09-27 | 2007-03-29 | Boston Scientific Scimed, Inc. | Organic-inorganic hybrid particle material and polymer compositions containing same |
US7348371B2 (en) | 2005-12-20 | 2008-03-25 | Equistar Chemicals, Lp | Cellulosic-reinforced composites having increased resistance to water absorption |
US20070141337A1 (en) * | 2005-12-20 | 2007-06-21 | Mehta Sameer D | Cellulosic-reinforced composites having increased resistance to water absorption |
CN101437855B (en) * | 2006-03-23 | 2012-08-29 | 尼克桑斯公司 | Photo-crosslinkable composition |
FR2898899A1 (en) * | 2006-03-23 | 2007-09-28 | Nexans Sa | PHOTORETICULABLE COMPOSITION |
WO2007107667A1 (en) * | 2006-03-23 | 2007-09-27 | Nexans | Photo-crosslinkable composition |
US20100227940A1 (en) * | 2006-03-23 | 2010-09-09 | Nexans | Composition Photoréticulable |
US8299166B2 (en) | 2006-04-26 | 2012-10-30 | Borealis Technology Oy | Crosslinkable polyolefin composition comprising high molecular weight silanol condensation catalyst |
US20100022703A1 (en) * | 2006-04-26 | 2010-01-28 | Borealis Technology Oy | Crosslinkable polyolefin composition comprising high molecular weight silanol condensation catalyst |
US20070264512A1 (en) * | 2006-05-11 | 2007-11-15 | Mehta Sameer D | Extrusion coating process for improved adhesion to metal(lized) substrates |
US20090203821A1 (en) * | 2006-05-30 | 2009-08-13 | Roger Carlsson | Silicon containing compound as processing aid for polyolefin compositions |
EP1862499A1 (en) * | 2006-05-30 | 2007-12-05 | Borealis Technology Oy | A silicon containing compound as corrosion inhibitor in polyolefin compositions |
US20090209688A1 (en) * | 2006-05-30 | 2009-08-20 | Roger Carlsson | Silicon containing compound as drying agent for polyolefin compositions |
EA015093B1 (en) * | 2006-05-30 | 2011-06-30 | Бореалис Текнолоджи Ой | A silicon containing compound as corrosion inhibitor in polyolefin compositions |
WO2007137754A1 (en) * | 2006-05-30 | 2007-12-06 | Borealis Technology Oy | A silicon containing compound as corrosion inhibitor in polyolefin compositions |
US9200150B2 (en) | 2006-05-30 | 2015-12-01 | Borealis Technology Oy | Silicon containing compound as processing aid for polyolefin compositions |
US8067494B2 (en) | 2006-10-30 | 2011-11-29 | Dow Global Technologies Llc | Magnesium hydroxide-based flame retardant compositions made via in-situ hydration of polymer compounds comprising magnesium oxide |
US20100087579A1 (en) * | 2006-10-30 | 2010-04-08 | Cogen Jeffrey M | Magnesium Hydroxide-Based Flame Retardant Compositions Made Via In-Situ Hydration of Polymer Compounds Comprising Magnesium Oxide |
US8030415B2 (en) | 2006-11-14 | 2011-10-04 | Momentive Performance Materials, Inc. | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends, the resulting crosslinked thermoplastic polymer composition and articles made therefrom |
US20080114134A1 (en) * | 2006-11-14 | 2008-05-15 | General Electric Company | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends, the resulting crosslinked thermoplastic polymer composition and articles made therefrom |
US20100204409A1 (en) * | 2006-11-14 | 2010-08-12 | Momentive Performance Materials Inc. | Process For Crosslinking Thermoplastic Polymers With Silanes Employing Peroxide Blends, The Resulting Crosslinked Thermoplastic Polymer Composition And Articles Made Therefrom |
US20080281009A1 (en) * | 2006-12-04 | 2008-11-13 | Ingenia Polymers, Inc. | Cross-linked polyolefin foam |
US7906561B2 (en) | 2006-12-04 | 2011-03-15 | Ingenia Polymers, Inc. | Cross-linked polyolefin foam |
EP1942131A1 (en) | 2006-12-29 | 2008-07-09 | Borealis Technology Oy | Antiblocking agent using crosslinkable silicon-containing polyolefin |
EP1956609A1 (en) | 2007-02-01 | 2008-08-13 | Borealis Technology Oy | Cable with improved flame retardancy |
US20080269362A1 (en) * | 2007-04-24 | 2008-10-30 | Far East University | Recycled thermosetting flour composites and method for preparing the same |
US8445786B2 (en) | 2007-06-27 | 2013-05-21 | Dow Global Technologies Llc | Crosslinkable blends of polyolefin elastomers and silane copolymers for increased flexibility cable insulation |
US20100181092A1 (en) * | 2007-06-27 | 2010-07-22 | Cree Stephen H | Crosslinkable Blends of Polyolefin Elastomers and Silane Copolymers for Increased Flexibility Cable Insulation |
US20110015335A1 (en) * | 2007-07-13 | 2011-01-20 | Wasserman Eric P | In-Situ Method of Generating Through Ring-Closing Dehydration Reactions of Organic Compounds Water for Moisture Crosslinking of Polyolefins |
US8324311B2 (en) | 2007-07-13 | 2012-12-04 | Dow Global Technologies Llc | Method for crosslinking polyolefins with in situ generated water |
US20100222535A1 (en) * | 2007-07-13 | 2010-09-02 | Eaton Robert F | Hypercompressor Lubricants for High Pressure Polyolefin Production |
DE102007042948A1 (en) | 2007-09-10 | 2009-03-12 | Wacker Chemie Ag | Moisture-crosslinkable polymers based on α-heteroatom-substituted silanes |
US20100209705A1 (en) * | 2007-09-24 | 2010-08-19 | Lin Thomas S | Moisture-Curable Compositions, and a Process for Making the Compositions |
US20100197828A1 (en) * | 2007-09-28 | 2010-08-05 | Whaley Paul D | Bimodal Filler Systems for Enhanced Flame Retardancy |
US20100203276A1 (en) * | 2007-09-28 | 2010-08-12 | Wasserman Eric P | In-Situ Methods of Generating Water Through the Dehydration of Metal Salt Hydrates for Moisture Crosslinking of Polyolefins |
US8268911B2 (en) | 2007-09-28 | 2012-09-18 | Union Carbide Chemicals & Plastics Technology Llc | Bimodal filler systems for enhanced flame retardancy |
US8889775B2 (en) | 2007-09-28 | 2014-11-18 | Dow Global Technologies Llc | In-situ methods of generating water through the dehydration of metal salt hydrates for moisture crosslinking of polyolefins |
US8541491B2 (en) | 2007-09-28 | 2013-09-24 | Dow Global Technologies Llc | In-situ methods of generating water through the dehydration of metal salt hydrates for moisture crosslinking of polyolefins |
EP2388294A1 (en) | 2007-12-03 | 2011-11-23 | Borealis Technology OY | Use of silicon containing drying agent for polyolefin composition comprising crosslinkable polyolefin with silane groups and silanol condensation catalyst |
US8529815B2 (en) | 2007-12-03 | 2013-09-10 | Borealis Technology Oy | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and silicon containing compound |
US20100311911A1 (en) * | 2007-12-03 | 2010-12-09 | Roger Carlsson | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and silicon containing compound |
US20100267869A1 (en) * | 2007-12-20 | 2010-10-21 | Borealis Technology Oy | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
EP2072568A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology OY | UV stabilisation of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
US8268924B2 (en) | 2007-12-21 | 2012-09-18 | Borealis Technology Oy | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and pigment |
US20100267900A1 (en) * | 2007-12-21 | 2010-10-21 | Borealis Technology Oy | Polypropylene composition comprising a cross-linkable dispersed phase comprising silanol groups containing nanofillers |
US20100286308A1 (en) * | 2007-12-21 | 2010-11-11 | Roger Carlsson | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and pigment |
EP2072571A1 (en) | 2007-12-21 | 2009-06-24 | Borealis Technology OY | Polyolefin composition comprising crosslinkable polyolefin with silane groups, silanol condensation catalyst and pigment |
EP2072575A1 (en) | 2007-12-21 | 2009-06-24 | Borealis Technology OY | Polypropylene composition comprising a cross-linkable dispersed phase comprising silanol groups containing nanofillers |
EP2083047A1 (en) | 2008-01-24 | 2009-07-29 | Borealis Technology OY | Partially cross-linked polypropylene composition comprising an acidic silanol condensation catalyst |
US20110147639A1 (en) * | 2008-06-06 | 2011-06-23 | Ronald Wevers | Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer |
US20110111155A1 (en) * | 2008-06-27 | 2011-05-12 | Borealis Ag | Polyolefin composition reinforced with a filler and pipe comprising the polyolefin composition |
EP2138538A1 (en) | 2008-06-27 | 2009-12-30 | Borealis AG | Polyolefin composition reinforced with a filler and pipe comprising the polyolefin composition |
WO2010000478A1 (en) * | 2008-07-03 | 2010-01-07 | Dow Corning Corporation | Modified polyolefins |
RU2489449C2 (en) * | 2008-07-03 | 2013-08-10 | Дау Корнинг Корпорейшн | Graft polyethylene |
US20110172367A1 (en) * | 2008-07-03 | 2011-07-14 | Michael Backer | Grafted Polyethylene |
CN102083875A (en) * | 2008-07-03 | 2011-06-01 | 陶氏康宁公司 | Grafted polyethylene |
US20110178198A1 (en) * | 2008-07-03 | 2011-07-21 | Michael Backer | Polymers modified by silanes |
US8476375B2 (en) | 2008-07-03 | 2013-07-02 | Dow Corning Corporation | Polymers modified by silanes |
WO2010000477A1 (en) * | 2008-07-03 | 2010-01-07 | Dow Corning Corporation | Grafted polyethylene |
US8569417B2 (en) | 2008-07-03 | 2013-10-29 | Dow Corning Corporation | Modified polyolefins |
DE102008041918A1 (en) | 2008-09-09 | 2010-03-11 | Evonik Degussa Gmbh | Silanol condensation catalysts for the crosslinking of filled and unfilled polymer compounds |
EP2465897A1 (en) | 2008-09-09 | 2012-06-20 | Evonik Degussa GmbH | Master kit containing silanol condensation catalysts for integrating filled and unfilled polymer compounds |
WO2010028876A1 (en) | 2008-09-09 | 2010-03-18 | Evonik Degussa Gmbh | Silanol condensation catalysts for the cross-linking of filled and unfilled polymer compounds |
DE102008041919A1 (en) | 2008-09-09 | 2010-03-11 | Evonik Degussa Gmbh | Use of silicon-containing precursor compounds of an organic acid as a catalyst for crosslinking filled and unfilled polymer compounds |
EP2196482A1 (en) | 2008-12-05 | 2010-06-16 | Lanxess Deutschland GmbH | Silane-grafted alpha-olefin-vinyl acetate copolymer containing crosslinkable silyl groups, process for the preparation thereof and use for the preparation of insulation or sheath materials for cables or lines |
US20100222510A1 (en) * | 2008-12-05 | 2010-09-02 | Lanxess Deutschland Gmbh | SILANE-GRAFTED-a-OLEFIN-VINYL ACETATE COPOLYMER CONTAINING CROSSLINKABLE SILYL GROUPS, PROCESS FOR THE PREPARATION THEREOF AND USE FOR THE PREPARATION OF INSULATION OR SHEATH MATERIALS FOR CABLES OR LINES |
US20110172350A1 (en) * | 2008-12-05 | 2011-07-14 | Lanxess Deutschland Gmbh | SILANE-GRAFTED-a-OLEFIN-VINYL ACETATE COPOLYMER CONTAINING CROSSLINKABLE SILYL GROUPS, PROCESS FOR THE PREPARATION THEREOF AND USE FOR THE PREPARATION OF INSULATION OR SHEATH MATERIALS FOR CABLES OR LINES |
US9133285B2 (en) * | 2008-12-22 | 2015-09-15 | Nexans | Curable composition comprising a silane-grafted polymer and a latent compound |
US20100160571A1 (en) * | 2008-12-22 | 2010-06-24 | Alric Jerome | Curable composition comprising a silane-grafted polymer and a latent compound |
US20100160471A1 (en) * | 2008-12-23 | 2010-06-24 | Sengupta Saurav S | Catalyst System for Moisture Cure of Ethylene-Vinylsilane Copolymers |
EP2226355A2 (en) | 2009-03-06 | 2010-09-08 | ShawCor Ltd. | Moisture-crosslinked polyolefin compositions |
US20100227966A1 (en) * | 2009-03-06 | 2010-09-09 | Shawcor Ltd. | Moisture-crosslinked polyolefin compositions |
US8846844B2 (en) | 2009-05-14 | 2014-09-30 | Borealis Ag | Crosslinkable polyolefin composition comprising silane groups forming an acid or a base upon hydrolysation |
EP2251365A1 (en) | 2009-05-14 | 2010-11-17 | Borealis AG | Crosslinkable polyolefin composition comprising silane groups forming an acid or a base upon hydrolysation |
US9200136B2 (en) | 2009-06-22 | 2015-12-01 | Borealis Ag | Chlorine dioxide resistant polyethylene pipes, their preparation and use |
US20110021710A1 (en) * | 2009-07-23 | 2011-01-27 | Sunny Jacob | Crosslinkable Propylene-Based Copolymers, Methods for Preparing the Same, and Articles Made Therefrom |
US8975334B2 (en) | 2009-07-23 | 2015-03-10 | Exxonmobil Chemical Patents Inc. | Crosslinkable propylene-based copolymers, methods for preparing the same, and articles made therefrom |
WO2011034838A1 (en) | 2009-09-16 | 2011-03-24 | Union Carbide Chemilcals & Plastics Technology Llc | Crosslinked, melt-shaped articles and compositions for producing same |
US9387625B2 (en) | 2009-09-16 | 2016-07-12 | Union Carbide Chemicals & Plastics Technology Llc | Process for producing crosslinked, melt-shaped articles |
US9272469B2 (en) | 2009-09-16 | 2016-03-01 | Union Carbide Chemicals & Plastics Technology Llc | Crosslinked, melt-shaped articles and compositions for producing same |
US8835548B2 (en) | 2009-09-16 | 2014-09-16 | Union Carbide Chemicals & Plastics Technology Llc | Process for producing crosslinked, melt-shaped articles |
WO2011034833A2 (en) | 2009-09-18 | 2011-03-24 | Union Carbide Chemicals & Plastics Technology Llc | Process for making crosslinked injection molded articles |
WO2011083047A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Modified polyolefins |
US9493615B2 (en) | 2010-01-06 | 2016-11-15 | Dow Corning Corporation | Organopolysiloxanes containing an unsaturated group |
WO2011083045A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Modified polyolefins |
WO2011083043A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Polyolefins modified by silicones |
WO2011083044A1 (en) | 2010-01-06 | 2011-07-14 | Dow Corning Corporation | Organopolysiloxanes containing an unsaturated group |
US9045578B2 (en) | 2010-01-06 | 2015-06-02 | Dow Corning Corporation | Process for forming crosslinked and branched polymers |
US9181379B2 (en) | 2010-01-06 | 2015-11-10 | Dow Corning Corporation | Modified polyolefins |
DE102010002358A1 (en) | 2010-02-25 | 2011-08-25 | Evonik Degussa GmbH, 45128 | Carboxy-functionalized silicon-containing precursor compound of various organic carboxylic acids |
WO2011103940A1 (en) | 2010-02-25 | 2011-09-01 | Evonik Degussa Gmbh | Carboxyl-functionalized silicon-containing precursor compound of various organic carboxylic acids |
EP2363267A1 (en) | 2010-03-03 | 2011-09-07 | Borealis AG | Cross-linkable polyolefin composition comprising two types of silane groups |
US9644061B2 (en) * | 2010-03-08 | 2017-05-09 | Sumitomo Chemical Company, Limited | Ethylene polymer pellet and extrusion process using the same |
US20130001823A1 (en) * | 2010-03-08 | 2013-01-03 | Sumitomo Chemical Company Limitedf | Ethylene polymer pellet and extrusion process using the same |
DE102010027956A1 (en) | 2010-04-20 | 2011-10-20 | Robert Bosch Gmbh | Process for crosslinking polymeric moldings with reactive gases |
EP2386593A1 (en) | 2010-04-20 | 2011-11-16 | Robert Bosch GmbH | Method for integrating polymer moulds with reactive gases |
WO2011149528A1 (en) * | 2010-05-25 | 2011-12-01 | Viega Llc | Crosslinkable polyethylene composition |
US9228131B2 (en) | 2010-06-08 | 2016-01-05 | Union Carbide Chemicals & Plastics Technology Llc | Halogenated flame retardant systems for use in presence of silane grafting process |
WO2011156077A1 (en) | 2010-06-08 | 2011-12-15 | Union Carbide Chemicals & Plastics Technology Llc | Halogenated flame retardant systems for use in presence of silane grafting process |
US9587084B2 (en) | 2010-06-08 | 2017-03-07 | Union Carbide Chemicals & Plastics Technology Llc | Halogenated flame retardant systems for use in presence of silane grafting process |
US8998866B2 (en) | 2010-07-02 | 2015-04-07 | Smith & Nephew Plc | Provision of wound filler |
US9801761B2 (en) | 2010-07-02 | 2017-10-31 | Smith & Nephew Plc | Provision of wound filler |
WO2012010640A1 (en) | 2010-07-22 | 2012-01-26 | Borealis Ag | Modified polymer compositions, modification process and free radical generating agents for i.a. wire and cable applications |
US9447210B2 (en) | 2010-10-29 | 2016-09-20 | Lg Chem, Ltd | Olefin composition |
WO2012057586A3 (en) * | 2010-10-29 | 2012-07-05 | 주식회사 엘지화학 | Olefin composition |
US11938231B2 (en) | 2010-11-25 | 2024-03-26 | Smith & Nephew Plc | Compositions I-I and products and uses thereof |
US11730876B2 (en) | 2010-11-25 | 2023-08-22 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
US10537657B2 (en) | 2010-11-25 | 2020-01-21 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
WO2012069793A1 (en) | 2010-11-25 | 2012-05-31 | Smith & Nephew Plc | Compositions i-i and products and uses thereof |
WO2012069794A1 (en) | 2010-11-25 | 2012-05-31 | Smith & Nephew Plc | Composition i-ii and products and uses thereof |
US20130273367A1 (en) * | 2011-01-31 | 2013-10-17 | Autonetworks Technologies, Ltd. | Composition for wire coating material, insulated wire, and wiring harness |
WO2012106401A1 (en) | 2011-02-04 | 2012-08-09 | Dow Global Technologies Llc | Cross-linkable polyolefin composition for formed textured skin applications |
WO2012120204A1 (en) | 2011-03-04 | 2012-09-13 | Setup Performance | Modified polyolefins crosslinkable after transformation, and process for producing said polyolefins |
EP2551294B1 (en) | 2011-07-25 | 2018-11-07 | Borealis AG | Use of a polyolefin composition for pipes and fittings with increased resistance to chlorine dioxide |
CN102504256A (en) * | 2011-11-07 | 2012-06-20 | 华东理工大学 | Organic silicon grafted and modified polyphenylene sulphide material and preparation method thereof |
CN102504256B (en) * | 2011-11-07 | 2013-06-12 | 华东理工大学 | Organic silicon grafted and modified polyphenylene sulphide material and preparation method thereof |
EP2594296A2 (en) | 2011-11-18 | 2013-05-22 | Cook Medical Technologies LLC | Silane bonded medical devices and method of making same |
US9681939B2 (en) | 2011-11-18 | 2017-06-20 | Cook Medical Technologies Llc | Silane bonded medical devices and method of making same |
WO2013076450A1 (en) | 2011-11-25 | 2013-05-30 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
US11638666B2 (en) | 2011-11-25 | 2023-05-02 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
EP3574876A1 (en) | 2011-11-25 | 2019-12-04 | Smith & Nephew plc | Composition, apparatus, kit and method and uses thereof |
US9595365B2 (en) | 2012-01-31 | 2017-03-14 | Dow Global Technologies Llc | Thermoplastic, semiconductive compositions |
WO2013116196A1 (en) | 2012-01-31 | 2013-08-08 | Dow Global Technologies Llc | Thermoplastic, semiconductive compositions |
DE102012007728A1 (en) | 2012-04-18 | 2013-10-24 | Technische Universität München | Process for the preparation of crosslinkable polyolefin copolymers |
WO2013156317A1 (en) | 2012-04-18 | 2013-10-24 | Wacker Chemie Ag | Method for producing cross-linkable polyolefin copolymers |
EP2657284A1 (en) | 2012-04-27 | 2013-10-30 | Borealis AG | Additive masterbatch with a C3-C5 alpha-olefin homo- or copolymer comprised in the carrier |
WO2013159923A1 (en) | 2012-04-27 | 2013-10-31 | Borealis Ag | Additive masterbatch with a c3-c5 alpha-olefin homo- or copolymer in the carrier |
US10767020B2 (en) | 2012-04-27 | 2020-09-08 | Borealis Ag | Catalyst masterbatch |
WO2013159924A1 (en) | 2012-04-27 | 2013-10-31 | Borealis Ag | Catalyst masterbatch |
EP2657276A1 (en) | 2012-04-27 | 2013-10-30 | Borealis AG | Catalyst masterbatch |
EP2657283A1 (en) | 2012-04-27 | 2013-10-30 | Borealis AG | Catalyst masterbatch |
EP2690115A1 (en) | 2012-07-24 | 2014-01-29 | Borealis AG | Slow partial cross-linking polyolefin composition for improving disinfectant resistance of an article |
WO2014015923A1 (en) | 2012-07-24 | 2014-01-30 | Borealis Ag | Slow partial cross-linking polyolefin composition for improving disinfectant resistance of an article |
WO2014099256A2 (en) | 2012-12-19 | 2014-06-26 | Dow Global Technologies Llc | Silicon-containing polyolefins in personal care applications |
US10173358B2 (en) | 2012-12-21 | 2019-01-08 | Borealis Ag | Process for making a cross-linked polyethylene article |
WO2014099335A2 (en) | 2012-12-21 | 2014-06-26 | Dow Global Technologies Llc | Polyolefin-based cable compound formulation for improved foamability and enhanced processability |
WO2014099360A1 (en) | 2012-12-21 | 2014-06-26 | Dow Global Technologies Llc | Polyolefin-based compound for cable jacket with reduced shrinkage and enhanced processability |
EP2746296A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Process for making a cross-linked polyethylene article |
CN103897323B (en) * | 2012-12-27 | 2018-11-27 | 日立金属株式会社 | Cross-linkable resin composition, the electric wire and cable for having used the cross-linkable resin composition |
CN103897323A (en) * | 2012-12-27 | 2014-07-02 | 日立金属株式会社 | Crosslinked resin compound and wire and cable using the same |
US11931226B2 (en) | 2013-03-15 | 2024-03-19 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US20160046770A1 (en) * | 2013-03-29 | 2016-02-18 | Furukawa Electric Co., Ltd. | Silane-crosslinkable ethylene- propylene copolymer and crosslinked body of the same |
US10626229B2 (en) * | 2013-03-29 | 2020-04-21 | Furukawa Electric Co., Ltd. | Silane-crosslinkable ethylene-propylene copolymer and crosslinked body of the same |
US10040888B1 (en) * | 2013-06-14 | 2018-08-07 | Cooper-Standard Automotive Inc. | Composition including silane-grafted polyolefin |
US10774955B2 (en) | 2013-08-01 | 2020-09-15 | Cooper-Standard Automotive, Inc. | Hose, composition including silane-grafted polyolefin, and process of making a hose |
US10100139B2 (en) | 2013-08-01 | 2018-10-16 | Cooper-Standard Automotive Inc. | Hose, composition including silane-grafted polyolefin, and process of making a hose |
DE102013216502A1 (en) | 2013-08-21 | 2015-02-26 | Evonik Industries Ag | Tin-free composition for the crosslinking of thermoplastic polyolefins |
DE102013216504A1 (en) | 2013-08-21 | 2015-02-26 | Evonik Industries Ag | Tin-free catalyst-containing composition for a Monosil process with optimized process characteristics |
EP2876132A1 (en) | 2013-11-21 | 2015-05-27 | Borealis AG | Crosslinkable polyethylene composition comprising a silanol condensation catalyst |
WO2015075008A2 (en) | 2013-11-21 | 2015-05-28 | Borealis Ag | Crosslinkable polyethylene composition comprising a silanol condensation catalyst |
US10308829B2 (en) | 2013-11-25 | 2019-06-04 | Dow Global Technologies Llc | Moisture-and peroxide-crosslinkable polymeric compositions |
US10233310B2 (en) | 2013-12-18 | 2019-03-19 | Borealis Ag | Polymer composition comprising a crosslinkable polyolefin with hydrolysable silane groups, catalyst and a surfactant interacting additive |
WO2015091707A1 (en) | 2013-12-18 | 2015-06-25 | Borealis Ag | A polymer composition comprising a polyolefin composition and a at least one silanol condensation catalyst |
US10371292B2 (en) | 2014-07-02 | 2019-08-06 | Cooper-Standard Automotive Inc. | Hose, abrasion resistant composition, and process of making a hose |
WO2016069089A1 (en) | 2014-10-29 | 2016-05-06 | Exxonmobil Chemical Patents Inc. | Polyolefin adhesive compositions for elastic applications |
US9887405B2 (en) | 2014-10-31 | 2018-02-06 | Lg Chem, Ltd. | Crosslinked polyolefin separator and method of preparing the same |
CN105576172A (en) * | 2014-10-31 | 2016-05-11 | Lg化学株式会社 | Crosslinked polyolefin separator and method of preparing the same |
CN105576172B (en) * | 2014-10-31 | 2018-06-22 | Lg化学株式会社 | cross-linked polyolefin diaphragm and preparation method thereof |
WO2017102609A1 (en) | 2015-12-18 | 2017-06-22 | Borealis Ag | A cable jacket composition, cable jacket and a cable, e.g. a power cable or a communication cable |
EP3182418A1 (en) | 2015-12-18 | 2017-06-21 | Borealis AG | A cable jacket composition, cable jacket and a cable, e.g. a power cable or a communication cable |
EP3182422A1 (en) | 2015-12-18 | 2017-06-21 | Borealis AG | A process for manufacturing a power cable and power cable obtainable thereof |
US10529469B2 (en) | 2015-12-18 | 2020-01-07 | Borealis Ag | Process for manufacturing a power cable and power cable obtainable thereof |
WO2017112644A1 (en) | 2015-12-21 | 2017-06-29 | Braskem America, Inc. | One-pot process for preparing long-chain branched polyolefins |
RU2639865C2 (en) * | 2016-04-19 | 2017-12-25 | Нина Александровна Попова | Method of producing thermoplastic polymers modified by silicon |
WO2017218280A1 (en) | 2016-06-14 | 2017-12-21 | Dow Global Technologies Llc | Moisture-curable compositions comprising silane-grafted polyolefin elastomer and halogen-free flame retardant |
DE202016004056U1 (en) | 2016-06-30 | 2016-11-08 | Borealis Ag | Solar cell encapsulant foil roll |
WO2018044414A1 (en) | 2016-08-30 | 2018-03-08 | Dow Global Technologies Llc | Method for thermally insulating subsea structures |
WO2018097982A1 (en) | 2016-11-23 | 2018-05-31 | Union Carbide Chemicals & Plastics Technology Llc | Multiphase conductive polymer composite compositions |
US11091614B2 (en) | 2016-11-23 | 2021-08-17 | Union Carbide Corporation | Multiphase conductive polymer composite compositions |
US11684115B2 (en) | 2016-12-10 | 2023-06-27 | Cooper-Standard Automotive Inc. | Roofing membranes, compositions, and methods of making the same |
US10570236B2 (en) | 2016-12-10 | 2020-02-25 | Cooper-Standard Automotive Inc. | Combined seals, compositions, and methods of making the same |
US10779608B2 (en) | 2016-12-10 | 2020-09-22 | Cooper-Standard Automotive, Inc. | Polyolefin elastomer compositions and methods of making the same |
US10689471B2 (en) | 2016-12-10 | 2020-06-23 | Cooper-Standard Automotive, Inc. | Microdense seals, compositions, and methods of making the same |
US10689470B2 (en) | 2016-12-10 | 2020-06-23 | Cooper-Standard Automotive, Inc. | Static seals, compositions, and methods of making the same |
EP3339366A1 (en) | 2016-12-22 | 2018-06-27 | Borealis AG | A crosslinkable polyolefin composition |
RU2720814C1 (en) * | 2016-12-22 | 2020-05-13 | Бореалис Аг | Cross-linkable polyolefin composition |
WO2018114633A1 (en) | 2016-12-22 | 2018-06-28 | Borealis Ag | A crosslinkable polyolefin composition |
US10723874B2 (en) | 2016-12-22 | 2020-07-28 | Borealis Ag | Crosslinkable polyolefin composition |
WO2018220024A1 (en) | 2017-05-31 | 2018-12-06 | Borealis Ag | A crosslinkable propylene polymer composition |
EP3409701A1 (en) | 2017-05-31 | 2018-12-05 | Borealis AG | A crosslinkable propylene polymer composition |
WO2018229191A1 (en) | 2017-06-16 | 2018-12-20 | Borealis Ag | A polymer composition for photovoltaic applications |
WO2018229182A1 (en) | 2017-06-16 | 2018-12-20 | Borealis Ag | A polymer composition for photovoltaic applications |
US11552210B2 (en) | 2017-06-16 | 2023-01-10 | Borealis Ag | Polymer composition for photovoltaic applications |
WO2019067440A1 (en) | 2017-09-26 | 2019-04-04 | Dow Global Technologies Llc | Compositions comprising a tin-based catalyst and titanium dioxide for moisture cure of silane-functionalized ethylenic polymers |
US11319425B2 (en) | 2017-09-26 | 2022-05-03 | Dow Global Technologies Llc | Compositions comprising a tin-based catalyst and titanium dioxide for moisture cure of silane-functionalized ethylenic polymers |
US11767419B2 (en) | 2018-04-27 | 2023-09-26 | Dow Global Technologies, Llc | Non-foam polyolefin compositions for wire and cable coating |
WO2019209547A1 (en) | 2018-04-27 | 2019-10-31 | Dow Global Technologies Llc | Foamed polyolefin compositions for wire and cable coating |
WO2019209546A1 (en) | 2018-04-27 | 2019-10-31 | Dow Global Technologies Llc | Non-foam polyolefin compositions for wire and cable coating |
EP3670588A1 (en) | 2018-12-21 | 2020-06-24 | Borealis AG | Crosslinking acceleratores for silane-group containing polymer compositions |
WO2020126618A1 (en) | 2018-12-21 | 2020-06-25 | Borealis Ag | Crosslinking acceleratores for silane-group containing polymer compositions |
WO2020139537A1 (en) | 2018-12-27 | 2020-07-02 | Dow Global Technologies Llc | Solid crosslinked polyolefin compositions for wire and cable coating |
US11840587B2 (en) | 2019-02-13 | 2023-12-12 | Dow Global Technologies Llc | Moisture-curable polyolefin formulation |
WO2020180495A1 (en) | 2019-03-07 | 2020-09-10 | Dow Global Technologies Llc | Catalyst system |
US11981798B2 (en) | 2019-03-26 | 2024-05-14 | Dow Global Technologies Llc | Rapidly moisture-curable polyethylene formulation |
WO2020197654A1 (en) | 2019-03-26 | 2020-10-01 | Dow Global Technologies Llc | Rapidly moisture-curable polyethylene formulation |
EP3733763A1 (en) | 2019-04-30 | 2020-11-04 | Borealis AG | Polyethylene composition for improving adhesion to polyurethane resins |
WO2020221822A1 (en) | 2019-04-30 | 2020-11-05 | Borealis Ag | Moisture cureable polymer for flexible cables |
WO2020221728A1 (en) | 2019-04-30 | 2020-11-05 | Borealis Ag | Polyethylene composition for improving adhesion to polyurethane resins |
EP3734617A1 (en) | 2019-04-30 | 2020-11-04 | Borealis AG | Moisture cureable polymer for flexible cables |
US20220204742A1 (en) * | 2019-06-27 | 2022-06-30 | Carmel Olefins Ltd. | Polyolefin based compositions modified by silanes |
US11649344B2 (en) * | 2019-06-27 | 2023-05-16 | Carmel Olefins Ltd. | Polyolefin based compositions modified by silanes |
WO2021028491A1 (en) | 2019-08-14 | 2021-02-18 | Borealis Ag | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
WO2021028492A1 (en) | 2019-08-14 | 2021-02-18 | Borealis Ag | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
EP3778747A1 (en) | 2019-08-14 | 2021-02-17 | Borealis AG | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
EP3778746A1 (en) | 2019-08-14 | 2021-02-17 | Borealis AG | Uv stabilization of a cross-linkable polyolefin composition comprising an acidic silanol condensation catalyst |
US12037469B2 (en) | 2019-08-29 | 2024-07-16 | Dow Global Technologies Llc | Method of making a homogeneous mixture of polyolefin solids and solid additive |
US12043708B2 (en) | 2019-08-29 | 2024-07-23 | Dow Global Technologies Llc | Method of making a homogeneous mixture of polyolefin solids and liquid additive |
EP3828207A1 (en) | 2019-11-29 | 2021-06-02 | Borealis AG | Process for producing a polyethylene composition using molecular weight enlargement |
WO2021105299A1 (en) | 2019-11-29 | 2021-06-03 | Borealis Ag | Process for producing a polyethylene composition using molecular weight enlargement |
WO2021252312A1 (en) | 2020-06-08 | 2021-12-16 | Dow Global Technologies Llc | Flame-retardant polymeric compositions |
WO2021262776A1 (en) | 2020-06-24 | 2021-12-30 | Dow Global Technologies Llc | Cure and functionalization of olefin/silane interpolymers |
EP4023712A1 (en) | 2020-12-29 | 2022-07-06 | Borealis AG | Highly track resistant polyethylene compositions for wire and cable applications |
WO2022144282A1 (en) | 2020-12-29 | 2022-07-07 | Borealis Ag | Highly track resistant polyethylene compositions for wire and cable applications |
EP4023711A1 (en) | 2020-12-29 | 2022-07-06 | Borealis AG | Highly track resistant polyethylene compounds for wire and cable applications |
WO2022144362A1 (en) | 2020-12-29 | 2022-07-07 | Borealis Ag | Highly track resistant polyethylene compositions for wire and cable applications |
EP4095195A1 (en) | 2021-05-25 | 2022-11-30 | Borealis AG | Crosslinkable polyolefin compositions for wire and cable applications |
WO2022248310A1 (en) | 2021-05-25 | 2022-12-01 | Borealis Ag | Crosslinkable polyolefin compositions for wire and cable applications |
WO2023066850A1 (en) | 2021-10-19 | 2023-04-27 | Borealis Ag | Polyethylene composition for cable insulations with improved uv stability |
EP4169976A1 (en) | 2021-10-19 | 2023-04-26 | Borealis AG | Polyethylene composition for cable insulations with improved uv stability |
EP4194500A1 (en) | 2021-12-03 | 2023-06-14 | Borealis AG | High frequency weldable polyolefin composition |
WO2023099323A1 (en) | 2021-12-03 | 2023-06-08 | Borealis Ag | High frequency weldable polyolefin composition |
EP4190858A1 (en) | 2021-12-03 | 2023-06-07 | Borealis AG | High frequency weldable polyolefin composition |
EP4201985A1 (en) | 2021-12-21 | 2023-06-28 | Borealis AG | Polymer composition suitable for cable insulation |
EP4253437A1 (en) | 2022-03-28 | 2023-10-04 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Silane-based crosslinking mixture and method for crosslinking thermoplastic polymers |
WO2024110589A1 (en) | 2022-11-23 | 2024-05-30 | Borealis Ag | Cable comprising layer of crosslinkable polyethylene composition with improved crosslinking speed |
EP4393989A1 (en) | 2022-12-27 | 2024-07-03 | Borealis AG | Use of a magnesium hydroxide filler in highly track resistant polyethylene compositions |
WO2024141542A1 (en) | 2022-12-27 | 2024-07-04 | Borealis Ag | Use of a magnesium hydroxide filler in highly track resistant polyethylene compositions |
Also Published As
Publication number | Publication date |
---|---|
GB1286460A (en) | 1972-08-23 |
BR6915212D0 (en) | 1973-01-16 |
DE1963571B2 (en) | 1972-10-05 |
SE368211B (en) | 1974-06-24 |
DE1963571C3 (en) | 1983-12-15 |
BE794718Q (en) | 1973-05-16 |
DE1963571A1 (en) | 1970-10-29 |
FR2030899A5 (en) | 1970-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3646155A (en) | Cross-linking of a polyolefin with a silane | |
US7241840B2 (en) | Process for crosslinking thermoplastic polymers with silanes employing peroxide blends and the resulting crosslinked thermoplastic polymers | |
JP2802274B2 (en) | Solid supply of silane crosslinker to extruder | |
US4228255A (en) | Method for producing crosslinked polyethylenes | |
EP0004034B1 (en) | Method of crosslinking poly-alpha-olefin series resins | |
US4753992A (en) | Polymer composition | |
JPS60215046A (en) | Bridgeable composition and insulation for electric wire or cable therewith by extrusion coating | |
JP2003073432A (en) | Agent for use in production of polymer and plastics, use of the same, sioplas method and monosil method with the same, resulting polymer, filled plastics and moldings, and products based on them | |
JPH0696628B2 (en) | Method for grafting monomer to polyolefin | |
JPS6223777B2 (en) | ||
JPH0321667A (en) | Cross-linking of hydrolytic copolymers | |
KR930009333B1 (en) | Polymer composition | |
DE2350876B2 (en) | Process for the preparation of a crosslinked copolymer of ethylene | |
MXPA02004888A (en) | Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products. | |
US3317631A (en) | Thermosetting resins of aliphatic olefin, unsaturated acid copolymers and melamine-formaldehyde resins | |
US5367030A (en) | Process for crosslinking thermoplastic silane polymers | |
KR101189558B1 (en) | Process for preparing trioxepane composition and use thereof in crosslinking polymers | |
GB2192891A (en) | Crosslinkable silyl polymer composition | |
JPS61155462A (en) | Scortch resistant composition based on hydrolyzable pendant silane-containing water curable thermoplastic polymer and organotitanate | |
NO174209B (en) | Crosslinkable Polymer Composition and Process for Preparing a Crosslinked Product | |
JP2705942B2 (en) | Crosslinkable polymer | |
JPH11320651A (en) | Manufacture of crosslinked polyethylene tube | |
CN115210316A (en) | High melt strength polypropylene and preparation method thereof | |
JPS6223778B2 (en) | ||
JPS6215580B2 (en) |