JPS6223777B2 - - Google Patents

Info

Publication number
JPS6223777B2
JPS6223777B2 JP53080952A JP8095278A JPS6223777B2 JP S6223777 B2 JPS6223777 B2 JP S6223777B2 JP 53080952 A JP53080952 A JP 53080952A JP 8095278 A JP8095278 A JP 8095278A JP S6223777 B2 JPS6223777 B2 JP S6223777B2
Authority
JP
Japan
Prior art keywords
polyethylene
crosslinking
copolymer
ethylene
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53080952A
Other languages
Japanese (ja)
Other versions
JPS559611A (en
Inventor
Tsutomu Isaka
Mitsugi Ishioka
Takeo Shimada
Noryuki Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP8095278A priority Critical patent/JPS559611A/en
Priority to DE2926830A priority patent/DE2926830C3/en
Priority to FR7917460A priority patent/FR2430432B1/en
Priority to GB7923560A priority patent/GB2028831B/en
Publication of JPS559611A publication Critical patent/JPS559611A/en
Priority to US06/235,749 priority patent/US4413066A/en
Publication of JPS6223777B2 publication Critical patent/JPS6223777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔〕 発明の背景 技術分野 本発明は、架橋性すなわち架橋可能なポリエチ
レン樹脂組成物に関する。さらに具体的には、本
発明は、架橋性基として加水分解可能シラン基を
有するエチレン−エチレン性不飽和シラン化合物
ランダム共重合体と架橋反応触媒とを含む水架橋
可能ポリエチレン樹脂組成物に関する。 低密度ポリエチレンその他のポリエチレン樹脂
を架橋してその機械的強度および耐熱性等を改良
することは周知であり、各種の架橋手段が知られ
ている。 先行技術 そのような架橋手段の一つは、ポリエチレンに
架橋剤としての有機過酸化物を添加し、高温に加
熱して過酸化物を分解させて架橋反応を生起させ
ることからなるものである。しかし、この場合に
は、過酸化物の分解に基く架橋がポリエチレン成
形工程以前に行なわれるので、しばしば成形品の
品質が不良となり、甚だしい場合には成形の進行
が不可能となるという難点がある。架橋を成形工
程より後で行なおうとすれば、成形温度に耐える
高温分解過酸化物を使用しなければならないとこ
ろ、そのような過酸化物を分解させるためには成
形温度より高い温度に成形品を加熱しなければな
らないので、その結果、架橋工程で成形品の軟化
による変化が生じて、やはり成形品の品質が不良
となるのである。 化学架橋にみられるこのような問題点を伴なわ
ないものとして、シリコーングラフトポリエチレ
ンがある(特公昭48−1711号公報、特開昭47−
8389号、同50−138042号および同52−9073号公報
参照)。シリコーングラフトポリエチレンは、水
に暴露することによつてシリコーン部分が加水分
解されて架橋反応が進行するのであり、この加水
分解は比較的低温で生じるので、化学架橋の際に
必要となる膨大な架橋設備が不要となるところか
ら、架橋成形品への適用が検討されている。しか
し、この場合には、基材ポリエチレンの製造およ
びシリコーングラフト化の複数工程が必要であ
り、しかもこのようにして製造され、架橋された
ポリエチレン成形品たとえばシートは、臭気、機
械的強度、耐熱性および熱融着性に関して満足で
きるものではない。 一方、エチレンとビニルアルコキシランとの共
重合体を加熱または機械的加工で架橋させる方法
が知られている(米国特許第3225018号および同
3392156号明細書参照)。この方法によれば、架橋
性ポリエチレンはエチレン重合工程だけの単一工
程で得られる点で上記グラフト化法より有利であ
るが、この場合は架橋は成形加工以前に行なわざ
るを得ないので、前記化学架橋の場合と同じ問題
点があり、架橋反応後に成形して得た成形品の機
械的強度も満足できるものではない。 〔〕 発明の概要 要 旨 本発明は上記の点に解決を与えることを目的と
し、水架橋可能なエチレン−エチレン性不飽和シ
ラン化合物ランダム共重合体と水架橋用触媒とを
組合せることによつてこの目的を達成しようとす
るものである。 従つて、本発明によるポリエチレン樹脂組成物
は、下記の成分(A)および(B)を含むこと、を特徴と
するものである。 (A) エチレンとエチレン性不飽和シラン化合物と
の高圧ラジカル重合による共重合体(ただし、
このエチレン性不飽和シラン化合物単位の含有
率は、0.001〜15重量%である)、 (B) シラノール縮合触媒 効 果 本発明は、グラフト化でなくランダム共重合体
化(本発明で共重合体というときは、グラフト共
重合体を含まないものとする。ただし、不可避的
に併起するかも知れないグラフト共重合を排除す
るものではない。)によつて、ポリエチレン分子
中に導入したシラン基を有するポリエチレン樹脂
に水架橋可能性を与えたものである。 本発明組成物を成形し、水に暴露して架橋させ
て得た架橋成形品はすぐれた機械的強度および耐
熱性を有するのみならず、架橋シート成形品(シ
ート成形品は、本発明組成物の成形品の一つであ
る)は従来の架橋ポリエチレンシートの最大の欠
点とされていた熱融着性に関しても通常の低密度
ポリエチレンシートと実用上同等の性能を、また
耐熱性に関してはより優れた性能を有する。 なお、本発明ではグラフト化工程が無い代りに
不飽和シラン化合物を共重合させたポリエチレン
を別途つくらなければならないが、不飽和シラン
化合物使用量が少ないこともあつてこの共重合は
エチレンのホモ重合と操作上実質的に同一の方法
で製造可能であり、ポリエチレンの多種類化の一
環としてとらえられるものである。 〔〕 発明の具体的説明 1 エチレンと不飽和シラン化合物との共重合体 不飽和シラン化合物としては、エチレンと共
重合可能なエチレン性不飽和結合と加水分解可
能なシラン基を有する各種の化合物が使用可能
である。 このような化合物を一般式で示せば、たとえ
ば下式で表わされるものがある。 RSiR′oY3-o (ここで、Rはエチレン性不飽和ヒドロカル
ビルまたはヒドロカルビルエーテル基を表わ
し、R′は脂肪族飽和ヒドロカルビル基を表わ
し、Yは加水分解可能な有機基を表わし、nは
0または1または2を表わす。Yが複数個ある
ときは、それぞれ同一でなくてもよい。) この不飽和シラン化合物の具体例は、Rがた
とえばビニル、アリル、イソプロペニル、ブテ
ニル、シクロヘキセニル、γ−(メタ)アクリ
ロイルオキシプロピル、Yがメトキシ、エトキ
シ、ホルミルオキシ、アセトキシ、プロピオノ
キシ、アルキルないしアリールアミノ、R′が
メチル、エチル、プロピル、デシル、フエニ
ル、であるものである。 特に好ましい不飽和シラン化合物は、下式で
表わされるものである。 CH2=CHSi(OA)3 (ここで、Aは炭素数1〜8、好ましくは1
〜4、のヒドロカルビル基である) 最も好ましい化合物は、ビニルトリメトキシ
シラン、ビニルトリエトキシシラン、およびビ
ニルトリアセトキシシランである。 エチレンと不飽和シラン化合物との共重合
は、たとえば圧力500〜4000Kg/cm2、好ましく
は1000〜4000Kg/cm2、温度100〜400℃、好まし
くは150〜350℃、の条件下、ラジカル重合開始
剤および必要ならば連鎖移動剤の存在下に、槽
型または管型反応器、好ましくは、槽型反応器
内で両単量体を同時にあるいは、段階的に接触
させる。 本発明においては、エチレンの重合または、
共重合に用いることの知られているいずれのラ
ジカル重合開始剤および連鎖移動剤も使用する
ことができる。重合開始剤としては、ラウロイ
ルパーオキシド、ジプロピオニルパーオキシ
ド、ベンゾイルパーオキシド、ジ−t−ブチル
パーオキシド、t−ブチルヒドロパーオキシ
ド、t−ブチルパーオキシイソブチレートのよ
うな有機過酸化物、分子状酸素、アゾビスイソ
ブチロニトリル、アゾイソブチルバレロニトリ
ルのようなアゾ化合物があり、連鎖移動剤とし
ては、メタン、エタン、プロパン、ブタン、ペ
ンタンのようなパラフイン系の炭化水素、プロ
ピレン、ブテン−1、ヘキセン−1のようなα
−オレフイン、ホルムアルデヒド、アセトアル
デヒド、n−ブチルアルデヒドのようなアルデ
ヒド、アセトン、メチルエチルケトン、シクロ
ヘキサノンのようなケトン、芳香族炭化水素、
塩素化炭化水素等をあげることができる。 本発明組成物で使用する共重合体は、不飽和
シラン化合物単位の含量が0.001〜15重量%、
好ましくは0.01〜5重量%、特に好ましくは
0.05〜2重量%、のものである。一般に、不飽
和シラン化合物含量の多い共重合体の水架橋物
ほど機械的強度および耐熱性がすぐれている
が、含量が過度に多いと引張り伸びおよび熱融
着性が低下する。0.001〜15重量%という含量
範囲は、この点から決定されたものである。 2 シラノール縮合触媒 シリコーンのシラノール間の脱水縮合を促進
する触媒として使用しうるものが一般に本発明
で対象となる。このようなシラノール縮合触媒
は、一般に、錫、亜鉛、鉄、鉛、コバルト等の
金属のカルボン酸塩、チタン酸エステルおよび
キレート化物等の有機金属化合物、有機塩基、
無機酸、および有機酸である。 シラノール縮合触媒の具体例を挙げれば、下
記の通りである。ジブチル錫ジラウレート、ジ
ブチル錫ジアセテート、ジブチル錫ジオクトエ
ート、酢酸第一錫、カプリル酸第一錫、ナフテ
ン酸鉛、カプリル酸亜鉛、ナフテン酸コバル
ト、チタン酸テトラブチルエステル、チタン酸
テトラノニルエステル、エチルアミン、ジブチ
ルアミン、ヘキシルアミン、ピリジン、硫酸、
塩酸などの無機酸、トルエンスルホン酸、酢
酸、ステアリン酸、マレイン酸などの有機酸が
ある。 シラノール縮合触媒の使用量は、所与の共重
合体に対して所与の触媒について後記実施例を
参考にして実施者が適当に決定すればよい。一
般的にいえば、組成物中に配合する量は、混合
組成物中の共重合体量に対して0.001〜10重量
%程度、好ましくは0.01〜5重量%、特に好ま
しくは0.03〜3重量%である。 3 組成物調製 熱可塑性樹脂に各種添加物を配合するのに使
用しうる任意の手段によつて本発明組成物をつ
くることができる。 本発明組成物を調製する方法としては、種々
のものが適用可能である。組成物調整法は一般
にエチレン−不飽和シラン化合物共重合体また
はシラノール触媒の熔融ないし溶解(特に前
者)を併なうものであることがふつうであつ
て、たとえば押出機中で共重合体とシラノール
縮合触媒(そのまままたは溶液ないし分散液と
して)と必要に応じて配合する補助資材とを混
練して、所望成形品(たとえば、型物、棒状
材、パイプ、シート、その他)またはペレツト
等に押出せばよい。 また、前記のようにシラノール縮合触媒は共
重合体に比べれば少量である。従つて、少量成
分の配合にしばしば行なわれるように、シラノ
ール縮合触媒をポリエチレンなどの分散媒に高
濃度に配合したマスターバツチをつくり、これ
を所定触媒濃度になるように共重合体に配合す
ることが便利である。 また他の方法としては、共重合体を所望成形
品に成形加工後、シラノール触媒を含む溶液ま
たは分散液に該成形品を浸漬して含浸させる方
法がある。この方法によれば成形された状態で
の本発明組成物が得られる訳である。 本発明組成物は、樹脂組成物にしばしばみら
れるように、各種の補助資材を含むことができ
る。このような補助資材には、混和可能熱可塑
性樹脂、安定剤、滑剤、充填剤、着色剤、発泡
剤、その他がある。 4 架橋 本発明組成物の成形物を水に暴露させれば、
架橋反応が生起する(なお、本発明は、架橋を
要件とするものではない)。 水に対する暴露は、成形物を常温〜200℃程
度、通常は常温〜100℃程度、の水(液状また
は蒸気状)と10秒〜1週間程度、通常は1分〜
1日程度、にわたつて接触させればよい。加圧
下に水と接触させることもできる。成形物の濡
れをよくするため、水は湿潤剤ないし界面活性
剤、水溶性有機溶媒その他を含んでいてもよ
い。水は通常の水の他に、加熱された水蒸気ま
たは空気中の水分などの形態であることもでき
る。また、本発明組成物の調製および成形の際
に水を暴露させることによつて組成物の調製お
よび成形と架橋反応とを同時に行なうこともで
きる。 5 実験例 実施例 1〜3 内容積1.5の撹拌式オートクレーブに、エ
チレン、ビニルトリメトキシシラン及び連鎖移
動剤としてのプロピレンの混合物を送入し、重
合開始剤としてt−ブチルパーオキシイソブチ
レートを添加して、圧力2400Kg/cm2、温度220
℃の条件下にて、エチレン−ビニルトリメトキ
シシラン共重合体を連続的に合成した。得られ
た生成物はほとんど無臭である。重合条件と生
成共重合体の物性を表−1に示す。 この共重合体に、ジブチル錫ジラウレート1
重量%を含有するマスターバツチを5重量%を
加え、ロールミルで温度120〜125℃にて、7分
間混合した後、プレスシートに成形し、100℃
の温水に1日間、浸漬して架橋させ、引張強伸
度および熱融着性を測定した。結果を表2〜3
に示す。 比較例 1 メルトインデツクス2g/10分、及び密度
0.919g/c.c.を有する低密度ポリエチレン(三
菱油化社製「ユカロンEH−30」)に、ビニルト
リメトキシシラン2重量%とジクミルパーオキ
シド0.1重量%とを分散させ、これをL/D=
24の50mmφダルメージスクリユー押出機を用い
て、押出温度200℃で、グラフト重合を行なわ
せた。得られたシリコーングラフト化ポリエチ
レンは極めて臭気が強いが、さらにこれを用い
て実施例1〜3に示す方法によつて、プレスシ
ートに成形、架橋させた。 比較例 2 米国特許3392156号明細書実施例3に示した
エチレン−ビニルトリメトキシシラン共重合体
を、ロールミルで温度145乃至150℃にて3時間
熱及び機械的処理を行なつて架橋させた。得ら
れた架橋体をプレス・シートに成形した。 比較例 3 メルトインデツクス1g/10分及び密度
0.920g/c.c.を有する低密度ポリエチレン(三
菱油化社製「ユカロンZF−30」)をプレス・シ
ートに成形した。 比較例1〜3で得られた架橋シートの物性を表
2〜3に示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to crosslinkable or crosslinkable polyethylene resin compositions. More specifically, the present invention relates to a water-crosslinkable polyethylene resin composition comprising an ethylene-ethylenically unsaturated silane compound random copolymer having a hydrolyzable silane group as a crosslinkable group and a crosslinking reaction catalyst. It is well known that low density polyethylene and other polyethylene resins can be crosslinked to improve their mechanical strength, heat resistance, etc., and various crosslinking methods are known. PRIOR ART One such crosslinking means consists of adding an organic peroxide as a crosslinking agent to polyethylene and heating it to a high temperature to decompose the peroxide and cause a crosslinking reaction. However, in this case, crosslinking based on the decomposition of peroxide occurs before the polyethylene molding process, which often results in poor quality of the molded product, and in extreme cases, the problem is that molding cannot proceed. . If crosslinking is to be carried out after the molding process, it is necessary to use a high temperature decomposing peroxide that can withstand the molding temperature. As a result, the molded product undergoes softening changes during the crosslinking process, resulting in poor quality of the molded product. Silicone-grafted polyethylene is a product that does not have these problems that occur with chemical crosslinking (Japanese Patent Publication No. 1711-1982, Japanese Patent Application Laid-Open No. 1983-1989).
8389, 50-138042 and 52-9073). When silicone-grafted polyethylene is exposed to water, the silicone portion is hydrolyzed and a crosslinking reaction proceeds, and this hydrolysis occurs at relatively low temperatures, resulting in a large amount of crosslinking that is required during chemical crosslinking. Application to cross-linked molded products is being considered since no equipment is required. However, in this case, multiple steps of manufacturing the base polyethylene and silicone grafting are required, and the crosslinked polyethylene moldings produced in this way, such as sheets, have odor, mechanical strength, and heat resistance. And the heat fusion properties are not satisfactory. On the other hand, a method is known in which a copolymer of ethylene and vinyl alkoxylan is crosslinked by heating or mechanical processing (U.S. Pat. No. 3,225,018 and
3392156). This method has an advantage over the above-mentioned grafting method in that crosslinkable polyethylene can be obtained in a single step of ethylene polymerization, but in this case, crosslinking must be performed before the molding process. There are the same problems as in the case of chemical crosslinking, and the mechanical strength of the molded product obtained by molding after the crosslinking reaction is also not satisfactory. [] Summary of the Invention The present invention aims to solve the above-mentioned problems by combining a water-crosslinkable ethylene-ethylenic unsaturated silane compound random copolymer with a water-crosslinking catalyst. The goal is to achieve this goal. Therefore, the polyethylene resin composition according to the present invention is characterized by containing the following components (A) and (B). (A) A copolymer produced by high-pressure radical polymerization of ethylene and an ethylenically unsaturated silane compound (however,
The content of this ethylenically unsaturated silane compound unit is 0.001 to 15% by weight), (B) silanol condensation catalyst effect. In this case, the silane group introduced into the polyethylene molecule shall not be included. However, this does not exclude graft copolymerization that may unavoidably occur. This gives the polyethylene resin water-crosslinking ability. The crosslinked molded product obtained by molding the composition of the present invention and crosslinking it by exposing it to water not only has excellent mechanical strength and heat resistance, but also has excellent mechanical strength and heat resistance. ) is one of the molded products of conventional cross-linked polyethylene sheets, which has practically the same performance as ordinary low-density polyethylene sheets in terms of heat fusion properties, which were considered to be the biggest drawback of cross-linked polyethylene sheets, and has superior heat resistance. It has excellent performance. In addition, in the present invention, there is no grafting step, but instead, polyethylene copolymerized with an unsaturated silane compound must be separately produced, but since the amount of unsaturated silane compound used is small, this copolymerization is a homopolymerization of ethylene. It can be manufactured using substantially the same method as that of polyethylene, and can be seen as part of the diversification of polyethylene. [] Detailed description of the invention 1 Copolymer of ethylene and unsaturated silane compound As the unsaturated silane compound, there are various compounds having an ethylenically unsaturated bond copolymerizable with ethylene and a hydrolyzable silane group. Available for use. If such a compound is represented by a general formula, for example, there is one represented by the following formula. RSiR′ o Y 3-o (where R represents an ethylenically unsaturated hydrocarbyl or hydrocarbyl ether group, R′ represents an aliphatic saturated hydrocarbyl group, Y represents a hydrolyzable organic group, and n is 0 or 1 or 2. When there are two or more Y's, they do not have to be the same.) Specific examples of this unsaturated silane compound include R's such as vinyl, allyl, isopropenyl, butenyl, cyclohexenyl, γ -(meth)acryloyloxypropyl, Y is methoxy, ethoxy, formyloxy, acetoxy, propionoxy, alkyl or arylamino, and R' is methyl, ethyl, propyl, decyl, phenyl. Particularly preferred unsaturated silane compounds are those represented by the following formula. CH 2 =CHSi(OA) 3 (where A has 1 to 8 carbon atoms, preferably 1
The most preferred compounds are vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltriacetoxysilane. Copolymerization of ethylene and an unsaturated silane compound is carried out by initiating radical polymerization under the conditions of, for example, a pressure of 500 to 4000 Kg/cm 2 , preferably 1000 to 4000 Kg/cm 2 , and a temperature of 100 to 400°C, preferably 150 to 350°C. Both monomers are brought into contact simultaneously or stepwise in a tank or tube reactor, preferably a tank reactor, in the presence of an agent and, if necessary, a chain transfer agent. In the present invention, polymerization of ethylene or
Any radical polymerization initiator and chain transfer agent known for use in copolymerization can be used. As a polymerization initiator, organic peroxides such as lauroyl peroxide, dipropionyl peroxide, benzoyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, t-butyl peroxyisobutyrate; Molecular oxygen, azo compounds such as azobisisobutyronitrile, azoisobutylvaleronitrile, and chain transfer agents include paraffinic hydrocarbons such as methane, ethane, propane, butane, and pentane, propylene, and butene. -1, α like hexene-1
- olefins, aldehydes such as formaldehyde, acetaldehyde, n-butyraldehyde, ketones such as acetone, methyl ethyl ketone, cyclohexanone, aromatic hydrocarbons,
Examples include chlorinated hydrocarbons. The copolymer used in the composition of the present invention has an unsaturated silane compound unit content of 0.001 to 15% by weight,
Preferably 0.01 to 5% by weight, particularly preferably
0.05 to 2% by weight. In general, water-crosslinked copolymers with a higher content of unsaturated silane compounds have better mechanical strength and heat resistance, but if the content is too high, tensile elongation and heat fusion properties decrease. The content range of 0.001 to 15% by weight was determined from this point of view. 2 Silanol Condensation Catalyst The present invention generally targets catalysts that can be used as catalysts that promote dehydration condensation between silanol in silicone. Such silanol condensation catalysts generally include organometallic compounds such as carboxylates, titanate esters, and chelates of metals such as tin, zinc, iron, lead, and cobalt, organic bases,
Inorganic acids and organic acids. Specific examples of silanol condensation catalysts are as follows. Dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, stannous acetate, stannous caprylate, lead naphthenate, zinc caprylate, cobalt naphthenate, tetrabutyl titanate, tetranonyl titanate, ethylamine, dibutylamine, hexylamine, pyridine, sulfuric acid,
These include inorganic acids such as hydrochloric acid, and organic acids such as toluenesulfonic acid, acetic acid, stearic acid, and maleic acid. The amount of the silanol condensation catalyst to be used may be appropriately determined by a practitioner with reference to the Examples described below for a given copolymer and a given catalyst. Generally speaking, the amount added to the composition is about 0.001 to 10% by weight, preferably 0.01 to 5% by weight, particularly preferably 0.03 to 3% by weight, based on the amount of copolymer in the mixed composition. It is. 3 Composition Preparation The composition of the present invention can be prepared by any means that can be used to incorporate various additives into a thermoplastic resin. Various methods can be used to prepare the composition of the present invention. The composition preparation method generally involves melting or dissolving an ethylene-unsaturated silane compound copolymer or a silanol catalyst (particularly the former); for example, the copolymer and silanol are combined in an extruder. The condensation catalyst (as it is or as a solution or dispersion) and auxiliary materials added as necessary are kneaded and extruded into desired molded products (for example, molds, rods, pipes, sheets, etc.) or pellets, etc. Bye. Further, as mentioned above, the amount of the silanol condensation catalyst is small compared to that of the copolymer. Therefore, as is often done when blending small amounts of components, it is possible to create a masterbatch in which a silanol condensation catalyst is blended in a dispersion medium such as polyethylene at a high concentration, and then blend this into a copolymer at a predetermined catalyst concentration. It's convenient. Another method is to mold the copolymer into a desired molded article and then immerse the molded article in a solution or dispersion containing a silanol catalyst to impregnate it. According to this method, the composition of the present invention can be obtained in a molded state. The compositions of the present invention can contain various auxiliary materials, as are often found in resin compositions. Such auxiliary materials include miscible thermoplastics, stabilizers, lubricants, fillers, colorants, blowing agents, and the like. 4 Crosslinking When a molded product of the composition of the present invention is exposed to water,
A crosslinking reaction occurs (note that the present invention does not require crosslinking). Exposure to water involves exposing the molded product to water (liquid or steam) at room temperature to 200°C, usually room temperature to 100°C, for 10 seconds to 1 week, usually for 1 minute to 100°C.
It is sufficient to allow contact for about one day. It is also possible to contact water under pressure. In order to improve wetting of the molded article, the water may contain a wetting agent or surfactant, a water-soluble organic solvent, and the like. In addition to regular water, the water can also be in the form of heated steam or moisture in the air. Further, by exposing the composition to water during the preparation and molding of the composition of the present invention, the preparation and molding of the composition and the crosslinking reaction can be carried out simultaneously. 5 Experimental Examples Examples 1 to 3 A mixture of ethylene, vinyltrimethoxysilane, and propylene as a chain transfer agent was introduced into a stirred autoclave with an internal volume of 1.5, and t-butylperoxyisobutyrate was added as a polymerization initiator. Addition, pressure 2400Kg/cm 2 , temperature 220
An ethylene-vinyltrimethoxysilane copolymer was continuously synthesized under conditions of .degree. The product obtained is almost odorless. Table 1 shows the polymerization conditions and physical properties of the resulting copolymer. In this copolymer, dibutyltin dilaurate 1
Add 5% by weight of the masterbatch containing 5% by weight and mix for 7 minutes at a temperature of 120 to 125°C with a roll mill, then form into a press sheet and mix at 100°C.
It was immersed in hot water for one day to cause crosslinking, and its tensile strength and elongation and thermal fusion properties were measured. Tables 2-3 show the results.
Shown below. Comparative example 1 Melt index 2g/10min and density
2% by weight of vinyltrimethoxysilane and 0.1% by weight of dicumyl peroxide are dispersed in low density polyethylene (Yukalon EH-30 manufactured by Mitsubishi Yuka Co., Ltd.) having a density of 0.919 g/cc, and L/D=
Graft polymerization was carried out at an extrusion temperature of 200° C. using a 50 mmφ Dalmage screw extruder. Although the obtained silicone-grafted polyethylene had a very strong odor, it was further used to form and crosslink a press sheet by the method shown in Examples 1 to 3. Comparative Example 2 The ethylene-vinyltrimethoxysilane copolymer shown in Example 3 of US Pat. No. 3,392,156 was crosslinked by heat and mechanical treatment in a roll mill at a temperature of 145 to 150° C. for 3 hours. The obtained crosslinked body was molded into a press sheet. Comparative example 3 Melt index 1g/10min and density
Low density polyethylene ("Yukalon ZF-30" manufactured by Mitsubishi Yuka Co., Ltd.) having a density of 0.920 g/cc was molded into a press sheet. The physical properties of the crosslinked sheets obtained in Comparative Examples 1 to 3 are shown in Tables 2 and 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記の成分(A)および(B)を含むことを特徴とす
る、架橋性ポリエチレン樹脂組成物。 (A) エチレンとエチレン性不飽和シラン化合物と
の高圧ラジカル重合による共重合体(ただし、
このエチレン性不飽和シラン化合物単位の含有
率は、0.001〜15重量%である) (B) シラノール縮合触媒。
[Scope of Claims] 1. A crosslinkable polyethylene resin composition characterized by containing the following components (A) and (B). (A) A copolymer produced by high-pressure radical polymerization of ethylene and an ethylenically unsaturated silane compound (however,
The content of this ethylenically unsaturated silane compound unit is 0.001 to 15% by weight) (B) Silanol condensation catalyst.
JP8095278A 1978-07-05 1978-07-05 Cross-linkable polyethylene resin composition Granted JPS559611A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8095278A JPS559611A (en) 1978-07-05 1978-07-05 Cross-linkable polyethylene resin composition
DE2926830A DE2926830C3 (en) 1978-07-05 1979-07-03 Crosslinkable polyethylene plastic masses
FR7917460A FR2430432B1 (en) 1978-07-05 1979-07-05 CROSSLINKABLE POLYETHYLENE RESIN COMPOSITIONS
GB7923560A GB2028831B (en) 1978-07-05 1979-07-05 Moisture-curable polymer composition
US06/235,749 US4413066A (en) 1978-07-05 1981-02-18 Crosslinkable polyethylene resin compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8095278A JPS559611A (en) 1978-07-05 1978-07-05 Cross-linkable polyethylene resin composition

Publications (2)

Publication Number Publication Date
JPS559611A JPS559611A (en) 1980-01-23
JPS6223777B2 true JPS6223777B2 (en) 1987-05-25

Family

ID=13732830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8095278A Granted JPS559611A (en) 1978-07-05 1978-07-05 Cross-linkable polyethylene resin composition

Country Status (4)

Country Link
JP (1) JPS559611A (en)
DE (1) DE2926830C3 (en)
FR (1) FR2430432B1 (en)
GB (1) GB2028831B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695940A (en) * 1979-12-28 1981-08-03 Mitsubishi Petrochem Co Ltd Ethylene polymer composition
JPS6055929B2 (en) * 1980-04-02 1985-12-07 日立電線株式会社 Insulated wire for underwater motor
JPS57207632A (en) * 1981-06-16 1982-12-20 Mitsubishi Petrochem Co Ltd Crosslinkable polyethylene resin composition
JPS5861129A (en) * 1981-10-08 1983-04-12 Sekisui Plastics Co Ltd Preparation of foam
NO824291L (en) * 1981-12-29 1983-06-30 Dainichi Nippon Cables Ltd ADHESIVE AND PROCEDURE FOR COMPOUNDING POLYOLEFINE OBJECTS BY USING THEREOF
JPS58141213A (en) * 1982-02-18 1983-08-22 Nippon Soda Co Ltd Curing of thermosetting resin
FR2546172B1 (en) * 1983-05-17 1987-03-20 Sogecan THERMOPLASTIC COMPOSITIONS CONTAINING A SILAN-GRAFT POLYMER
GB8400150D0 (en) * 1984-01-05 1984-02-08 Bp Chem Int Ltd Polymer composition
GB8418592D0 (en) * 1984-07-20 1984-08-22 Bp Chem Int Ltd Polymer composition
GB8427615D0 (en) * 1984-11-01 1985-01-03 Bp Chem Int Ltd Cross-linkable elastomeric materials
JPH0615644B2 (en) * 1985-02-25 1994-03-02 三菱油化株式会社 Silane crosslinkable copolymer composition
GB2201677A (en) * 1987-02-14 1988-09-07 Bp Chem Int Ltd Process for producing a shaped, extruded product from a crosslinkable polymeric composition
GB8713868D0 (en) * 1987-06-13 1987-07-15 Bp Chem Int Ltd Crosslinkable polymer
US5288771A (en) * 1988-06-15 1994-02-22 Kansai Paint Company, Limited Water-dispersible core-shell resin which exhibits excellent sagging resistance in coatings
DE3930141A1 (en) * 1989-09-09 1991-03-21 Bayer Ag NETWORKED PEARL POLYMERISATES AND THEIR PRODUCTION
SE465165B (en) * 1989-12-13 1991-08-05 Neste Oy COMPOSITIONABLE POLYMER COMPOSITION CONTAINING HYDROLYZERABLE SILANE GROUPS AND AN ACID ANHYDRIDE AS A CATALYST
JPH05261789A (en) * 1992-03-23 1993-10-12 Sumitomo Bakelite Co Ltd Production of extrusion molded piece of polyolefin resin
JPH05262934A (en) * 1992-03-23 1993-10-12 Sumitomo Bakelite Co Ltd Polyolefin resin composition
JPH05261786A (en) * 1992-03-23 1993-10-12 Sumitomo Bakelite Co Ltd Production of extrusion molded piece of polyolefin resin
SE502171C2 (en) * 1993-12-20 1995-09-04 Borealis Holding As Polyethylene compatible sulfonic acids as silane crosslinking catalysts
US5578690A (en) * 1995-04-28 1996-11-26 Northwestern University Silyl-terminated interpolymer of ethylene and method for preparing silyl-terminated polyolefins
SE504455C2 (en) 1995-07-10 1997-02-17 Borealis Polymers Oy Cable sheath composition, its use and methods for its manufacture
US6165387A (en) * 1997-02-04 2000-12-26 Borealis A/S Composition for electric cables
SE9703798D0 (en) 1997-10-20 1997-10-20 Borealis As Electric cable and a method of composition for the production thereof
SE513362C2 (en) 1997-11-18 2000-09-04 Borealis As Procedure for reducing reactor fouling
SE9802087D0 (en) 1998-06-12 1998-06-12 Borealis Polymers Oy An insulating composition for communication cables
SE9802386D0 (en) 1998-07-03 1998-07-03 Borealis As Composition for electric cables
SE9804407D0 (en) 1998-12-18 1998-12-18 Borealis Polymers Oy A multimodal polymer composition
DE10016518B4 (en) * 2000-04-03 2009-07-02 Maschinenfabrik Niehoff Gmbh & Co Kg Method and device for producing an insulated cable
JP4763878B2 (en) * 2000-06-06 2011-08-31 日東電工株式会社 Adhesive sheet for semiconductor wafer dicing
CN1520431A (en) * 2001-11-16 2004-08-11 ��Ļ���Ű˾ Copolymers of olefins and vinyl-and allysilanes
JP2006342284A (en) * 2005-06-10 2006-12-21 Nippon Polyethylene Kk Crosslinkable resin for fuel tank and molded article
WO2007071274A1 (en) * 2005-12-22 2007-06-28 Prysmian Cavi E Sistemi Energia S.R.L. Electric cable comprising a foamed polyolefine insulation and manufacturing process thereof
EP1834987B1 (en) * 2006-03-15 2015-08-12 Borealis Technology Oy Method for the production of a polypropylene composition with selective cross-linkable dispersed phase
EP2138538A1 (en) * 2008-06-27 2009-12-30 Borealis AG Polyolefin composition reinforced with a filler and pipe comprising the polyolefin composition
KR101329678B1 (en) 2009-06-22 2013-11-14 보레알리스 아게 Chlorine dioxide resistant polyethylene pipes, their preparation and use
EP3139417A1 (en) * 2015-09-03 2017-03-08 Borealis AG Polyethylene composition for a layer element of a photovoltaic module
KR20210049146A (en) * 2018-11-06 2021-05-04 보레알리스 아게 Silane crosslinkable foamable polyolefin composition and foam
US11840587B2 (en) 2019-02-13 2023-12-12 Dow Global Technologies Llc Moisture-curable polyolefin formulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225018A (en) * 1961-12-15 1965-12-21 Union Carbide Corp Heat curing of ethylene/vinylsilane copolymers
US3392156A (en) * 1964-07-10 1968-07-09 Nat Distillers Chem Corp Copolymers of ethylene and vinyl triethoxysilanes and mechanically worked products thereof
GB1372453A (en) * 1971-01-15 1974-10-30 Hoechst Ag Process for making fibrous material water-repellent
GB1415194A (en) * 1972-03-23 1975-11-26 Dow Corning Ltd Preparation of copolymers containing silicon
JPS51134884A (en) * 1975-05-19 1976-11-22 Furukawa Electric Co Ltd:The Manufacturing method of electric cable
JPS5380953A (en) * 1976-12-27 1978-07-17 Toshiba Corp A-d converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL256104A (en) * 1959-09-22
US3577399A (en) * 1968-09-23 1971-05-04 Monsanto Co Ethylene interpolymers
BE794718Q (en) * 1968-12-20 1973-05-16 Dow Corning Ltd OLEFINS CROSS-LINKING PROCESS
BE759417A (en) * 1969-11-26 1971-05-25 Union Carbide Corp ETHYLENE INTERPOLYMERS SHOWING IMPROVED SLIP AND ANTI-BLOCKING PROPERTIES.
GB1346588A (en) * 1970-10-14 1974-02-13 Dow Corning Ltd Cross linked polyolefin sheets and films and the preparation thereof
GB1408154A (en) * 1972-02-29 1975-10-01 Dow Corning Ltd Foamable ethylene polymer compositions
GB1406680A (en) * 1972-10-10 1975-09-17 Dow Corning Ltd Crosslinking process
JPS51109069A (en) * 1975-03-20 1976-09-27 Sekisui Chemical Co Ltd

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225018A (en) * 1961-12-15 1965-12-21 Union Carbide Corp Heat curing of ethylene/vinylsilane copolymers
US3392156A (en) * 1964-07-10 1968-07-09 Nat Distillers Chem Corp Copolymers of ethylene and vinyl triethoxysilanes and mechanically worked products thereof
GB1372453A (en) * 1971-01-15 1974-10-30 Hoechst Ag Process for making fibrous material water-repellent
GB1415194A (en) * 1972-03-23 1975-11-26 Dow Corning Ltd Preparation of copolymers containing silicon
JPS51134884A (en) * 1975-05-19 1976-11-22 Furukawa Electric Co Ltd:The Manufacturing method of electric cable
JPS5380953A (en) * 1976-12-27 1978-07-17 Toshiba Corp A-d converter

Also Published As

Publication number Publication date
DE2926830C2 (en) 1990-08-23
FR2430432A1 (en) 1980-02-01
JPS559611A (en) 1980-01-23
DE2926830A1 (en) 1980-01-17
DE2926830C3 (en) 1995-09-07
GB2028831B (en) 1982-12-01
FR2430432B1 (en) 1985-10-11
GB2028831A (en) 1980-03-12

Similar Documents

Publication Publication Date Title
JPS6223777B2 (en)
US4689369A (en) Silane-crosslinkable copolymer composition
JPS6114615B2 (en)
US4397981A (en) Ethylene polymer compositions that are flame retardant
US4446283A (en) Crosslinkable polyethylene resin composition
US3646155A (en) Cross-linking of a polyolefin with a silane
US4247667A (en) Method of crosslinking poly-α-olefin series resins
JPS621737A (en) Blend of polyolefin and reactive additive-containing polymer
JPH04220435A (en) Extrusion of low density polyethylene
JPH0593010A (en) Maleic-anhydride-modified ethylene polymer substantially uncross-linked and its production
JPH0311305B2 (en)
JPS61106667A (en) Crosslinkable thermoplastic polymer composition and its production
JPH04296341A (en) Resin composition
US4873042A (en) Process for extruding a thermoplastic copolymer
JPS6223977B2 (en)
JPS6223778B2 (en)
US4320214A (en) Method of making silane-modified ethylene-type resin
JPS6215580B2 (en)
JPS6232091B2 (en)
JPH05170938A (en) Cross-linked polyethylene resin film
JPS6223779B2 (en)
JP2885919B2 (en) Modified propylene ethylene copolymer and method for producing the same
WO1992005207A1 (en) Crosslinkable polymers
JPS6159339B2 (en)
JPS6225098B2 (en)