US3605868A - Machine for the continuous casting of molten materials in iron molds or chills - Google Patents

Machine for the continuous casting of molten materials in iron molds or chills Download PDF

Info

Publication number
US3605868A
US3605868A US11551A US3605868DA US3605868A US 3605868 A US3605868 A US 3605868A US 11551 A US11551 A US 11551A US 3605868D A US3605868D A US 3605868DA US 3605868 A US3605868 A US 3605868A
Authority
US
United States
Prior art keywords
chills
chill
machine
molds
mating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11551A
Other languages
English (en)
Inventor
Massimo Giadorou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3605868A publication Critical patent/US3605868A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0608Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/34Moulds or cores; Details thereof or accessories therefor movable, e.g. to or from the moulding station
    • B29C33/36Moulds or cores; Details thereof or accessories therefor movable, e.g. to or from the moulding station continuously movable in one direction, e.g. in a closed circuit

Definitions

  • a machine for the continuous casting of molten material into an elongated cooling composite mold cavity for obtaining a continuous bar formation from said material the machine comprising a plurality of movable composable chills having at least two removably mating chill parts defining a longitudinal section of said elongated mold cavity when in mating position, and guide means for said mating chill parts.
  • the present invention relates to a machine for the continous casting of molten material into a continuous string or bar or band with the aid of a series of mobile iron molds or chills performing a cyclic alternation.
  • Another type of machine carries out the casting in a continuous series of composite twopart chills of the conventional type having two opposite clamshell-like parts, which are connected to each other by an articulated joint or hinge so as to form two revolving horizontal chain-tracks, one arranged over the other.
  • an object of this invention is that of providing a machine for continuous casting in two-part chills with opposite clamshell-like parts wherein use is made of a series of chills whose total length is only slightly greater than the length of the casting cavity (defined by the intercommunicating opposite clamshell-like parts) strictly necessary for the solidification of the molten material.
  • Another object of this invention is that of realizing a machine which is particularly simple and efficient which, although using a traditional type of chill or mold, will allow very high production rates and a controlled and uniform solidification of the product, making it thus suited for the continuous operation under the most favourable technical and economical conditions.
  • a machine for the continuous casting of Patented Sept. 20, 1971 molten material into an elongated cooling composite mold cavity for obtaining a continuous bar formation from said material comprising a plurality of movable composable chills having at least two removably mating chill parts defining a longitudinal section of said elongated mold cavity when in mating position, guide means for said mating chill parts, said guide means having at least two facing forward motion stretches, at least two return motion stretches and respective winding sections connecting said forward motion stretches and said return motion stretches at each end thereof, respectively, first driving means for moving said chill parts along said forward motion stretches thereby to impart a forward motion to the chill parts on said forward motion stretches and to group such chill parts in line on said forward motion stretches, said first driving means, said guide means and said chill part having a structure allowing pairs of opposite chill parts to mate with each other and to form a row of abutting composite chills
  • FIG. 1 represents a schematical side-view of a casting machine carried out according to the invention, without the chill cooling system;
  • FIG. 2 is a schematical view, in an increased scale, of a part of the machine of FIG. 1, and more particularly shows the devices foreseen on the feeding side of the chills;
  • FIGS. 3-4 show the cooling system of the chills falling within the scope of this invention.
  • the machine of this invention consists of a supporting frame 1, hinged with one of its ends through pivots 2 on uprights 3 of the base and with the other end hinged on hydraulic pistons 4 or other like devices suitable for allowing varying inclinations or slants, with respect to the horizontal plane of the whole machine, to be imparted to the frame.
  • the operational zone of the machine, along which the casting and the solidification of the molten metal takes place, comprises two pairs of opposite and parallel guides 5 and 6' within which the advancing motion of the chills takes place; these guides 5 and 6' extend through turns into guides 5 and 6 thereby forming a pair of endless guides which are destined for the transfer of the chills from side B to side A of the machine by means of chains 17 and 18 which work as endless conveyor belts.
  • the pairs of valves or clamshell-like parts 7'-7", 88", 9'- 9", 10'10" and 11'11", which will be called hereinafter half-molds or chill parts, forming the individual chills, are mounted on trolleys moving between said endless guides and have their cavities mating with each other so as to form an elongated casting cavity reproducing the shape of the solidified bar P. Also the chills formed by the pairs of half-molds 12-12 and 13'-13" are mounted on trolleys.
  • Guides and 6' are in a slanting position, with respect to the horizontal plane, with an angle which, depending on the type and on the characteristics of the molten material to be solidified, may preferably vary between and 25.
  • an angle which, depending on the type and on the characteristics of the molten material to be solidified, may preferably vary between and 25.
  • the most suited angle of inclination amounts to about 20 with respect to the horizontal plane.
  • the machine according to this invention may work also with slanting angles quite outside the above-mentioned range of inclinations.
  • a driving pinion 15, mounted in constant mesh with said racks, is provided for transmitting the forward movement of the chills from the feeding side A towards the outlet side B of the solidified bar P, while another driving pinion 16, likewise in constant mesh with said racks 14, is foreseen for creating a push in the same direction of the forward-movement from a side A to a side B of the machine, so as to ensure the constant abutment between chills 7-8-9-10.
  • the pushing pinion 16 has a speed tendentially greater than that of the driving pinion 15, and it is mounted in combination with a friction-clutch system (not shown on the drawing) so that the push action on the racks be of an elastical or yieldable character and such as not to interfere with the feed-speed imparted by the driving pinion 15.
  • chill 13 As clearly shown in FIGS. l and 2, the half-molds 13' and 13", forming the chill 13, are represented in the arriving position on the feed-side and are shown ready for the mating; on side B chill 11 has its own half-molds 11' and 11" in a partially open position (due to the loop of the guides 5 and 6) in order to free the solidified bar P.
  • the half-molds thus prepare to return to side A of the machine by displacing along the outer sides of guides 5 and 6.
  • catches 21 and 22 Fixed to the two chains 17 and 18 are catches 21 and 22, respectively, suited for engaging, by pushing against suitable rollers on the trolleys, the half-molds releasing the solidified bar P, and for dragging said half-molds along the outer sides of guides 5 and 6 up to side A of the machine. Said catches release the valves just at the moment when there is a change in speed of the chills, i.e. when these chills arrange themselves so as to engage their racks with pinion 16 in order to be trailed at operational speed.
  • the machine In order to transfer towards side A, the half-molds which open gradually on side B, the machine is set in such a way that, for instance, at each complete revolution of pinion there corresponds the passage of the rack of one chill (wherefore pinion 15 turns out to have the same number of teeth as the rack of each chill) and also one complete revolution of gearwheels 19-19 and 20-20.
  • chains 17 and 18 have each a number of links that is thrice the number of teeth of one of the gearwheels and foresee three catches each (equal to those indicated by 21 and 22) arranged at equal distances so as to ensure the alternation (or advancement) by means of only one subsidiary chill, that is, by the chill formed by half-molds 12 and 12".
  • the speed imparted by the chains 17 and 18 to the half-mold on the return motion stretch 5 and 6 of the guides is far greater than the forward motion speed of the row of chills.
  • the subsidiary chill on the return motion stretch may complete the entire return motion so that at least one subsidiary chill may be sufiicient for the cyclical interchange of the chills.
  • the lower catch 22 is mounted with a certain lead (advance) on the corresponding upper catch 21 in order to facilitate the mating of the half-molds at the moment of their arrival on side A.
  • Each half-mold carries on the contact plane one or two pins 23 suited for ensuring a perfect mating of each pair of half-molds and laterally they carry hooking plates 24-25 (FIG. 2, where the dotted lines show the position taken up after the mating).
  • the chills will advance with a continuous and uniform motion within the guides 5 and 6' and in the same way will take place the alternating of the chills along the external stretches of the guides.
  • the molten aluminum will be fed into the casting cavity of the first chill through the feeding channel 28 and will gradually solidify inside the casting cavity by means of the cooling of the chills wherefore the solidified bar P will continuously come out on side B.
  • a suitable fluid for instance water
  • the water is fed in through filler-pipes 31-32, etc., and is continuously discharged through outlet pipes 33-34, etc.
  • pipes 31-32 In order to facilitate the inflow of the cooling water into said pipes during the forward motion of the chills, pipes 31-32 have their ends (FIG. 4) shaped into funnels 31'32, wherefore the water fed from the feeding conduits 35-36 can fiow in continuously without any spilling or losses.
  • the cooling of the chills may also be achieved with other fluid means, by changing, if necessary, the type of filler-pipes.
  • This cooling system offers a high degree of regulability which, together with the variability of the casting speed, allows to influence the structural characteristics and the out-flow temperature of the product, so as to adapt them to the requirements of the subsequent processings.
  • the total length of the chills used is little greater (infact, of the length of two chills) than the length of the casting cavity strictly necessary for the solidification of the molten metal.
  • said total length turns out to be comprised between about /2 and about A that necessary for other similar machines.
  • the advancing system for the chills between guides 5' and 6' may be varied: with racks placed either above or on the side of the chills, inverting the function of the two pinions, that is, by attributing to pinion 16 the driving function and to pinion 15 the braking function by giving it a lower speed than that of pinion 16; by substituting the rack and pinion motion by the motion through pushers, etc.
  • racks placed either above or on the side of the chills, inverting the function of the two pinions, that is, by attributing to pinion 16 the driving function and to pinion 15 the braking function by giving it a lower speed than that of pinion 16; by substituting the rack and pinion motion by the motion through pushers, etc.
  • a machine for the continuous casting of molten material into an elongated cooling composite mold cavity for obtaining a continuous bar formation from said material comprising a plurality of movable composable chills having at least two removably mating chill parts defining a longitudinal section of said elongated mold cavity when in mating position, guide means for said mating chill parts, said guide means having at least two facing forward motion stretches, at least two return motion stretches and respective winding sections connecting said forward motion stretches and said return motion stretches at each end thereof, respectively, first driving means for moving said chill parts along said forward motion stretches thereby to impart a forward motion to the chill parts on said forward motion stretches and to group such chill parts in line on said forward motion stretches, said first driving means, said guide means and said chill parts having a structure allowing pairs of opposite chill parts to mate with each other and to form a row of abutting composite chills defining said elongated mold cavity, second driving means for imparting a return motion to the chill parts on said return motion
  • said first driving means comprise rack sections fixed on said chills and at least one driving pinion constantly in mesh with said rack sections, said rack sections forming a continuous rack when said chills are part of said row of chills.
  • said second driving means comprise endless chains forming a closed circuit, moving around gearwheels revolving at a speed greater than said forward motion speed and having pushing means removably engaging said chill parts when they are arranged on said return motion stretches and said winding sections thereof in order to release the bar formation of solidified metal and ensure the continuous alternation of the pairs of chill parts.
  • said first driving means comprise at least another driving pinion in mesh with said rack sections and subjected to a speed tendentially greater than the speed of said driving pinion so as to form a forward push in the same direction of the forward motion of the chills without interfering with the driving action of the driving pinion, and a slipping friction transmission connected with said other driving pinion.
  • said pushing means include catches keyed on said chains and stops fitted onto said gear-wheels, said catches and stops being spaced from each other in such a way as to ensure the alternation of one single chill at a time.
  • each chill part has an abutting surface, at least one pin on said abutting surface suited for ensuring the perfect mating of the chill parts into pairs, a lateral lead-in plate for the coupling of the chill parts, the lead-in plates of mating chill parts being offset to each other in order to ensure said coupling, and avoid interference of the coupled leadin plates.
  • a machine according to claim 1 further comprising a supporting frame for the machine having hinge means at one end and lifting devices at the other end thereof in order to permit the inclination of the machine with respect to the horizontal plane.
  • cooling means comprise cavities in said chill parts, filling pipes for said cavities connected to said chill parts and having funnelshaped inlet mouths, so arranged as to partially overlap each other thereby avoiding the spilling of the water from said filler pipes during the forward motion of the chills, and discharge pipes for said cavities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)
  • Soil Working Implements (AREA)
US11551A 1969-02-24 1970-02-16 Machine for the continuous casting of molten materials in iron molds or chills Expired - Lifetime US3605868A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT1324769 1969-02-24

Publications (1)

Publication Number Publication Date
US3605868A true US3605868A (en) 1971-09-20

Family

ID=11144333

Family Applications (1)

Application Number Title Priority Date Filing Date
US11551A Expired - Lifetime US3605868A (en) 1969-02-24 1970-02-16 Machine for the continuous casting of molten materials in iron molds or chills

Country Status (7)

Country Link
US (1) US3605868A (enrdf_load_stackoverflow)
BE (1) BE746436A (enrdf_load_stackoverflow)
CH (1) CH507038A (enrdf_load_stackoverflow)
DE (1) DE2008105C3 (enrdf_load_stackoverflow)
ES (1) ES377077A1 (enrdf_load_stackoverflow)
FR (1) FR2032370A1 (enrdf_load_stackoverflow)
GB (1) GB1305964A (enrdf_load_stackoverflow)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747666A (en) * 1970-05-08 1973-07-24 I Gyongyos Machine with articulated mold sets for continuous casting of non-ferrous metals
US3763922A (en) * 1970-04-15 1973-10-09 I Gyongyos Continuous casting machine with storing trough on tiltable frame
US3835917A (en) * 1972-11-27 1974-09-17 Prolizenz Ag Continuous casting of non-ferrous metals
US4053010A (en) * 1975-07-08 1977-10-11 Societe De Vente De L'aluminium Pechiney Process and apparatus for the continuous casting of metal products
US4211271A (en) * 1977-12-14 1980-07-08 Southwire Company Continuous casting mold geometry improvement
EP0270694A1 (de) * 1986-11-13 1988-06-15 UNICOR GmbH Rahn Plastmaschinen Vorrichtung zum fortlaufenden Erzeugen von Rohren mit querprofilierter Wandung
US4807692A (en) * 1986-08-15 1989-02-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Mold apparatus for endless track type continuous casting machine
WO1994013447A1 (en) * 1992-12-07 1994-06-23 Kun Hee Suh Continuous building materials moulding device
JP2016516586A (ja) * 2013-04-16 2016-06-09 ラメク アーゲー 搬送装置
US11040393B2 (en) * 2016-11-29 2021-06-22 Sms Group Gmbh Transport device
EP3548203B1 (de) * 2016-11-30 2021-07-07 SMS Group GmbH Raupengiessverfahren zum herstellen eines giessguts aus flüssigem metall

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH500789A (de) * 1970-02-26 1970-12-31 Prolizenz Ag Maschine mit Raupenkokille zum Bandgiessen von Nichteisenmetallen
DE3262960D1 (en) * 1981-06-11 1985-05-15 Wavin Bv Method and device for cooling moulds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US255793A (en) * 1882-04-04 Label for animals
US3342251A (en) * 1965-06-03 1967-09-19 Reliance Steel Prod Co Apparatus for casting of sections with parallel members and transverse connections

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763922A (en) * 1970-04-15 1973-10-09 I Gyongyos Continuous casting machine with storing trough on tiltable frame
US3747666A (en) * 1970-05-08 1973-07-24 I Gyongyos Machine with articulated mold sets for continuous casting of non-ferrous metals
US3835917A (en) * 1972-11-27 1974-09-17 Prolizenz Ag Continuous casting of non-ferrous metals
US4053010A (en) * 1975-07-08 1977-10-11 Societe De Vente De L'aluminium Pechiney Process and apparatus for the continuous casting of metal products
US4211271A (en) * 1977-12-14 1980-07-08 Southwire Company Continuous casting mold geometry improvement
US4807692A (en) * 1986-08-15 1989-02-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Mold apparatus for endless track type continuous casting machine
EP0270694A1 (de) * 1986-11-13 1988-06-15 UNICOR GmbH Rahn Plastmaschinen Vorrichtung zum fortlaufenden Erzeugen von Rohren mit querprofilierter Wandung
WO1994013447A1 (en) * 1992-12-07 1994-06-23 Kun Hee Suh Continuous building materials moulding device
US5756131A (en) * 1992-12-07 1998-05-26 Suh; Kun Hee Continuous building materials moulding device
JP2016516586A (ja) * 2013-04-16 2016-06-09 ラメク アーゲー 搬送装置
US9849503B2 (en) 2013-04-16 2017-12-26 Lamec Ag Transport device
US11040393B2 (en) * 2016-11-29 2021-06-22 Sms Group Gmbh Transport device
EP3548203B1 (de) * 2016-11-30 2021-07-07 SMS Group GmbH Raupengiessverfahren zum herstellen eines giessguts aus flüssigem metall

Also Published As

Publication number Publication date
FR2032370A1 (enrdf_load_stackoverflow) 1970-11-27
CH507038A (de) 1971-05-15
BE746436A (fr) 1970-08-24
ES377077A1 (es) 1972-06-01
GB1305964A (enrdf_load_stackoverflow) 1973-02-07
DE2008105B2 (enrdf_load_stackoverflow) 1980-02-21
DE2008105A1 (de) 1970-09-03
DE2008105C3 (de) 1980-10-09

Similar Documents

Publication Publication Date Title
US3605868A (en) Machine for the continuous casting of molten materials in iron molds or chills
US3841390A (en) Continuous molding machine
US1220211A (en) Molding-machine.
US3976120A (en) Casting arrangement for forming plate-shaped metal parts
US2582074A (en) Candy forming and dispensing machine
US3382531A (en) Apparatus for producing hollow plastic articles
GB1245362A (en) Improvements in or relating to continuous conveyor type moulding devices
US2437702A (en) Conveyer for transporting pottery molds
CN105215339A (zh) 连铸机及连铸方法
CN216271330U (zh) 一种全自动铜锭模具输送设备
CS202690B1 (en) Pouring line for casting in the metal moulds
US2385322A (en) Soap molding machine
US1469888A (en) Sand ejector for flasks
US1898722A (en) Casting machine
US3776681A (en) Thermoforming apparatus
US1942582A (en) Sausage making method and apparatus
GB1440747A (en) Soap bar manufacture
SU257705A1 (ru) Лини дл отливки деталей
SU55188A1 (ru) Машина дл непрерывной разливки стали
US3646989A (en) Continuous casting dummy bar head casting conveyor
Giadorov Continuous Aluminum Casting Machine
JPS59212147A (ja) ブロツク鋳型供給方法及び装置
SU1068220A1 (ru) Установка дл лить заготовок
SE445311B (sv) Sett och apparat for framstellning av fragmenterad ravara for efterfoljande anvendning i en smelt- eller tillverkningsugn
GB1237141A (en) Improvements in and relating to the casting of metals