US3615915A - Method of densifying magnetically anisotropic powders - Google Patents
Method of densifying magnetically anisotropic powders Download PDFInfo
- Publication number
- US3615915A US3615915A US871893A US3615915DA US3615915A US 3615915 A US3615915 A US 3615915A US 871893 A US871893 A US 871893A US 3615915D A US3615915D A US 3615915DA US 3615915 A US3615915 A US 3615915A
- Authority
- US
- United States
- Prior art keywords
- densifying
- compression
- magnetically anisotropic
- powder
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title abstract description 22
- 238000000034 method Methods 0.000 title abstract description 13
- 230000005291 magnetic effect Effects 0.000 abstract description 8
- 230000006835 compression Effects 0.000 description 15
- 238000007906 compression Methods 0.000 description 15
- 230000005415 magnetization Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 6
- 230000002706 hydrostatic effect Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- HPYIMVBXZPJVBV-UHFFFAOYSA-N barium(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Ba+2] HPYIMVBXZPJVBV-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
Definitions
- the invention relates to a method of densifying magnetically anisotropic powders, for example, powders of ferromagnetic metals, metal alloys or ceramic materials into solid magnetic bodies, in which method a powdery mass is subjected to an external magnetic field which orientates the powder particles, said mass being densifted by compression.
- Such a densifying method has various disadvantages.
- the orientated powder is not densified homogeneously so that the relative orientation of the powder particles (alignment) is changed and hence the magnetization in the direction of magnetization is adversely affected.
- the powder mass is locally deformed to a great extent mainly due to friction along the wall. This has This unfavorable influence on the orientation of the particles and hence on the magnetization in the direction of magnetization.
- the present invention has for its object to obviate said dis advantage and to overcome the barrier to the increase in magnetization by an increased density obtained by compression.
- the method according to the invention is characterized in that the powdery mass is compressed by an isostatic pressure of at least kb., and that it is slightly deformed anisotropically plactically, the said isostatic pres sure being maintained.
- the invention furthermore relates to a permanent magnet manufactured of magnetically anisotropic powder by the method described above.
- the permanent magnet is characterized in that the density is at least 85 percent of the theoretic density and the magnetization in the direction of magnetization is at least 90 percent of the saturation magnetization.
- An advantageous permanent magnet embodying the invention is characterized in that the essential constituent of the powder is a compound of hexagonal structure, the existence range of which is integral with the existence range of the compound in the system M-R that is M 11, wherein M is Co or a combination of Co with one or more of the elements Fe, Ni and Cu and R designates one or more of the elements of the rare earth metals and/or Th and/or Y.
- Such powders are known from Dutch Pat. application No. 6,608,335 and are particularly suitable for providing in conjunction with the method according to the invention permanent magnets having very high (BH),,,,,, values.
- BH very high
- M is Co and R is Sm
- the energy product (BH),,,,,,, has a value of at least 14.10 Gauss Oersted.
- the energy product (BH of this magnet is considerably higher than that of the SmCo, magnets hitherto known. From the review "Journal of Applied Physics", Vol. 39, No. 3, 1968, pages l,7l9-l,720 is known, for example, an SmCo, magnet on which a (BH),,,,,,, value of 8. l X10 Gauss Oersted has been measured, whereas the present magnet attains values of 15x10 Gauss Oersted and higher.
- Magnetically anisotropic powder is put into a rubber bag and disposed in a magnetic field so that the powder particles are orientated. While the magnetic field is maintained, the powder is compressed until a coherent block of particles is obtained.
- the rubber bag with its contents is evacuated and sealed in an airtight manner.
- the block is then isostatically predensified (for example at a pressure of 8 kb.) and after the compression the rubber bag is removed.
- the isostatic predensificatio'n may be carried out by hydrostatic means.
- the block is then introduced in a container of ductile material.
- the container is sealed by a covering plate, which may be soldered to the container.
- the container is compressed at a high isostatic pressure of, for example, 20 kb. and while this high pressure is maintained it is slightly deformed anisotropically and plastically.
- This compression may be carried out hydrostatically in a press having, in addition, the means for performing said plastic deformation.
- a press may be constructed as is shown schematically in the F IGURE.
- Reference numeral 1 designates a compression vessel having a shoulder 2 on the inner side.
- the vessel has a space 3 filled with liquid.
- liquid In order to prevent the liquid from changing into the solid state at the high pressures of the order of 7 kb., petrol is used as a pressure transmitting medium. Other appropriate liquids may be chosen for this purpose.
- the space 3 is bounded on the lower side by a plunger 4, which is adapted to reciprocate in the compression vessel by means of a hydraulic worm 5, connected therewith, and on the upper side by a plunger 6, which is connected with a hydraulic worm 7 and is also adapted to reciprocate in the compression vessel.
- the hydraulic worms 5 and 7 can be driven independently of each other.
- the aforesaid, hermetically closed container 10 containing the block of magnetically orientated material In the space 3 between the shoulder 2 and the plunger 6 two loose dies 8 and 9 are provided between which is arranged the aforesaid, hermetically closed container 10 containing the block of magnetically orientated material.
- the container may be introduced into the vessel by removing the plunger 6.
- the assembly of the compression vessel, the dies and the hydraulic worms is arranged in a frame ll.
- the press operates as follows:
- each of the plungers 4 and 6 exert equal high pressures on the liquid in the space 3.
- the hydrostatic pressure is exerted on the container 10, which is thus compressed, the orientated powder contained therein being homogeneously densified.
- the pressure exerted by the plunger 6 is slightly raised, whereas the pressure exerted by the plunger 4 is kept constant.
- the assembly of plungers 4 and 6 and the liquid column thus move slowly downwards.
- the plunger 6 touches the die 8 and the container 10 is slightly deformed.
- an anisotropic plastic deformation is obtained. It has,'of course. to be ensured that liquid can always flow along the dies 8 and 9, for example, by providing holes therein.
- the pressure of the plungers is obviated and the container can be removed from the compression vessel and be opened.
- Powder of SmCo having an average particle size of less than pm. was orientated in a magnetic field of 30,000 Oersted and then hydrostatically predensified to 70 percent of the theoretic density.
- the resultant material was hermetically enclosed in a lead container then hydrostatically compressed and slightly deformed anisotropically and plastically in the manner described above.
- the hydrostatic pressure was 20 kb.
- the result was an SmCo, magnet having a density amounting to 93 percent of the theoretic density.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL6815510A NL6815510A (enrdf_load_stackoverflow) | 1968-10-31 | 1968-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3615915A true US3615915A (en) | 1971-10-26 |
Family
ID=19805046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US871893A Expired - Lifetime US3615915A (en) | 1968-10-31 | 1969-10-28 | Method of densifying magnetically anisotropic powders |
Country Status (15)
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4081297A (en) * | 1975-09-09 | 1978-03-28 | Bbc Brown Boveri & Company Limited | RE-Co-Fe-transition metal permanent magnet and method of making it |
US4104787A (en) * | 1977-03-21 | 1978-08-08 | General Motors Corporation | Forming curved wafer thin magnets from rare earth-cobalt alloy powders |
US4135953A (en) * | 1975-09-23 | 1979-01-23 | Bbc Brown, Boveri & Company, Limited | Permanent magnet and method of making it |
US4851058A (en) * | 1982-09-03 | 1989-07-25 | General Motors Corporation | High energy product rare earth-iron magnet alloys |
US4975411A (en) * | 1987-05-19 | 1990-12-04 | Fonar Corporation | Superconductors and methods of making same |
US4990493A (en) * | 1988-09-06 | 1991-02-05 | General Electric Company | Process of making an oriented polycrystal superconductor |
US6071357A (en) * | 1997-09-26 | 2000-06-06 | Guruswamy; Sivaraman | Magnetostrictive composites and process for manufacture by dynamic compaction |
US20050001345A1 (en) * | 2003-04-04 | 2005-01-06 | Frank Edward A. | Method and apparatus for applying a pattern to a molded surface during manufacture |
WO2013166687A1 (zh) * | 2012-05-10 | 2013-11-14 | 青岛云路新能源科技有限公司 | 磁粉芯的制造方法 |
CN106493361A (zh) * | 2016-11-09 | 2017-03-15 | 董中天 | 薄膜干袋磁场等静压机 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2110755A5 (enrdf_load_stackoverflow) * | 1970-10-29 | 1972-06-02 | Sermag | |
WO2010066251A1 (en) * | 2008-12-12 | 2010-06-17 | Sintex A/S | A permanent magnet rotor for a machine, a method for manufacturing a permanent magnet rotor and a manufacturing system |
-
1968
- 1968-10-31 NL NL6815510A patent/NL6815510A/xx unknown
-
1969
- 1969-10-28 JP JP44085793A patent/JPS501837B1/ja active Pending
- 1969-10-28 NO NO4266/69A patent/NO132450C/no unknown
- 1969-10-28 AT AT1015269A patent/AT298207B/de not_active IP Right Cessation
- 1969-10-28 GB GB52765/69A patent/GB1243379A/en not_active Expired
- 1969-10-28 FI FI693095A patent/FI50750C/fi active
- 1969-10-28 US US871893A patent/US3615915A/en not_active Expired - Lifetime
- 1969-10-28 SE SE14746/69A patent/SE361231B/xx unknown
- 1969-10-28 CH CH1603569A patent/CH537083A/de not_active IP Right Cessation
- 1969-10-28 SU SU1371967A patent/SU436516A3/ru active
- 1969-10-28 DK DK570269AA patent/DK121447B/da unknown
- 1969-10-29 ES ES372993A patent/ES372993A1/es not_active Expired
- 1969-10-29 BE BE740983D patent/BE740983A/xx unknown
- 1969-10-30 CA CA066243A patent/CA929082A/en not_active Expired
- 1969-10-30 FR FR6937308A patent/FR2022025A1/fr not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4081297A (en) * | 1975-09-09 | 1978-03-28 | Bbc Brown Boveri & Company Limited | RE-Co-Fe-transition metal permanent magnet and method of making it |
US4135953A (en) * | 1975-09-23 | 1979-01-23 | Bbc Brown, Boveri & Company, Limited | Permanent magnet and method of making it |
US4104787A (en) * | 1977-03-21 | 1978-08-08 | General Motors Corporation | Forming curved wafer thin magnets from rare earth-cobalt alloy powders |
US4851058A (en) * | 1982-09-03 | 1989-07-25 | General Motors Corporation | High energy product rare earth-iron magnet alloys |
US4975411A (en) * | 1987-05-19 | 1990-12-04 | Fonar Corporation | Superconductors and methods of making same |
US4990493A (en) * | 1988-09-06 | 1991-02-05 | General Electric Company | Process of making an oriented polycrystal superconductor |
US6071357A (en) * | 1997-09-26 | 2000-06-06 | Guruswamy; Sivaraman | Magnetostrictive composites and process for manufacture by dynamic compaction |
US20050001345A1 (en) * | 2003-04-04 | 2005-01-06 | Frank Edward A. | Method and apparatus for applying a pattern to a molded surface during manufacture |
WO2013166687A1 (zh) * | 2012-05-10 | 2013-11-14 | 青岛云路新能源科技有限公司 | 磁粉芯的制造方法 |
CN106493361A (zh) * | 2016-11-09 | 2017-03-15 | 董中天 | 薄膜干袋磁场等静压机 |
Also Published As
Publication number | Publication date |
---|---|
ES372993A1 (es) | 1972-03-01 |
CA929082A (en) | 1973-06-26 |
NO132450B (enrdf_load_stackoverflow) | 1975-08-04 |
NO132450C (enrdf_load_stackoverflow) | 1975-11-12 |
DE1952403A1 (de) | 1970-05-06 |
AT298207B (de) | 1972-04-25 |
NL6815510A (enrdf_load_stackoverflow) | 1970-05-04 |
BE740983A (enrdf_load_stackoverflow) | 1970-04-29 |
GB1243379A (en) | 1971-08-18 |
SU436516A3 (enrdf_load_stackoverflow) | 1974-07-15 |
DE1952403B2 (de) | 1977-03-03 |
CH537083A (de) | 1973-05-15 |
FI50750C (fi) | 1976-06-10 |
FR2022025A1 (enrdf_load_stackoverflow) | 1970-07-24 |
SE361231B (enrdf_load_stackoverflow) | 1973-10-22 |
JPS501837B1 (enrdf_load_stackoverflow) | 1975-01-21 |
FI50750B (enrdf_load_stackoverflow) | 1976-03-01 |
DK121447B (da) | 1971-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3615915A (en) | Method of densifying magnetically anisotropic powders | |
US4151435A (en) | Stator structure using forming curved wafer thin magnets from rare earth-cobalt alloy powders | |
US5672363A (en) | Production apparatus for making green compact | |
US3596350A (en) | Process for the production of permanent magnets from anisotropic permanent magnet powder | |
Sagawa et al. | Rubber isostatic pressing (RIP) of powders for magnets and other materials | |
US3821034A (en) | High-density high-energy anisotropically permanent magnet | |
US3655464A (en) | Process of preparing a liquid sintered cobalt-rare earth intermetallic product | |
JP3174448B2 (ja) | Fe−B−R系磁石材料の製造方法 | |
Chin et al. | Compaction and sintering behaviors of a Nd‐Fe‐B permanent magnet alloy | |
US3771221A (en) | Method and apparatus for producing fine-particle permanent magnets | |
GB1309958A (en) | Permanent magnetisable bodies | |
US4564400A (en) | Method of improving magnets | |
GB1399669A (en) | Method of consolidating metallic powder | |
Umebayashi et al. | Preparation of Samarium Cobalt Permanent Magnet by Compacting with Solid Pressure Media | |
JPH0318329B2 (enrdf_load_stackoverflow) | ||
US3682715A (en) | Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom | |
US3785881A (en) | Method of manufacturing a body having anisotropic permanent magnetic properties by grinding with fatty liquid | |
JPS6181607A (ja) | 希土類磁石の製造方法 | |
GB1313272A (en) | Manufacture of magnetic materials | |
Moosa et al. | The structure and magnetic properties of Nd Fe B magnets produced by conventional and hydrogen decrepitation routes | |
JPH07130566A (ja) | 永久磁石粉末の圧縮成形方法 | |
US3919002A (en) | Sintered cobalt-rare earth intermetallic product | |
JPH05308030A (ja) | 焼結磁石の残留磁気誘導を制御する方法および該方法により得られる製品 | |
JPH1174143A (ja) | 磁性粉末の成形方法 | |
Carriker | Intrinsic coercive force in (Pr, Sm) Co5 as a function of samarium content |