US3606990A - Process for washing laundry and detergent composition for working of this process - Google Patents

Process for washing laundry and detergent composition for working of this process Download PDF

Info

Publication number
US3606990A
US3606990A US11028A US3606990DA US3606990A US 3606990 A US3606990 A US 3606990A US 11028 A US11028 A US 11028A US 3606990D A US3606990D A US 3606990DA US 3606990 A US3606990 A US 3606990A
Authority
US
United States
Prior art keywords
inhibitor
process according
percent
bleaching agent
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11028A
Other languages
English (en)
Inventor
Michel Rene Roger Gobert
Gerard Mouret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Application granted granted Critical
Publication of US3606990A publication Critical patent/US3606990A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives

Definitions

  • PROCESS FOR WASHING LAUNDRY AND M ggggg g FOR WORKING OF ABSTRACT A process for bleaching and washing which comprises treating a stained cloth or the like with an aqueous 24 Claims, No Drawings solution containing a water-soluble peroxide bleaching agent [52] U.S.Cl. 8/111, said treatment being carried out in the presence of a com- 8/109, 252/95, 252/DIG. 12 pound capable of inhibiting enzyme-induced decomposition ⁇ 51] Int. D06l 3/02 ofsaid bleaching agent.
  • the present invention relates to an improved process for washing cloth and to bleaching of detergent compositions for carrying out this process.
  • percompound containing compositions which liberate hydrogen peroxide in solution i.e., compounds containing hydrogen peroxide or inorganic perhydrates, which, when dissolved, liberate the hydrogen peroxide enclosed in their crystal lattice (e.g., certain perborates, perphosphates) for domestic or industrial laundering is well known.
  • crystal lattice e.g., certain perborates, perphosphates
  • detergent compositions in which sodium perborate frequently comprises between 1 and 35 percent of the total composition are, for example, detergent compositions in which sodium perborate frequently comprises between 1 and 35 percent of the total composition.
  • Hydrogen peroxide and the precursors which liberate it in solution are good oxidizing agents for removing certain stains from cloth, especially stains caused by wine, tea, coffee, cocoa, fruits, etc.
  • Hydrogen peroxide and its precursors have been found in general to bleach quickly and most effectively only at a relatively high temperature, e.g., about 80 C. to 100 C.
  • a relatively high temperature e.g., about 80 C. to 100 C.
  • gaseous oxygen which is not involved in oxidation of dyed goods, needlessly consumes a sizable amount hydrogen peroxide or precursors liberating it, both of which are expensive products.
  • the various stains in cloth and the like greatly accelerates decomposition of hydrogen peroxide into gaseous oxygen during washing at ordinary temperature.
  • washing cloth in general, washing cloth, either in a machine, by hand, or in broiler or tubs, is accomplished by dissolving a bleaching or detergent composition (containing perborate, for example) in cold or lukewarm water, adding to the solution thus formed the soiled cloth (from which some of the strains have often already been removed by soaking or previous washing) and heating, often just to boiling.
  • a bleaching or detergent composition containing perborate, for example
  • a primary object of the present invention resides in the provision of bleaching and detergent compositions and processing therewith wherein the foregoing and related disadvantages are eliminated or at least mitigated to a substantial extent.
  • Another object of the present invention resides in the provision of an improved washing process wherein problems associated with useless decomposition of peroxide bleaching agent e.g. perborate or hydrogen peroxide (in any form) into gaseous oxygen are substantially eliminated.
  • peroxide bleaching agent e.g. perborate or hydrogen peroxide (in any form) into gaseous oxygen are substantially eliminated.
  • Yet another object of the present invention resides in the provision of bleaching and detergent compositions specifically adapted foruse in-carrying out said process.
  • a further object of the present invention resides in the provision of a process having exceptional bleach efficiency and wherein substantially all the oxidizing action of the bleaching agent is rendered available for useful purposes thereby permitting material reductions in the amount of bleaching agent needed (up to three times) or alternatively greatly increasing the effectiveness of an equal amount of material.
  • a still further object of the present invention resides in the provision of bleaching and detergent compositions for carrying out the foregoing process.
  • lnhibitor compounds which may be effectively employed in the practice of the present invention encompass a relatively wide range of materials of diverse chemical nomenclature.
  • Special representatives include, without necessary limitation, hydroxylamine salts like the neutral sulfate, hydrochloride, etc., hydrazine and phenylhydrazine and their salts, e.g. sulfates; substituted phenols and polyphenols, including monoand polysubstituted, the substituents including at least one NH SO NH Cl, BR, NO alkyl, etc., for example, aminophenols like o-amin0-p-chloro-phenol, the compounds described in The Japanese Journal of Tuberculosis Vol. 4, Mar. 1956 No.
  • inhibitors permits the exploitation of the beneficial effects characterizing each of a plurality of such compounds and thus comprises a particularly effective mode of proceeding. Accordingly, the term inhibitor as used herein is to be accorded a significance consistent with the foregoing.
  • inhibitors may be contacted with the stained cloth, during a soaking or prewashing stage prior to contact with the peroxide bleaching agent or, alternatively, during the washing step simultaneous to contact with such bleaching agent. They may also be added directly to the bath as an individual component or more preferably, incorporated in a detergent composition further containing a detergent of conventional type, the latter procedure being preferred when the composition is added during the soaking step.
  • the inhibitor may be included a component of a composition further containing peroxide bleaching agent, and particularly in those instances wherein the composition is contemplated for use, i.e., is to be added, during the washing step. In the latter case, the composition may also contain one or more water soluble, organic detergent compounds if desired.
  • compositions provided in accordance with the present invention may comprise simply a mixture of inhibitor and detergent, compositions so constituted being particularly adapted foruse in connection with soaking operations; a further embodiment pertains to compositions containing as essential ingredients, inhibitor and peroxide bleaching agent and, optionally, detergent, such compositions being particularly effective for use during the washing operation or cycle.
  • compositions of the present invention may be defined as containing as essential ingredients on a weight basis, (I) from about 0.1 to about 15 percent of an inhibitor cornpound capable of inhibiting or retarding enzyme-induced decomposition of peroxide bleaching agent and (II) a sub stance selected from the group consisting of (a) from about 2 to about 85 percent of a water soluble peroxide bleaching agent, (b) from about 5.0 percent to about 99 percent of a water soluble organic detergent and (c) mixtures of (a) and (b) with the provision that, in the case of mixtures, at least about 10 percent and about 10 percent respectively of bleaching agent and detergent be present.
  • the peroxide bleaching agents prescribed for use in the instant invention are preferably those of the water soluble inorganic type including, for example, alkali metal perborates such as sodium perborate monohydrate and/or tetrahydrate; alkali metal perphosphates such as sodium and potassium perphosphate; alkali metal persilicates such as sodium and potassium persilicate; alkali metal percarbonate such as sodium and potassium percarbonate; peroxides such as sodium peroxide, hydrogen peroxide, etc. including mixtures of two or more of the foregoing.
  • the peroxide bleaching agent is employed in amounts ranging from about 2 percent to about 90 percent by weight of total composition with a range of 5 percent to 20 percent being preferred.
  • the water soluble organic detergents or surface active agents, i.e., surfactants" suitable for use in the practice of the present invention may be selected from a wide range of materials including the nonionics, anionics, cationics, amphoterics, zwitterionics, etc. None critical resides in the selection of such detergent component provided of course the material selected exhibit the degree of detergency desired and water solubility.
  • Suitable anionic surface active agents include those detergent compounds which contain an organic hydrophobic group as well as an anionic solubilizing group.
  • anionic solubilizing groups include sulfonate, sulfate, carboxylate, phosphonate, and phosphate.
  • Suitable anionic detergents falling within the scope of the invention include the soaps e.g., the water-soluble salts of higher fatty acids or resin acids the latter being derived from for example, fats, oils and waxes of animal, vegetable or marine origin e.g., the sodium soaps of tallow, grease, coconut oil, tall oil, as well as mixtures comprising two or more of the foregoing; the sulfated and sulfonated synthetic detergents, particularly those having from 8 to 26 carbon atoms and preferably from 12 to 22 carbon atoms per molecule.
  • the soaps e.g., the water-soluble salts of higher fatty acids or resin acids the latter being derived from for example, fats, oils and waxes of animal, vegetable or marine origin e.g., the sodium soaps of tallow, grease, coconut oil, tall oil, as well as mixtures comprising two or more of the foregoing
  • the sulfated and sulfonated synthetic detergents particularly those having from 8 to
  • suitable synthetic anionic detergents there may be mentioned the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to l6 carbon atoms in the alkyl group, the: latter being either straight or branch chain e.g., the sodium salts of decyl,
  • undecyl dodecyl (lauryl) tridecyl, tetradecyl, pentadecyl, hexadecyl, benzine sulfonates; aromatic tallow (ethenoxy) ether sulfonates, alkyl naphthalene sulfonate, ammonium diamyl naphthalene sulfonate, and sodium dinonyl napthalene sulfonate.
  • anionic detergents include the olefin sulfonates, include the olefin sulfonates, including long-chain alkene sulfonates, long-chain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxyalkane sulfonates.
  • the olefin sulfonate detergents may be prepared in known manner as by the reaction of S0 with long-chain olefins the latter having from 8 to 25 and preferably 12 to 21 carbon atoms such olefins corresponding to the following formula.
  • RCH CHR
  • R is alkyl and R is alkyl or hydrogen, to produce a mixture of sultones and alkanesulfonic acids. The latter mixture is then suitably treated to convert the sultones to sulfonates.
  • sulfate or sulfonate detergents include paraffin sulfonates e.g., the reaction products of alpha olefins and bisulfites, e.g., sodium bisulfite, such as primary paraffin sulfonates of about 10 to 20 and preferably 15 to carbon atoms; sulfates of higher alcohols; salts of alpha-sulfofatty esters e.g., of about 10 to 20 carbon atoms such as methyl, alpha-sulfomyrestate of alpha-sulfotallowate.
  • sulfates of higher alcohols include without necessary limitation sodium lauryl sulfate, sodium tallow alcohol sulfate etc.
  • alkyl poly (ethnoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and lauryl alcohol (usually having from one to five ethenoxy groups per molecule); lauryl or other higher alkyl glyceryl ether sulfonates of the condensation products of ethylene oxide and nonyl
  • Suitable anionic detergents additionally include the acyl sarcosinates (e.g., sodium lauroylsarcosinate) the acyl esters (e.g., oleic acid esters) of isothionates and the acyl N-methyl taurides (e.g., potassium N-methyl lauryl or oleyl tauride.
  • acyl sarcosinates e.g., sodium lauroylsarcosinate
  • the acyl esters e.g., oleic acid esters
  • the acyl N-methyl taurides e.g., potassium N-methyl lauryl or oleyl tauride.
  • the most highly preferred water-soluble anionic detergent compounds comprise the ammonium and substituted ammonium e.g., the monodiand triethanol amine), alkali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium), salts of the higher alkyl benzene sulfonates, olefin sulfonates, the higher alkyl sulfates and the higher fatty acid monoglyceride sulfates.
  • the detergent salt compound selected in a particular instance will depend, inter alia upon the nature of the formulation being prepared as well as the relative proportions of ingredients.
  • Nonionic surface-active agents suitable for use herein include those compounds containing both an organic hydrophobic moiety and a hydrophillic group which is a reaction product of a solubilizing group such as carboxylate, hydroxyl, amide or amino with ethylene oxide or with the polyhydration product thereof, polyethylene glycol etc.
  • nonionic detergent compounds suitable for use include the condensation products of alkyl phenol with ethylene oxide e.g., the reaction product of isooctyl phenol with about six to 30 ethylene oxide units; condensation products of alkyl thiophenols with 10 to 15 ethylene oxide units; condensation products of higher fatty alcohols such as tridecyl alcohol with ethylene oxide; ethylene oxide addends of monoesters of hexahydric alcohols and inner ethers thereof such as sorbitan monolsurate sorbitol monooleated mannitan monopalmitate and the condensation products of polypropylene glycol with ethylene oxide.
  • Cationic surface active agents may also be employed; these compounds characteristically comprise surface active detergent compounds which contain an organic hydrophobic group and a cationic solubility group.
  • Typical cationic solubilizing group include amine and quaternary groups.
  • diamides such as those corresponding to the following structural formula:
  • R represents an alkyl group of about 12 to 22 carbon atoms e.g., N-Zaminoethyl stearyl amine N-2-aminoethylmyristly amine; amido-linked amines such as those corresponding to the following structural formula:
  • RCONHC H NH wherein R represents alkyl of about 9-20 carbon atoms e.g., N-2-aminoethyl-stearyl amide and N-aminoethylmyristyl amide; quaternary ammonium compounds wherein typically one of the groups bonded to the nitrogen atoms is an alkyl group of about 12 to 18 carbon atoms and the other alkyl substituents contain from 1 to 3 carbon atoms which may contain further substituent group of an inert nature such as phenyl and there is present an anion such as halogen, acetate, methosulfate etc.
  • Specific representatives of the aforedescribed class of compound include without necessary limitation ethyl-dimethyl-stearyl ammonium chloride, tetradecyl ammonium chloride trimethyl-stearyl-ammonium chloride, trimethyl-cetyl ammonium bromide, dimethyl-ethyl dilauryl ammonium chloride, dimethyl-propyl-myristyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride as well as the corresponding methosulfates and acetates.
  • Amphoteric detergents may likewise be employed to advantage in the composition described herein i.e., detergent materials containing both an anionic and a cationic group as well as hydrophobic organic group which is advantageously a higher aliphatic radical e.g., containing from to carbon atoms.
  • Specific representatives include the N-long-chain alkyl aminocarboxylic acids which, for convenience, may be represented according to the following structural formula:
  • N-long-chain alkyl imino-dicarboxulic acids which may be represented according to the following structural formula:
  • R represents a long-chain alkyl group of about 10 to 20 carbon atoms
  • R represents a divalent radical joining the amino and carboxyl portions of an amino acid e.g., an alkylene radical of l to 4 carbon atoms
  • M represents hydrogen or a salt-forming metal
  • R represents hydrogen or another monovalent substituent, e.g., methyl or other lower alkyl containing from 1 to 4 carbon atoms
  • R and R 4 represent monovalent substituents joined to the nitrogen by carbon-tonitrogen bonds e.g., methyl or other lower alkyl substituent.
  • amphoteric detergents include the N- alkyl-beta-amine propionic acid, N-alkyl-beta imino dipropionic acid and N-alkyl N, N-dimethyl glycine; the alkyl group may be for example that derived from coco fatty alcohol, lauryl alcohol; myristyl alcohol or alternatively a laurylmyristyl mixture, hydrogenated tallow alcohol, cetyl, stearyl, or blends of such alcohols.
  • the substituted aminopropionic and iminodipropionic acids are often provided in the form of the sodium or other salt forms which may likewise be employed in the practice of the present invention.
  • amphoteric detergents examples include the fatty imidazolines such as those prepared by reacting a long-chain fatty acid containing from about ID to 20 carbon atoms with diethylene triamine and mono-halo-carboxylic acid having 2 to 6 carbon atoms e.g., l-coco-5-hydroxyethyl-5-carboxy-methylimidazoline, betaines containing a sulfonic group instead of the carboxylic groups; betaines in which the long-chain substituent is joined to the carboxyl group without an intervening nitrogen atom, e.g., inner salts of 2-trimethylamino fatty acids such as 2- trimethylaminolauric acid as well as compounds of the aforementioned type in which the introged atom is replaced by phosphorous.
  • fatty imidazolines such as those prepared by reacting a long-chain fatty acid containing from about ID to 20 carbon atoms with diethylene triamine and mono-halo-carboxylic acid having 2 to 6 carbon
  • Detergents of the type enumerated hereinbefore may be employed in the compositions described herein in amounts varying over a relatively wide range; in any event, the particular quantity selected is not especially critical depending primarily upon the requirements of the formulator i.e., the nature of the detergent problem likely to be encountered in practice having reference to the use contemplated. Thus, where low-foaming characteristics are desired, the nonionics prove particularly effective; alternatively, the cationics prove beneficial in application requiring effective germ-killing capabilities since detergents of this type, in many instances, possess a high order of bacteriostatic activity.
  • detergent or surfactant quantities in amounts ranging from about 2 percent to about 5 percent by weight are eminently suitable with a range of 2 percent to 20 percent being particularly preferred. It will be understood that unusual circumstances may well dictate departures from the aforedescribed ranges. The present invention, of course, contemplates such developments and accordingly should be so construed.
  • compositions described herein may additionally contain one or more water-soluble builder salts; included in this group are the inorganic and organic; basic and neutral water soluble salts.
  • the builder salt is employed in amounts ranging of from about 3 percent to about 70 percent by weight of the composition being preferred. Suitable builders include without necessary limitation,
  • Trisodium phosphate Tetrasodium pyrophosphate Sodium acid pyrophosphate Sodium monobasic phosphate Sodium dibasic phosphate Sodium hexameta phosphate Sodium silicates, SiO /NA O of ill to 3.2/1
  • organic builders salts of organic acids and, in particular, the water soluble salts of aminopolycarboxylic acids include the alkali metal salts such as sodium, potassium and lithium; ammonium and substituted ammonium salts such as methylammonium, diethanolammonium and triethanolammonium; and amine salts such as monodiand triethanolamine methylamine, octylamine diethylenatriamine, triethylenetetramine and ethylediamine are efficacious.
  • the acid portion of the salt can be derived from acids such as nitrilodiacetic; N-(2-hydroxyethyl) nitrilodiacetic acid, nitrilotriacetic acid (NTA), ethylene-diamine tetracetic acid, (EDTA); N-(2-hydroxyethyl) ethylene diamine triacetic acid; 2-hydroxyethyl iminodiacetic acid; l,2-diaminocyclohex' anediacetic acid; diethylenetriamine penta-acetic acid and the like.
  • the builder salt is preferably employed in amounts sufficient to yield a pH in water of from 8 to ll and preferably from 9 to 10.5.
  • water-soluble, alkali metal pyrophosphate builder salts are particularly preferred for use herein. These salts form water-soluble complexes with calcium and magnesium ions found in hard water and thereby prevent the formation of water-soluble salts which would otherwise tend to deposit upon textiles during the wash cycle. Moreover, such phosphates enhance the detersive efficiency of non-anionic detergents and aid in controlling sudsing, while keeping soil suspended in the washing both after its removal from the soiled textiles. It will likewise be understood that mixtures comprising two or more of the aforementioned builder salts may be employed depending, as stated, on the particular requirements of the formulator.
  • compositions advantageously contain a hydrophobic colloidal cellulosic soilsuspending agent of a type which is soluble or dispersible in water.
  • a hydrophobic colloidal cellulosic soilsuspending agent of a type which is soluble or dispersible in water.
  • the conjoint use of the cellulosic compound and polyvinyl alcohol is found to be particularly effective as regards soil-suspension properties during the washing of a wide variety of fabrics including both cotton and synthetic fibers such as cotton, dacron, and resin-treated cottons.
  • the soilsuspending agent can be employed in amounts ranging from O to 3 percent by weight of the composition solids with a range of 0.1 to 2 percent being particularly preferred.
  • Cellulosic compounds found to be particularly suitable in this regard comprise the alkali metal salts of a carboxy lower alkyl cellulose having up to 3 carbon atoms in the alkyl group such as the sodium and potassium salts of carboxymethylcellulose.
  • Suitable salts are sodium carboxyethylcellulose; the cellulose sulfates and lower alkyl and hydroxyalkylcellulose ethers such as methyl-ethyl, ethyl, and hydroxyethylcellulose. It should also be pointed out that little in the way of criticality attends the selection of builder salt concentration and thus, those ranges conventionally recommended for relationships of the aforedescribed type are eminently suitable.
  • the desired pH level may be readily achieved by the addition of suitable buffering agents to the composition, such agents being provided either as a solution, dry powder, granules, flakes, etc.
  • suitable buffering agents such agents being provided either as a solution, dry powder, granules, flakes, etc.
  • the bleaching compositions of the present invention may be employed to optimum advantage at relatively high pH values thereby permitting the conjoint use of common household laundry soaps as well as detergents specifically designed for preventive bleaching of fibrous materials.
  • ingredients of an optional nature include, for example, optical bluing agents, anticorrosive products, perfumes, dyes and the like.
  • the amount of inhibitor required in implementing the processing described herein should correspond to effective quantities, the quoted term being used in its conventional sense to connote quantities sufficient to inhibit to a substantial extent, enzyme induced decomposition of peroxide bleaching agent. in any event, the addition of inhibitor in amounts sufficient to yield a concentration of at least about 0.005 up to about 0.05 g./liter and higher, e.g., 1.0 g./liter of soaking or washing medium is found to be eminently suitable for the vast majority of laundering problems likely to be encountered in practice.
  • the inhibitor is present in amounts of about 0.1 to about 10 percent by weight of total composition with a range of 0.1 to percent being preferred.
  • concentrations will depend, for example, on the type of inhibitor employed.
  • concentration of peroxide bleaching agent in the aqueous washing medium should fall within the range of about 0.2 to about 3 g./liter; effective quantities of detergent in the soaking or washing medium range from about 0.5 to about g./liter.
  • hydroxylamine salts such as hydroxylamine sulfate
  • such compound is preferably employed in amounts ranging from about 0.5 percent to about 2 percent by weight of total composition.
  • the broad ranges recommended represent a locus of values found to assure the realization of efficacious practice.
  • Soaking and washing steps in the presence of the inhibitor composition are carried out in the usual way and preferably under the usual temperature conditions (about 80 C. to 100 C. for example) preferably for the usual time, typically onehalf hour.
  • Certain enzyme inhibitors may in some instances be found to be somewhat toxic to or exhibit suboptimum compatibility with hydrogen peroxide. It is preferable to use such inhibitors in the process of the invention by adding them at the soaking or prewashing step of the process prior to contact with the peroxide bleaching agent. Such inhibitors are more effectively provided as a component of detergent compositions which omit peroxide bleaching agent.
  • reducing agents like formaldehyde; strong oxidizers like alkali metal hypochlorites, alkali metal salts of chlorocyanuric acids, potassium salts of monopersulfuric acid, etc.; acid solutions which lower the pH of the bath below 4; basic solutions which raise the pH of the bath above 12; heavy metal salts e.g., mercuric salts, like mercuric chloride; certain solvents like acetone, etc., which precipitate proteins.
  • strong oxidizers like alkali metal hypochlorites, alkali metal salts of chlorocyanuric acids, potassium salts of monopersulfuric acid, etc.
  • acid solutions which lower the pH of the bath below 4
  • basic solutions which raise the pH of the bath above 12
  • heavy metal salts e.g., mercuric salts, like mercuric chloride
  • certain solvents like acetone, etc., which precipitate proteins.
  • the amounts employed for this particular embodiment may also vary according to the inhibitor used; in any event, concentrations on the order of about 0.1 to about 1 g. of inhibitor per liter of soaking bath are admirably suitable.
  • processing employing the aforedescribed inhibitors is preferably carried out in two steps: a preliminary soaking step with said inhibitor, with or without detergent composition, and a washing step in the presence of peroxide bleach and/or detergent.
  • EXAMPLE 1 This example illustrates the rate of sodium perborate decomposition when the goods are soaked by conventional methods.
  • EXAMPLE 2 Two loads of soiled cloth, as identical as possible, are prepared and soaked overnight at ordinary temperature in a 5- g./liter solution of sodium dodecylbenzene/sulfonate without bleaching agent but 2 cm. per liter of a commercial 13 percent solution of sodium hypochlorite is added to one of the loads. A sodium dodecylbenzene sulfonate detergent composition containing 10 percent sodium perborate is then added and the washing of the soiled cloth continued at C.
  • the decomposition of perborate is measured after soaking as described in example 1.
  • Example 2 The same results as those obtained in Example 2 indicate the advantage of soaking with potassium dichlorocyanurate.
  • EXAMPLE 4 Similar tests are performed, adding potassium monopersulfate to one of the soaking baths so that the concentration in the soaking bath is 1 g./liter.
  • Example 2 show the advantage of soaking with potassium monopersulfate over the control experiment.
  • Example 5 The process in Example 4 is repeated replacing potassium monopersulfate with a 30 percent solution of formaldehyde. The same advantageous results are obtained.
  • EXAMPLEo EXAMPLE 7 Two loads of soaked cloth, as identical as possible, are prepared and soaked overnight in a -g./liter sodium dodecyl benzene sulfonate solution without peroxide bleaching agent. One load of cloth is washed with the following type of detergent composition;
  • composition B is used, which differs from composition A of Example 7 in that it contains 15 percent perborate instead of 10 percent.
  • composition B 1% hydroxylamine hydrochloride 7.8 4 7 12 tests; Composition B 4 0 Composition A 1% h d oxylamine Hydrochloride 9 6 Similarly. after 12 washings. composition A 1% hydroxylamine hydrochloride appeared greatly supenor to composition B.
  • composition B is compared with composition C (identical to composition A but with only 5% perborate) 1% hydroxylamine hydrochloride.
  • Composition B 3.7 Composition 1% hydroxylamine hydrochloride
  • Composition D Composition D 1 2% hydroxylamine sulfate (a) and (b) have the same means as in Example 8.
  • composition D After visual examination of the cloth, it is found that the composition with 1.2 percent hydroxylamine sulfate is significantly superior to composition D.
  • composition D The amount of perborate in composition D is reduced. as in example 8, and it is observed that a composition containing 5 percent perborate and 1.2 percent hydroxylamine sulfate again gives better results than composition D. 3 1 increase in brilliancy compared with 1.8 for composition D, thereby indicating that when hydroxylamine sulfate is employed as the enzyme inhibitor it is possible to reduce the amount of perborate and still obtain more effective bleaching.
  • EXAMPLE 10 A test identical to the one from example 7 is made. Composition A (from example 7) is compared with composition A 4 percent hydrazine hydrochloride and the decomposition of perborate is measured as before described "9 perborate decomposed after 5 minutes Composition A 98% Composition A 4% hydrazine 23% hydrochloride EXAMPLE 1 l The procedure of the preceding example is repeated replacing the hydrochloride by hydrazine sulfate. The same result is obtained.
  • EXAMPLE i2 Soiled cloth is soaked, at ordinary temperature, in a detergent solution containing eg. 5 g. of composition A from example 7 per liter of water, and decomposition of perborate after varying contact times determined by a colorimetric estimation of hydrogen peroxide.
  • the sodium perborate is employed in the form of the tetrahydrate. Particularly effective results are likewise found to obtain with the use ofsodium perborate monohydrate.
  • any of the conventional water-soluble, inorganic peroxide bleaching agents may be employed to similar advantage including the persilicates, perphosphates, pcrcarbonates, hydrogen peroxide and the like, the beneficial effects attributable to the inhibitor being manifestly evident with respect to any of such materials.
  • a process of bleaching and washing stained cloth having enzyme-containing stain, said enzyme being capable of decomposing water-soluble inorganic peroxide bleaching agent which comprises treating said cloth with an aqueous solution of from about 0.1 percent to about 15 percent by weight of an inhibitor compound capable of inhibiting enzyme-induced decomposition of said water soluble inorganic peroxide bleaching agent and a substance selected from the group consisting of (a) from about 2 percent to about 85 percent of said water soluble inorganic peroxide bleaching agent, (b) from about percent to about 99 percent ofa water soluble organic detergent and (c) mixtures of(a) and (b) with the proviso that in the case of mixtures of (a) and (b), at least about 10 percent by weight of each of said water soluble inorganic peroxide bleaching agent and said organic detergent are present; and with the further proviso that when only said organic detergent (b) is employed.
  • said stained cloth is thereafter treated with a composition containing from about 2 to about percent by weight of said water soluble inorganic peroxide bleaching agent: said inhibitor compound being selected from the group consisting of (A) hydroxylamine hydrochloride, hydroxylamine sulfate. hydrazine hydrochloride, 2,4-dinitrophenol-hydrazine, p-chlorophenol, 4-chloro-2-aminophenol, o-cresol, p-chloro-m-cresol, 2,4- dichlorophenol, resorcinol.
  • A hydroxylamine hydrochloride, hydroxylamine sulfate.
  • hydrazine hydrochloride 2,4-dinitrophenol-hydrazine
  • p-chlorophenol 4-chloro-2-aminophenol
  • o-cresol p-chloro-m-cresol
  • 2,4- dichlorophenol 2,4- dichlorophenol
  • bleaching agent is sodium perborate tetrahydratev 3.
  • bleaching agent is sodium perborate monohydrate.
  • a process according to claim 1 wherein said inhibitor is selected from the group consisting of hydroxylamine hydrochloride, hydroxylamine sulfate, hydrazine hydrochloride. 2,4-dinitrophenolhydrazirie, p-chlorophenol, 4-chloro-2-aminophenol, o-cresol, p-chloro-m-cresol, 2,4- dichlorophenol, resorcinol, pyrocatechol, pyrogallol, betanaphthol, 2,7-dihydroxynaphthalene, hydroquinone, hydroquinone sulfate, 1,2-naphthoquinone, l,2-cyclohexanediol, aminotriazole, sodium chlorate and sodium nitride.
  • inhibitor is selected from the group consisting of formaldehyde, sodium hypochlorite, potassium salt chlorocyanuric acid and potassium salt of monopersulfuric acid,
  • a process according to claim 6 wherein said inhibitor is sodium nitride.
  • a process according to claim 6 wherein said inhibitor is 4-chloro-2-aminophenol.
  • a process according to claim 6 wherein said inhibitor is present in said substance (a) or (c)v 17.
  • a process according to claim 7 wherein said inhibitor is sodium hypochlorite.
  • a bleaching composition consisting essentially of on a weight basis (I) from about Oil percent to about 15 percent of hydroxylamine salt as inhibitor compound capable of inhibiting enzyme-induced decomposition of water soluble inorganic peroxide bleaching agent and (ll) a substance selected from the group consisting of (a) from about 2 percent to about 85 percent of a water soluble inorganic peroxide bleaching agent, (b) from about 5 percent to about 99 percent of a water soluble organic detergent and (c) mixtures of (a) and (b) with the provision that in the case of mixtures of (a) and (b), at least about percent being each of bleaching agent and detergent.
  • composition according to claim 21 wherein said substance is selected from the group consisting of from about 2 24.
  • a composition according to claim 21 wherein said bleaching agent is sodium perborate monohydrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
US11028A 1970-02-12 1970-02-12 Process for washing laundry and detergent composition for working of this process Expired - Lifetime US3606990A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1102870A 1970-02-12 1970-02-12

Publications (1)

Publication Number Publication Date
US3606990A true US3606990A (en) 1971-09-21

Family

ID=21748544

Family Applications (1)

Application Number Title Priority Date Filing Date
US11028A Expired - Lifetime US3606990A (en) 1970-02-12 1970-02-12 Process for washing laundry and detergent composition for working of this process

Country Status (4)

Country Link
US (1) US3606990A (index.php)
FR (1) FR2080980B2 (index.php)
IT (1) IT943095B (index.php)
ZA (1) ZA705841B (index.php)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225299A (ja) * 1985-03-29 1986-10-07 コルゲート・パーモリブ・カンパニー 液体洗濯用洗剤一漂白剤組成物およびその使用方法
US4786431A (en) * 1984-12-31 1988-11-22 Colgate-Palmolive Company Liquid laundry detergent-bleach composition and method of use
US5491981A (en) * 1993-09-15 1996-02-20 Samsung Electronics Co., Ltd. Refrigeration cycle having an evaporator for evaporating residual liquid refrigerant
US5562739A (en) * 1994-06-01 1996-10-08 Courtaulds Fibres (Holdings) Limited Lyocell fiber treatment method
US5635465A (en) * 1994-03-18 1997-06-03 Nippon Paint Co., Ltd. Alkaline degreasing solution
US5663133A (en) * 1995-11-06 1997-09-02 The Procter & Gamble Company Process for making automatic dishwashing composition containing diacyl peroxide
US5710115A (en) * 1994-12-09 1998-01-20 The Procter & Gamble Company Automatic dishwashing composition containing particles of diacyl peroxides
US5759210A (en) * 1994-05-03 1998-06-02 Courtaulds Fibres (Holdings) Limited Lyocell fabric treatment to reduce fibrillation tendency
US5763378A (en) * 1995-04-17 1998-06-09 The Procter & Gamble Company Preparation of composite particulates containing diacyl peroxide for use in dishwashing detergent compositions
US5779737A (en) * 1994-04-15 1998-07-14 Courtaulds Fibres Holdings Limited Fibre treatment
US5885412A (en) * 1993-12-23 1999-03-23 Bim Kemi Ab Inhibition of hydrogen peroxide decomposing enzymes during bleaching of cellulose fibers
US6147043A (en) * 1997-01-15 2000-11-14 Henkel Kommanditgesellschaft Auf Aktien Machine dishwashing detergents with silver protection
US6440920B1 (en) 1996-07-24 2002-08-27 The Procter & Gamble Company Sprayable, liquid or gel detergent compositions containing bleach
US6602837B1 (en) 1994-12-09 2003-08-05 The Procter & Gamble Company Liquid automatic dishwashing detergent composition containing diacyl peroxides
US20030220214A1 (en) * 2002-05-23 2003-11-27 Kofi Ofosu-Asante Method of cleaning using gel detergent compositions containing acyl peroxide
US20090208543A1 (en) * 2008-01-22 2009-08-20 Oral Health Clinical Services Method and apparatus for applying a protective oral care composition
US7638474B1 (en) * 2008-08-05 2009-12-29 The Clorox Company Natural laundry detergent compositions
WO2016106168A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions stabilized with an amphiphilic rheology modifier crosslinked with an amphiphilic crosslinker
WO2016106167A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions
WO2018204812A1 (en) 2017-05-04 2018-11-08 Lubrizol Advanced Materials, Inc. Dual activated microgel
WO2021102080A1 (en) 2019-11-19 2021-05-27 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
WO2021126986A1 (en) 2019-12-19 2021-06-24 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626020B1 (fr) * 1988-01-20 1990-05-04 Protex Manuf Prod Chimiq Procede ameliore de blanchiment de fibres cellulosiques a l'aide de peroxyde d'hydrogene en milieu alcalin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667475A (en) * 1954-01-26 Bleaching kebatinous materials
US2914374A (en) * 1954-03-24 1959-11-24 Harris Res Lab Inc Bleaching of keratinous fibrous material
US3348903A (en) * 1963-02-07 1967-10-24 Degussa Hydrazine as an anti-staining agent for a peroxide bleaching solution
US3454427A (en) * 1965-05-17 1969-07-08 Kurita Industrial Co Ltd Method of disintegrating slimes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667475A (en) * 1954-01-26 Bleaching kebatinous materials
US2914374A (en) * 1954-03-24 1959-11-24 Harris Res Lab Inc Bleaching of keratinous fibrous material
US3348903A (en) * 1963-02-07 1967-10-24 Degussa Hydrazine as an anti-staining agent for a peroxide bleaching solution
US3454427A (en) * 1965-05-17 1969-07-08 Kurita Industrial Co Ltd Method of disintegrating slimes

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786431A (en) * 1984-12-31 1988-11-22 Colgate-Palmolive Company Liquid laundry detergent-bleach composition and method of use
GB2173224A (en) * 1985-03-29 1986-10-08 Colgate Palmolive Co Liquid laundry detergent bleach composition
GB2173224B (en) * 1985-03-29 1989-06-28 Colgate Palmolive Co Liquid laundry detergent bleach composition
AU599017B2 (en) * 1985-03-29 1990-07-12 Colgate-Palmolive Company, The Liquid laundry detergent-bleach composition and method of use
JPH0742478B2 (ja) 1985-03-29 1995-05-10 コルゲート・パーモリブ・カンパニー 液体洗濯用洗剤一漂白剤組成物およびその使用方法
JPS61225299A (ja) * 1985-03-29 1986-10-07 コルゲート・パーモリブ・カンパニー 液体洗濯用洗剤一漂白剤組成物およびその使用方法
US5491981A (en) * 1993-09-15 1996-02-20 Samsung Electronics Co., Ltd. Refrigeration cycle having an evaporator for evaporating residual liquid refrigerant
US5885412A (en) * 1993-12-23 1999-03-23 Bim Kemi Ab Inhibition of hydrogen peroxide decomposing enzymes during bleaching of cellulose fibers
US5635465A (en) * 1994-03-18 1997-06-03 Nippon Paint Co., Ltd. Alkaline degreasing solution
US5779737A (en) * 1994-04-15 1998-07-14 Courtaulds Fibres Holdings Limited Fibre treatment
US5759210A (en) * 1994-05-03 1998-06-02 Courtaulds Fibres (Holdings) Limited Lyocell fabric treatment to reduce fibrillation tendency
US5562739A (en) * 1994-06-01 1996-10-08 Courtaulds Fibres (Holdings) Limited Lyocell fiber treatment method
US5710115A (en) * 1994-12-09 1998-01-20 The Procter & Gamble Company Automatic dishwashing composition containing particles of diacyl peroxides
US6602837B1 (en) 1994-12-09 2003-08-05 The Procter & Gamble Company Liquid automatic dishwashing detergent composition containing diacyl peroxides
US5763378A (en) * 1995-04-17 1998-06-09 The Procter & Gamble Company Preparation of composite particulates containing diacyl peroxide for use in dishwashing detergent compositions
US5663133A (en) * 1995-11-06 1997-09-02 The Procter & Gamble Company Process for making automatic dishwashing composition containing diacyl peroxide
US6440920B1 (en) 1996-07-24 2002-08-27 The Procter & Gamble Company Sprayable, liquid or gel detergent compositions containing bleach
US6147043A (en) * 1997-01-15 2000-11-14 Henkel Kommanditgesellschaft Auf Aktien Machine dishwashing detergents with silver protection
US20030220214A1 (en) * 2002-05-23 2003-11-27 Kofi Ofosu-Asante Method of cleaning using gel detergent compositions containing acyl peroxide
US20090208543A1 (en) * 2008-01-22 2009-08-20 Oral Health Clinical Services Method and apparatus for applying a protective oral care composition
US7638474B1 (en) * 2008-08-05 2009-12-29 The Clorox Company Natural laundry detergent compositions
WO2016106168A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions stabilized with an amphiphilic rheology modifier crosslinked with an amphiphilic crosslinker
WO2016106167A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions
WO2018204812A1 (en) 2017-05-04 2018-11-08 Lubrizol Advanced Materials, Inc. Dual activated microgel
WO2021102080A1 (en) 2019-11-19 2021-05-27 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
US12460160B2 (en) 2019-11-19 2025-11-04 Lubrizol Advanced Materials, Inc. Redeposition inhibiting styrene maleic anhydride copolymers and detergent compositions containing same
WO2021126986A1 (en) 2019-12-19 2021-06-24 Lubrizol Advanced Materials, Inc. Redeposition inhibiting polymers and detergent compositions containing same
US12529014B2 (en) 2019-12-19 2026-01-20 Lubrizol Advanced Materials, Inc. Polyurethane redeposition inhibiting polymers and detergent compositions containing same

Also Published As

Publication number Publication date
FR2080980A2 (index.php) 1971-11-26
ZA705841B (en) 1972-04-26
IT943095B (it) 1973-04-02
FR2080980B2 (index.php) 1976-07-23

Similar Documents

Publication Publication Date Title
US3606990A (en) Process for washing laundry and detergent composition for working of this process
US3974082A (en) Bleaching compositions
EP2625256B1 (en) Laundry detergent composition for low temperature washing and disinfection
US4470919A (en) Oxygen-bleach-containing liquid detergent compositions
US3775332A (en) Method of activating per-compounds and solid activated per-compound compositions
US4025453A (en) Activated bleaching process and compositions therefor
US3583924A (en) Cleaning composition with improved bleaching effect
US4378300A (en) Peroxygen bleaching composition
US4448705A (en) Monoperoxyphthalic acid bleaching composition containing DTPMP
US4450089A (en) Stabilized bleaching and laundering composition
JPS61179300A (ja) 過酸化水素を活性化する方法及び組成物
CA1105658A (en) Activated bleaching process and compositions therefor
JPS63288267A (ja) 改良された漂白剤配合洗剤組成物及び織物洗濯方法
US3640874A (en) Bleaching and detergent compositions
US4455249A (en) Stabilized bleach and laundering composition
US3655567A (en) Bleaching and detergent compositions
FR2573452A1 (fr) Procede de blanchiment de linge domestique dans un cycle de lavage menager
CN101278037B (zh) 污物去除
US3725289A (en) Stain removing composition
US3756776A (en) Bleaching process and composition
US3589857A (en) Process of bleaching textiles
CA1207956A (en) Peroxyacid bleaching and laundering composition
US3551338A (en) Prevention of discoloration of cloth
US4664837A (en) Bleaching and laundering composition containing magnesium monoperoxyphthalate a chelating agent, a peroxygen compound and phthalic anhydride
CA2187303A1 (en) Detergents containing an enzyme and a delayed release peroxyacid bleaching system