US3633271A - Semiconductor devices - Google Patents
Semiconductor devices Download PDFInfo
- Publication number
- US3633271A US3633271A US744660A US3633271DA US3633271A US 3633271 A US3633271 A US 3633271A US 744660 A US744660 A US 744660A US 3633271D A US3633271D A US 3633271DA US 3633271 A US3633271 A US 3633271A
- Authority
- US
- United States
- Prior art keywords
- zone
- layer
- emitter
- emitter zone
- gaps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 19
- 238000005488 sandblasting Methods 0.000 claims description 5
- 238000005275 alloying Methods 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910001245 Sb alloy Inorganic materials 0.000 description 2
- 239000002140 antimony alloy Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/904—Charge carrier lifetime control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/959—Mechanical polishing of wafer
Definitions
- a multijunction, multilayer semiconductor device is formed by alloying the surface of a body of semicon- SEMICONDUCTOR DEVICES ductor material with a material which contains an impurity 9Claims,3Drawing Figs. and includes gaps or perforations therein so that an emitter U 8 CI 29 590 zone is formed in the body which includes corresponding per- 24/576, rotations therein mm which project or extend portions of the l zone adjacent the emitter zone.
- SEMICONDUCTOR DEVICES This invention relates to multizone multijunction semiconductor devices and their method of manufacture.
- the present invention provides a method of manufacturing a multizone multijunction semiconductor device in which one of the zones constitutes an emitter zone having therein a perforation into which projects and in which lies a portion of a zone adjacent the emitter zone, which method includes the steps of alloying to a surface of a body of semiconductor material a layer of a first material including an impurity which forms in the emitter zone in the body, the surface of the body being abraded at least where said adjacent zone lies in the perforation in the emitter zone.
- the emitter zone has therein a plurality of such perforations, the surface of the body at least where said adjacent zone lies in each of the perforations of the emitter being abraded.
- the number of perforations may be in excess of 30 and may, conveniently, lie between 30 and 100.
- the perforations are uniformly distributed over the area of said surface of the body and the total area of the perforations may represent between 2.5 and 25 percent of the total area of the surface.
- the abrading may be carried out by sandblasting of said adjacent zone at least where it lies in the perforation(s) ofthe emitter zone.
- the perforation(s) in the emitter zone may be formed by the layer being a preperforated layer such that when the layer is alloyed to the body, the perforation(s) in the layer forms or form the corresponding perforation(s) in the emitter zone.
- the first material may be a gold/antimony alloy.
- an electrically conductive layer of a second material which layer makes ohmic contact with both said first-mentioned layer and said adjacent zone where it lies in the perforation(s) in the emitter zone so as to electrically interconnect said first-mentioned layer and said adjacent zone.
- the present invention also provides a multizone multijunction semiconductor device manufactured by the method described above in any one of the preceding paragraphs.
- FIGS. 1, 2 and 3 are cross-sectional views showing different stages in the production of a semiconductor device according to the invention.
- body 1 of silicon semiconductor material has formed therein two PN-junctions 2 and 3 extending parallel to two opposed faces 4 and 5 of the body.
- this layer 6 By the alloying of this layer 6 to the body, there is thus formed in the body the emitter zone 7 which has gaps or perforations 9 therein corresponding one to each of the gaps or perforations 8 in the original layer 6, into which each of which perforations 9 in the emitter zone there projects and therein lies a portion ofa zone 10 adjacent the emitter zone 7.
- the material ofthe layer 6 is a gold/antimony alloy.
- the surface of the portions of the adjacent zone 10 ex tending through the perforations 9 in the emitter zone are then sandblasted (as at l 1) using a fine powder.
- the remainder of the body of the silicon material is protected from receiving the deposited alloy by a wax coating.
- the layer of second material 12 thus ohmically contacts both the layer 6 of the first material and the surface of the portions of the adjacent zone 10 which lie in the perforations 8 in the emitter zone thus electrically to interconnect the emitter zone 7 with the adjacent zone 10.
- the protective wax coating is removed.
- this material is sintered in a hydrogen atmosphere at a temperature not exceeding 450 C.
- the number may be increased to such that, for the overall sizes above specified, the holes in the layer of the first material would then represent approximately 13 percent of the overall area of the layer.
- 48 holes each of 0.018-inch diameter have been used, this representing approximately 17 percent of the layer.
- 21 holes each of 0.0 l 8- inch diameter have been used which, like the specific example, represents approximately 7.5 percent of the overall area of the layer.
- Thirty-six holes, each of 0.018-inch diameter have also been used, this then representing approximately 13 percent of the overall area of the layer. It can be seen, therefore, that the area of the perforations in the layer may represent between 7.5 percent and 17 percent of the overall area of the layer.
- a method of manufacturing a multizone multijunction semiconductor device including the steps of providing a body of semiconductor material having at one face thereof a first zone of one conductivity type, alloying a layer of conductive material containing an impurity of opposite conductivity type to said face to form an emitter zone in the semiconductor body, the emitter zone so formed including at least one gap within the boundaries thereof which corresponds to a perforation in said layer and into which a portion of said first zone protrudes so as to present an exposed surface area surrounded by said emitter zone, and abrading said exposed surface area surrounded by said emitter zone so as to enhance recombination of carriers in said protruding area of said first zone.
- a method a claimed in claim 2, wherein the gaps are uniformly distributed over the area of said surface of the body.
- the at least one gap in the emitter zone is formed by the layer being a preperforated layer such that when the layer is alloyed to the body, the perforation in the layer forms the corresponding gap in the emitter zone.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thyristors (AREA)
- Electrodes Of Semiconductors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB33412/67A GB1172772A (en) | 1967-07-20 | 1967-07-20 | Semiconductor Devices. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3633271A true US3633271A (en) | 1972-01-11 |
Family
ID=10352623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US744660A Expired - Lifetime US3633271A (en) | 1967-07-20 | 1968-07-15 | Semiconductor devices |
Country Status (7)
Country | Link |
---|---|
US (1) | US3633271A (enrdf_load_stackoverflow) |
AT (1) | AT281121B (enrdf_load_stackoverflow) |
CH (1) | CH497047A (enrdf_load_stackoverflow) |
DE (1) | DE1764663B2 (enrdf_load_stackoverflow) |
FR (1) | FR1574472A (enrdf_load_stackoverflow) |
GB (1) | GB1172772A (enrdf_load_stackoverflow) |
NL (1) | NL6809885A (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964090A (en) * | 1971-12-24 | 1976-06-15 | Semikron Gesellschaft Fur Gleichrichterbau Und Elektronid M.B.H. | Semiconductor controlled rectifier |
US3982267A (en) * | 1974-04-16 | 1976-09-21 | Thomson-Csf | Pin diode with a thick intrinsic zone and a device comprising such a diode |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE759754A (fr) * | 1969-12-02 | 1971-05-17 | Licentia Gmbh | Thyristor avec emetteur court-circuite a l'une des faces principales aumoins du disque de thyristor et procede de production du thyristor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2973569A (en) * | 1953-06-26 | 1961-03-07 | Sylvania Electric Prod | Semiconductor assembly methods |
US3336160A (en) * | 1963-11-06 | 1967-08-15 | Gen Motors Corp | Method of making contacts on semiconductors |
US3366851A (en) * | 1963-11-16 | 1968-01-30 | Siemens Ag | Stabilized pnpn switch with rough area shorted junction |
-
1967
- 1967-07-20 GB GB33412/67A patent/GB1172772A/en not_active Expired
-
1968
- 1968-07-12 NL NL6809885A patent/NL6809885A/xx unknown
- 1968-07-13 DE DE1764663A patent/DE1764663B2/de not_active Withdrawn
- 1968-07-15 US US744660A patent/US3633271A/en not_active Expired - Lifetime
- 1968-07-17 FR FR1574472D patent/FR1574472A/fr not_active Expired
- 1968-07-19 AT AT699268A patent/AT281121B/de not_active IP Right Cessation
- 1968-07-19 CH CH1083268A patent/CH497047A/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2973569A (en) * | 1953-06-26 | 1961-03-07 | Sylvania Electric Prod | Semiconductor assembly methods |
US3336160A (en) * | 1963-11-06 | 1967-08-15 | Gen Motors Corp | Method of making contacts on semiconductors |
US3366851A (en) * | 1963-11-16 | 1968-01-30 | Siemens Ag | Stabilized pnpn switch with rough area shorted junction |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964090A (en) * | 1971-12-24 | 1976-06-15 | Semikron Gesellschaft Fur Gleichrichterbau Und Elektronid M.B.H. | Semiconductor controlled rectifier |
US3982267A (en) * | 1974-04-16 | 1976-09-21 | Thomson-Csf | Pin diode with a thick intrinsic zone and a device comprising such a diode |
Also Published As
Publication number | Publication date |
---|---|
DE1764663A1 (de) | 1971-10-07 |
NL6809885A (enrdf_load_stackoverflow) | 1969-01-22 |
CH497047A (de) | 1970-09-30 |
AT281121B (de) | 1970-05-11 |
FR1574472A (enrdf_load_stackoverflow) | 1969-07-11 |
GB1172772A (en) | 1969-12-03 |
DE1764663B2 (de) | 1978-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2875505A (en) | Semiconductor translating device | |
US3067485A (en) | Semiconductor diode | |
US3287612A (en) | Semiconductor contacts and protective coatings for planar devices | |
US3274454A (en) | Semiconductor multi-stack for regulating charging of current producing cells | |
US3350775A (en) | Process of making solar cells or the like | |
GB1070278A (en) | Method of producing a semiconductor integrated circuit element | |
US2929006A (en) | Junction transistor | |
US2980830A (en) | Junction transistor | |
US3046324A (en) | Alloyed photovoltaic cell and method of making the same | |
US3445735A (en) | High speed controlled rectifiers with deep level dopants | |
ES450758A1 (es) | Procedimiento para la fabricacion de dispositivos de memoriade semiconductores. | |
US2771382A (en) | Method of fabricating semiconductors for signal translating devices | |
US3535774A (en) | Method of fabricating semiconductor devices | |
US2766144A (en) | Photocell | |
US4063272A (en) | Semiconductor device and method of manufacture thereof | |
US3559006A (en) | Semiconductor device with an inclined inwardly extending groove | |
US2947924A (en) | Semiconductor devices and methods of making the same | |
US3633271A (en) | Semiconductor devices | |
US3852795A (en) | Josephson tunneling circuits with superconducting contacts | |
US2829075A (en) | Field controlled semiconductor devices and methods of making them | |
US3041508A (en) | Tunnel diode and method of its manufacture | |
US3343048A (en) | Four layer semiconductor switching devices having a shorted emitter and method of making the same | |
US3735210A (en) | Zener diode for monolithic integrated circuits | |
US3941625A (en) | Glass passivated gold diffused SCR pellet and method for making | |
US3013192A (en) | Semiconductor devices |