US3585383A - Microanalyzer for producing a characteristic ionic image of a sample surface - Google Patents
Microanalyzer for producing a characteristic ionic image of a sample surface Download PDFInfo
- Publication number
- US3585383A US3585383A US518453A US3585383DA US3585383A US 3585383 A US3585383 A US 3585383A US 518453 A US518453 A US 518453A US 3585383D A US3585383D A US 3585383DA US 3585383 A US3585383 A US 3585383A
- Authority
- US
- United States
- Prior art keywords
- ions
- arrangement
- sample
- energy
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000002500 ions Chemical class 0.000 claims description 85
- 239000002245 particle Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 abstract description 12
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 description 14
- 238000001914 filtration Methods 0.000 description 8
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/44—Energy spectrometers, e.g. alpha-, beta-spectrometers
- H01J49/46—Static spectrometers
- H01J49/48—Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/05—Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/252—Tubes for spot-analysing by electron or ion beams; Microanalysers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/14—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
- H01J49/142—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/28—Static spectrometers
- H01J49/284—Static spectrometers using electrostatic and magnetic sectors with simple focusing, e.g. with parallel fields such as Aston spectrometer
- H01J49/286—Static spectrometers using electrostatic and magnetic sectors with simple focusing, e.g. with parallel fields such as Aston spectrometer with energy analysis, e.g. Castaing filter
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/44—Energy spectrometers, e.g. alpha-, beta-spectrometers
- H01J49/46—Static spectrometers
- H01J49/466—Static spectrometers using crossed electric and magnetic fields perpendicular to the beam, e.g. Wien filter
Definitions
- the present invention relates to microanalysers and more particularly to microanalysers making use of the secondary ion emission for producing, by means of a corpuscular optical system which combines ion optics and mass spectrography, characteristic images of the surface of the sample which indicate the map of distribution of its various elements or isotopes.
- Microanalysers wherein the analysis of a sample takes place by collecting and focusing into an image of the sample the secondary ions emitted by the sample under the impact of a beam of primary positive ions, are known in the art.
- a suitable optical system was described in the French Pat. No. 1,240,658 and in a scientific paper by the applicants R. CASTAING and G. SLODZIAN PREMIERS ESSAIS DE MICROSANALYSE PAR EMISSION IONIQUE SECON- DAIRE Comptes Rendus Academic des Sciences de Paris 255, 1893-1895 (15th Oct. 1962 Its operation is generally satisfactory. It has, however, the drawback of not allowing an easy separation of the secondary ions of high and nearly equal mass on account of the fact that all the secondary ions do not leave the sample at the same initial velocity.
- the arrangement formicroanalysis by bombardment with primary positive ions or neutral atoms comprises an optical system for focusing secondary ions, including means for eliminating by filtering those secondary ions whose initial energy is higher than a predetermined value.
- the said electron optical system includes a spherical capacitor which, by means of a slit, ensures the elimination of ions whose initial energy is higher than or different from a predetermined value.
- the electron optical system includes means for deflecting the secondary ion beam onto an electrostatic mirror in order to eliminate the excessively fast ions while reflecting the others.
- FIG. 1 shows very schematically a first embodiment of the invention
- FIG. 2 shows in more detail a possible arrangement of the different parts according to this first embodiment
- FIG. 3 shows another embodiment of the invention.
- FIG. 4 shows in more detail a possible arrangement of the different parts according to this second embodiment.
- a sample 1 emits, under the impact of a beam of positive primary ions or fast neutral atoms 2, characteristic secondary ions which are taken up by the acceleration optical system 3, comprising electrodes 31 to 33 and an aperture 34.
- a spherical capacitor 4 is placed in the path of the beam oft secondary ions. It comprises two plates 41 and 42, held at different potentials by means of a source 5; it gives of the crossover of the acceleration optical system 3, which is located in the aperture 34, a real image crossover located in a symmetrical position, at a distance of the outlet of the spherical capacitor, equal to the radius of curvature of the mean ion trajectory.
- a wall provided with a slit g, stops some of the ions which have gone through the capacitor 4, and the remaining ions are focused by a lens 10.
- the optical system includes, in addition, the magnetic sector 6, which deflects ions which propagate through it and is adjustable by a suitable control device, and lastly an ion optical system 8 which comprises a selection slit 81, a stigmator and other electrodes (not shown) which are parts of an image converter, as disclosed in the above-mentioned French Patent.
- the ions accelerated by electrodes 31 to 33 are deflected by capacitor 4 towards magnetic sector 6.
- the angle of deflection of each ion trajectory depends on the energy of the corresponding ion. For the purpose of simplification, it is assumed that the ions considered are positive and of the single charge type.
- ions whose initial energy is too low may be stopped by the lower edge of slit 9 and eliminated from the beam entering the magnetic sector 6 if that is considered necessary for the analytical procedure.
- the electrostatic lens 10 is positioned and excited in such a way that the ion beam, after passing it, enters the magnetic sector under suitable conditions, as is known in the art and described in the French Patent No. 1,240,658, for ensuring focusing in both transverse directions and production of an exit crossover at the level of slit 81.
- the radius of curvature of the trajectories in the magnetic sector depends only on the momentum of the emitted particle, for a given induction, that is to say on the value EM, where E is the energy of the particle and M is its mass number.
- Diaphragm 34 does actually ensure some elimination of ions emitted at a certain initial velocity, but such filtering is insufiicient since it acts on the component of the initial velocity of the secondary ions perpendicular to the axis of the system only.
- the spherical capacitor which deflects the ions as a function of their energy and not of their momentum, ensures a perfect filtering.
- the optical system which comprises the first emission lens 3, the spherical capacitor 4, the intermediate lens 10 and the magnetic sector 6 gives, when properly adjusted, a characteristic image of the sample surface produced by ions of any desired mass, which is achromatic, that is to say insensitive to the slight heterogeneity of the ion energies which is allowed by the width of slit 9.
- FIG. 2 shows in more detail a possible arrangement of the different parts.
- the sample 1 is bombarded by the ion beam produced by the focusing gun 2 which comprises an ion source 21, excited by high frequency generator 211 and fed by gas inlet 212, and a condenser lens 22. Means for neutralizing the primary ions have not been represented here.
- the secondary ions are accelerated and focused into an image of the sample surface by the emission lens 3 which comprises accelerating electrode 31, focusing electrodes 32 and 33 and aperture 34.
- the crossover at the aperture34 acts as a source for the energy selecting spherical capacitor 4 comprising two plates 41 and 42.
- the stigmator 82 corrects for astigmatism the characteristic image of the sample surface which is produced by the whole optical system. This image is then taken up by the image converter 1 I, known in the art, for convenient observation and recording through a window 111.
- the system is evacuated through openings 01, 02, 03 and 04.
- FIG. 3 shown another embodiment of a system according to the invention. shows for simplification, it is assumed that the secondary ions are positive, but negative secondary ions could be used as well in the embodiment of FIGS. 1 and 2 as in the embodiment of FIGS. 3 and 4.
- FIG. 3 the same reference numerals designate the same parts as in FIG. I.
- the shape of the magnetic sector 6 is as shown.
- Electrode 103 is at a slightly higher positive potential than target 1.
- This electrode may be provided with an aperture 105; in this case excessively fast ions pass through this aperture and do not return, while slower ions are decelerated and returned by electrode 103 towards the upper part 62 of sector 6 which deflects them towards selection slit 81, stigmator 82 and the image converter.
- electrode 103 may be solid (devoid of the aperture 105) to capture excessively fast ions, while reflecting slower ions.
- FIG. 3 provides, over that shown in FIG. 1, the additional advantage of making it possible to place the sample coaxially with the display screen (not shown).
- the arrangement of FIG. 1 provides the advantage of making it possible to pick up for obtaining the image the secondary ions which are emitted by the sample with a given initial energy and rejecting those of the secondary ions which are emitted with a lower or higher initial energy.
- FIG. 4 shows in more detail the arrangement of the various parts of the system; the mirror electrode 103 is in this figure devoid of the aperture 105 and it stops the ions whose energy is too high.
- lens means for concentrating said secondary ions to form a beam providing an ionic image of the sample surface
- magnetic field means positioned in the path of said filtered beam for rejecting therefrom the ions having a momentum different from a predetermined value, said magnetic means having an outlet and means located at said outlet for displaying said lOlllC image,
- said magnetic field means comprise a magnetic sector and means for controlling the magnetic field in said sector
- said eliminating means comprise a spherical capacitor, having two plates facing each other and an outlet, means for creating between said plates a direct current electric field, and a wall having a slit, being positioned near said outlet.
- a primary ion source for bombarding said sample;
- lens means for concentrating said secondary ions to form a beam providing an ionic image of the sample surface;
- magnetic field means positioned in the path of said filtered beam for rejecting therefrom the ions having a momentum difi'erent from a predetermined value, said magnetic means having an outlet;
- said magnetic filed means comprise a magnetic sector and means for controlling the magnetic field in said sector
- said eliminating means comprise an ion mirror, said ion mirror comprising means for reflecting ions whose energy is lower than a predetermined level and for eliminating the other ions.
- said mirror comprises an electrode which collects the ions having an energy higher than said predetermined level.
- said mirror comprises an apertured electrode, having a center hole for allowing the ions, whose energy is higher than said predetermined level, to propagate beyond said mirror.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Electron Tubes For Measurement (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR916836A FR1352167A (fr) | 1962-11-28 | 1962-11-28 | Nouveau dispositif de microanalyse par émission ionique secondaire |
Publications (1)
Publication Number | Publication Date |
---|---|
US3585383A true US3585383A (en) | 1971-06-15 |
Family
ID=8791691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US518453A Expired - Lifetime US3585383A (en) | 1962-11-28 | 1966-01-03 | Microanalyzer for producing a characteristic ionic image of a sample surface |
Country Status (5)
Country | Link |
---|---|
US (1) | US3585383A (enrdf_load_stackoverflow) |
JP (2) | JPS5211599B1 (enrdf_load_stackoverflow) |
DE (1) | DE1498646B2 (enrdf_load_stackoverflow) |
FR (1) | FR1352167A (enrdf_load_stackoverflow) |
GB (1) | GB1078823A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3798447A (en) * | 1970-05-27 | 1974-03-19 | Onera (Off Nat Aerospatiale) | Apparatus for directing an energizing beam on a sample to cause secondary ion emission |
US3986025A (en) * | 1973-06-08 | 1976-10-12 | Hitachi, Ltd. | Ion microanalyzer |
US4296323A (en) * | 1980-03-10 | 1981-10-20 | The Perkin-Elmer Corporation | Secondary emission mass spectrometer mechanism to be used with other instrumentation |
US4694170A (en) * | 1984-12-28 | 1987-09-15 | Office National D'etudes Et De Recherches Aerospatiales | Instrument for very high resolution ionic micro-analysis of a solid sample |
US5721428A (en) * | 1994-12-28 | 1998-02-24 | Ebara Corporation | Magnetic field type mass spectrometer |
US20100072363A1 (en) * | 2006-12-11 | 2010-03-25 | Roger Giles | Co-axial time-of-flight mass spectrometer |
US20120261571A1 (en) * | 2009-09-24 | 2012-10-18 | Dietmar Funnemann | Imaging energy filter for electrically charged particles and spectroscope having same |
US9741525B1 (en) * | 2016-02-02 | 2017-08-22 | Fei Company | Charged-particle microscope with astigmatism compensation and energy-selection |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1439064A (fr) * | 1965-02-09 | 1966-05-20 | Centre Nat Rech Scient | Perfectionnements aux analyseurs ioniques |
US3517191A (en) * | 1965-10-11 | 1970-06-23 | Helmut J Liebl | Scanning ion microscope with magnetic sector lens to purify the primary ion beam |
GB1171700A (en) * | 1967-10-31 | 1969-11-26 | Atomic Energy Authority Uk | Improvements in or relating to Ion Beam Intensity Measuring Apparatus and Methods |
US3558879A (en) * | 1968-03-12 | 1971-01-26 | Atomic Energy Commission | Electrostatic deflector for selectively and adjustably bending a charged particle beam |
JPS5531771U (enrdf_load_stackoverflow) * | 1978-08-21 | 1980-02-29 | ||
JPS58116270A (ja) * | 1981-12-30 | 1983-07-11 | Nissan Motor Co Ltd | 車体シ−ル構造 |
JPS59110473U (ja) * | 1983-01-18 | 1984-07-25 | トヨタ自動車株式会社 | 鋼板合わせ面の水入り防止構造 |
GB8725459D0 (en) * | 1987-10-30 | 1987-12-02 | Nat Research Dev Corpn | Generating particle beams |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2947868A (en) * | 1959-07-27 | 1960-08-02 | Geophysics Corp Of America | Mass spectrometer |
US2976413A (en) * | 1956-06-25 | 1961-03-21 | Cons Electrodynamics Corp | Mass spectrometer |
US3061720A (en) * | 1960-02-29 | 1962-10-30 | Ewald Heinz | Spectrograph |
US3126477A (en) * | 1964-03-24 | Multiple dispersion mass spectrometer | ||
US3174034A (en) * | 1961-07-03 | 1965-03-16 | Max Planck Gesellschaft | Mass spectrometer |
-
1962
- 1962-11-28 FR FR916836A patent/FR1352167A/fr not_active Expired
-
1963
- 1963-11-27 GB GB46920/63A patent/GB1078823A/en not_active Expired
- 1963-11-27 DE DE19631498646 patent/DE1498646B2/de not_active Withdrawn
- 1963-11-28 JP JP38063524A patent/JPS5211599B1/ja active Pending
-
1966
- 1966-01-03 US US518453A patent/US3585383A/en not_active Expired - Lifetime
-
1967
- 1967-11-08 JP JP42071479A patent/JPS4821314B1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126477A (en) * | 1964-03-24 | Multiple dispersion mass spectrometer | ||
US2976413A (en) * | 1956-06-25 | 1961-03-21 | Cons Electrodynamics Corp | Mass spectrometer |
US2947868A (en) * | 1959-07-27 | 1960-08-02 | Geophysics Corp Of America | Mass spectrometer |
US3061720A (en) * | 1960-02-29 | 1962-10-30 | Ewald Heinz | Spectrograph |
US3174034A (en) * | 1961-07-03 | 1965-03-16 | Max Planck Gesellschaft | Mass spectrometer |
Non-Patent Citations (1)
Title |
---|
Mass Spectrometer Image Displacements Due To Second-Order Aberrations by C. F. Robinson from THE REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 29, No. 7, July, 1958, Pgs. 622 624. Q184.R5 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3798447A (en) * | 1970-05-27 | 1974-03-19 | Onera (Off Nat Aerospatiale) | Apparatus for directing an energizing beam on a sample to cause secondary ion emission |
US3986025A (en) * | 1973-06-08 | 1976-10-12 | Hitachi, Ltd. | Ion microanalyzer |
US4296323A (en) * | 1980-03-10 | 1981-10-20 | The Perkin-Elmer Corporation | Secondary emission mass spectrometer mechanism to be used with other instrumentation |
US4694170A (en) * | 1984-12-28 | 1987-09-15 | Office National D'etudes Et De Recherches Aerospatiales | Instrument for very high resolution ionic micro-analysis of a solid sample |
US5721428A (en) * | 1994-12-28 | 1998-02-24 | Ebara Corporation | Magnetic field type mass spectrometer |
US20100072363A1 (en) * | 2006-12-11 | 2010-03-25 | Roger Giles | Co-axial time-of-flight mass spectrometer |
US8952325B2 (en) * | 2006-12-11 | 2015-02-10 | Shimadzu Corporation | Co-axial time-of-flight mass spectrometer |
US20120261571A1 (en) * | 2009-09-24 | 2012-10-18 | Dietmar Funnemann | Imaging energy filter for electrically charged particles and spectroscope having same |
US8530835B2 (en) * | 2009-09-24 | 2013-09-10 | Dietmar Funnemann | Imaging energy filter for electrically charged particles and spectroscope having same |
US9741525B1 (en) * | 2016-02-02 | 2017-08-22 | Fei Company | Charged-particle microscope with astigmatism compensation and energy-selection |
Also Published As
Publication number | Publication date |
---|---|
GB1078823A (en) | 1967-08-09 |
JPS4821314B1 (enrdf_load_stackoverflow) | 1973-06-27 |
DE1498646A1 (de) | 1968-12-12 |
JPS5211599B1 (enrdf_load_stackoverflow) | 1977-03-31 |
DE1498646B2 (de) | 1971-12-16 |
FR1352167A (fr) | 1964-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3585383A (en) | Microanalyzer for producing a characteristic ionic image of a sample surface | |
US4315153A (en) | Focusing ExB mass separator for space-charge dominated ion beams | |
US4818872A (en) | Integrated charge neutralization and imaging system | |
US4649316A (en) | Ion beam species filter and blanker | |
GB1145107A (en) | Ion beam microanalyser | |
US4672204A (en) | Mass spectrometers | |
US4551599A (en) | Combined electrostatic objective and emission lens | |
US5637879A (en) | Focused ion beam column with electrically variable blanking aperture | |
JPS6340241A (ja) | イオンビ−ム装置 | |
US6111253A (en) | Transmission electron microscope | |
US5155368A (en) | Ion beam blanking apparatus and method | |
AU2017220662A1 (en) | Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device | |
US3415985A (en) | Ionic microanalyzer wherein secondary ions are emitted from a sample surface upon bombardment by neutral atoms | |
US3573454A (en) | Method and apparatus for ion bombardment using negative ions | |
US3500042A (en) | Ionic microanalyzer which includes a convex mirror as an ion energy filter | |
US4107527A (en) | Ion-emission microanalyzer microscope | |
EP1067576B1 (en) | Energy filter and electron microscope using the same | |
US4160905A (en) | Electron microscopes | |
US3585384A (en) | Ionic microanalyzers | |
US3163752A (en) | Ion acceleration apparatus for coincidence time-of-flight mass specrometers | |
US10770278B2 (en) | Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device | |
CN222706680U (zh) | 一种具有预分析结构的低能注入器 | |
US3387131A (en) | Dual orbit mass spectrometer for analyzing ions in the mass range of 1 to 100 | |
US3308293A (en) | Method of selectively separating charged particles using a variable intensity non-uniform magnetic field | |
GB1038220A (en) | Improvements in ion beam microanalysers |